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Abstract. In the paper we explore the idea of describing Pawlak’s rough sets using

three-valued logic, whereby the value t corresponds to the positive region of a set, the

value f — to the negative region, and the undefined value u — to the border of the set.

Due to the properties of the above regions in rough set theory, the semantics of the logic is

described using a non-deterministic matrix (Nmatrix). With the strong semantics, where

only the value t is treated as designated, the above logic is a “common denominator” for

Kleene and �Lukasiewicz 3-valued logics, which represent its two different “determiniza-

tions”. In turn, the weak semantics — where both t and u are treated as designated —

represents such a “common denominator” for two major 3-valued paraconsistent logics.

We give sound and complete, cut-free sequent calculi for both versions of the logic

generated by the rough set Nmatrix. Then we derive from these calculi sequent calculi

with the same properties for the various “determinizations” of those two versions of the

logic (including �Lukasiewicz 3-valued logic). Finally, we show how to embed the four

above-mentioned determinizations in extensions of the basic rough set logics obtained by

adding to those logics a special two-valued “definedness” or “crispness” operator.

Keywords: rough sets, three-valued logics, non-deterministic matrices, sequent calculi.

1. Introduction

Next to Zadeh’s fuzzy sets, Pawlak’s rough sets [20, 21] are one of the two
most famous notions used to describe vague information. Since their intro-
duction in the early 1980s, they have been the subject of an impressive body
of research. They have also found numerous practical applications, like the
control of manufacturing processes [16], development of decisions tables [22],
data mining [16], data analysis [23], knowledge discovery [18, 19], and so on.

The present paper has been motivated by the idea of proposing a new
logical approach to this paradigm: namely, to try to describe rough sets
using multiple-valued logics. Accordingly, we develop here a three-valued
logic for rough sets. In this logic, the value t corresponds to the positive
region of a set, the value f — to the negative region, and the undefined
value u — to the border of the set.
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However, it turns out that, due to the properties of the above regions in
rough set theory, the semantics of such a logic cannot be described with help
of an ordinary logical matrix because of the non-deterministic properties of
this semantics. As a result, we base the semantics of the rough set logic
developed here on a 3-valued, non-deterministic matrix (Nmatrix) [4, 3].

The above logic turns out to have interesting relationships with some
well-known 3-valued logics. Namely, with the strong version of the seman-
tics (where only the value t is treated as designated) the rough set logic
is a “common denominator” for Kleene and �Lukasiewicz 3-valued logics,
which represent its two different “determinizations”. In turn, with a weak
semantics (where both t and u are treated as designated) the logic is such
a “common denominator” for two major 3-valued paraconsistent logics. In
the paper we explore in detail the above-mentioned relationships between
the two variants of the rough-set logic and the four known logics, and pro-
vide sound and complete, cut-free sequent calculi for all the logics discussed
in this paper.

The paper is organized as follows. Following this introduction, in Section
2 we give an outline of Pawlak’s rough set theory. Section 3 gives the mo-
tivation for using a three-valued logic to describe rough sets, and Section 4
— the motivation for the use of non-deterministic matrices. Section 5 in-
troduces simple predicate languages, suitable for describing membership of
elements in rough sets, while Section 6 describes the 3-valued rough set logic
itself. In Section 7 we give a cut-free sequent calculus for the strong version
of the propositional logic generated by the Nmatrix underlying the rough set
logic, and prove its soundness and completeness. The relationships between
this logic and Kleene and �Lukasiewicz 3-valued logics are examined in Sec-
tion 8, where sequent calculi for the latter logics are also developed. (In the
case of �Lukasiewicz this is a new cut-free calculus.) Section 9 deals with the
weak version of the logic and its relationships with two major paraconsistent
three-valued logics. Finally, Section 10 is devoted to conclusions and plans
for further research.

2. Pawlak’s Rough Set Theory

In its most general formulation, Pawlak’s rough set theory [21] is based on
the observation that we can view knowledge as represented by an equiva-
lence relation. Namely, the relation representing our knowledge partitions
a universe of objects into disjoint equivalence classes containing objects of
which we have the same knowledge. In other words, using our knowledge,
we cannot distinguish between any two objects belonging to the same equiv-
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alence class. The semantic framework for general rough set theory is based
on the notion of a knowledge base:

Definition 1. A knowledge base is a tuple K = (U,R), where:

• U is a universe of objects;

• R is a set of equivalence relations on objects in U .

For any equivalence relation R ∈ R and any object x in the universe U ,
we denote by [x]R the unique equivalence class of R which contains x. The
set of all equivalence classes of R is denoted by U/R.

Basically, rough sets are subsets of the universe U defined up to their
lower and upper approximations with respect to a given equivalence relation
in the knowledge base. The said approximations are defined as follows:

Definition 2. Let R ∈ R be any equivalence relation in the knowledge base
K = (U,R), and let X be any subset of U . Then:

• The lower approximation of the set X with respect to the relation R is
the set

RX =
⋃

{Y ∈ U/R | Y ⊆ X} = {x ∈ U | [x]R ⊆ X}

• The upper approximation of the set X with respect to the relation R is
the set

RX =
⋃

{Y ∈ U/R | Y ∩ X �= ∅} = {x ∈ U | [x]R ∩ X �= ∅}

Obviously, in view of the above definition, one can say that under the
knowledge R:

• RX is the set of all the objects in U which certainly belong to X;

• RX is the set of all the objects in U which might belong to X;

3. Motivation for Three-Valued Logic

In view of the definitions presented in the previous section, with any set X
we can associate the three following regions in U , representing three basic
statuses, or degrees, of membership of an object of the universe U in the set
X ⊆ U :

Definition 3. Let K = (U,R), R ∈ R and X ⊆ U . Then:
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• The R-positive region of X with respect to the relation R is

POSR(X) = RX

• The R-negative region of X with respect to the relation R is the set

NEGR(X) = U − RX

• The R-boundary region of X with respect to the relation R is the set

BNR(X) = RX − RX

Based on the knowledge R, we can say that

• The elements of POSR(X) certainly belong to X;

• The elements of NEGR(X) certainly do not belong to X;

• We cannot tell if the elements of BNR(X) belong to X or not

This suggests a natural way of describing rough sets with help of a simple
three-valued logic Lrs, defined informally as follows:

• The formulas of Lrs are all expressions of the form Ax, where:

– A is an expression representing a subset of U

– x is a variable representing an object in U

• The semantics of Lrs uses logical values in

T = {t, f,u}

where:

– t represents the classical value true,

– f represents the classical value false,

– u represents a non-classical value unknown.

As designated values we can take either {u, t} — obtaining a weak logic
— or only {t}, obtaining a strong logic. However, as we will show later,
both options are dual from the viewpoint of satisfaction and proof theory.
Accordingly, we will first examine in detail the strong logic, and then use
the duality to obtain the corresponding results for the weak logic.

• The truth-values of formulas in Lrs with respect to a knowledge base
K = (U,R), a relation R ∈ R, an interpretation | · | of set expressions,
and a valuation v of object variables, are as follows:

||Ax||v =

⎧⎨
⎩

t if v(x) ∈ POSR(|A|)
f if v(x) ∈ NEGR(|A|)
u if v(x) ∈ BNR(|A|)

(1)
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4. Motivation for the Use of Non-Deterministic Matrices

Unfortunately, the logic Lrs proposed informally above has a major draw-
back: its semantics is not decompositional. This follows from the fact that
the lower and upper approximations of a set obey the rules

R(A ∪ B) = RA ∪ RB R(A ∪ B) ⊇ RA ∪ RB

R(A ∩ B) = RA ∩ RB R(A ∩ B) ⊆ RA ∩ RB

R(−A) = −RA R(−A) = −RA

(2)

where the inclusions cannot be in general replaced by equalities.
Clearly, these inclusions imply that the values of (A∪B)x and (A∩B)x

are not always uniquely determined by the values of Ax and Bx, which
is exactly the factor that makes the semantics of Lrs non-decompositional.
Namely, we have:

If ||Ax|| = u and ||Bx|| = u, then
||(A ∪ B)x|| ∈ {u, t} and ||(A ∩ B)x|| ∈ {f,u}

and we cannot in general say in advance which of the respective two values
will be assigned by the interpretation to the considered two formulas.

In view of the above, it is evident that the semantics of Lrs cannot be
defined using an ordinary logical matrix. A solution to this problem is to use
instead a non-deterministic logical matrix (Nmatrix), which is a generaliza-
tion of an ordinary matrix modelling non-determinism, with interpretations
of logical connectives returning sets of logical values instead of single values.

Definition 4. [4] A non-deterministic matrix (Nmatrix) for a propositional
language L is a tuple M = (T ,D,O), where:

• T is a non-empty set of truth values.

• ∅ ⊂ D ⊆ T is the set of designated values.

• For every n-ary connective 	 of L, O includes a corresponding n-ary
function 	̃ from T n to 2T − {∅}.

Let W be the set of well-formed formulas of L. A (legal) valuation in an
Nmatrix M is a function v :W→ T that satisfies the following condition:

v(	(ψ1, · · · , ψn)) ∈ 	̃(v(ψ1) · · · , v(ψn))

for every n-ary connective 	 of L and any ψ1 · · · , ψn ∈ W .
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Let VM denote the set of all valuations in the Nmatrix M. The notions of
satisfaction under a valuation, validity, and consequence relation are defined
as follows:

• A formula ϕ ∈ W is satisfied by a valuation v ∈ VM , in symbols v |= ϕ,
if v(ϕ) ∈ D

• A sequent Σ = Γ ⇒ ∆ is satisfied by a valuation v ∈ VM , in symbols
v |= Σ, iff either v does not satisfy some formula in Γ or v satisfies some
formula in ∆

• A sequent Σ is valid, in symbols |= Σ, if it is satisfied by all valuations
v ∈ VM

• The consequence relation on W defined by M is the relation �M on sets
of formulas in W such that, for any T, S ⊆ W , T �M S iff there exist
finite sets Γ ⊆ T,∆ ⊆ S such that the sequent Γ ⇒ ∆ is valid.

Though an Nmatrix is basically defined for a standard propositional lan-
guage, we will see below that it can be easily used to define the semantics
for the simple predicate-type of language needed to describe rough sets.

In what follows we will define a three-valued logic for modelling rough
sets with semantics based on an Nmatrix.

5. Simple Predicate Languages

Since the language of our rough set logic will be a predicate-level one, with
atomic formulas expressing membership of objects in sets, we will first pro-
vide a general definition of such a language, together with its semantics
based on an Nmatrix.

We start with defining the syntax of that language:

Definition 5. The alphabet of a simple predicate language LP contains:

• a set Pn of n-ary predicate symbols for n = 0, 1, 2, . . .;

• a set Ok
n of symbols for k-ary operations on n-ary predicates for n, k =

0, 1, 2, . . .

• a set V of individual variables.

The set En of predicate expressions of arity n is the least set such that:

• Pn ⊆ En;

• if 	 ∈ Ok
n and e1, . . . , ek ∈ En, then 	(e1, . . . , ek) ∈ En.
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The set W of well-formed formulas of LP consists of all expressions of the
form

e(x1, . . . , xn)

where n ≥ 0, e ∈ En and x1, . . . , xn ∈ V.

The semantics of LP is defined based on an Nmatrix for LP and a struc-
ture for LP :

Definition 6. An Nmatrix for LP is a non-deterministic matrix M =
(T ,D,O) with O containing an interpretation 	̃ : T k → 2T \ {∅} for every
k-ary operation 	 on n-ary predicates in Ok

n, n ≥ 0.

Definition 7. A T -structure for LP is a pair M = (X, | · |), where:

• X is a non-empty set;

• | · | is an interpretation of predicate symbols, with |p| : Xn → T for any
p ∈ Pn, n ≥ 0.

To define the interpretation of formulas of LP in a given structure, we
use a non-deterministic matrix for interpreting the operators of that lan-
guage, adapting the definition of a legal valuation under an Nmatrix for a
propositional language given in Definition 4 to the syntax of LP as follows:

Definition 8. Let M = (T ,D,O) be an Nmatrix for LP , and let M =
(X, | · |) be a T -structure for LP .

An interpretation of LP under the Nmatrix M = (T ,D,O) in the struc-
ture M = (X, | · |) for a valuation v : V → X is a function || · ||Mv : W → T
such that:

• ||p(x1, . . . , xn)||Mv = |p|(v(x1), . . . , v(xn)) for any p ∈ Pn, n ≥ 0,

• || 	 (e1, . . . , ek)(x1, . . . , xn)||Mv
∈ 	̃(||(e1(x1, . . . , xn))||Mv , . . . , ||(ek(x1, . . . , xn)||Mv )

for any k-ary operation on n-ary predicates 	 ∈ Ok
n, any n-ary predicate

expressions e1, . . . , ek ∈ En, and any individual variables xi ∈ V, i =
1, . . . , n.

To simplify notation, in what follows we will drop the decorations on the
|| · || symbol whenever this does not lead to confusion.
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6. Propositional Rough Sets Logic

6.1. Basic Rough Sets Language

The predicate language LRS for describing rough sets uses only unary pred-
icate symbols representing sets, object variables, and the symbols −,∪,∩
representing operations on predicates corresponding to set-theoretical oper-
ations on rough sets, i.e.

• P1 = {P,Q,R, . . .}, Pn = ∅ for n �= 1

• O1
1 = {−},O2

1 = {∪,∩},Ok
n = ∅ otherwise.

Thus the set WRS of well-formed formulas of LRS contains all expressions
of the form Ax, where A is a unary predicate expression representing a set,
built of the predicate symbols in P1 and using the operation symbols −,∪,∩,
while x ∈ V is an individual variable.

The semantics of LRS is given by the Nmatrix MRS = (T ,D,O), where
T = {f,u, t}, D = {t}, and −,∪,∩ are interpreted as set-theoretic opera-
tions on rough sets, with their semantics given by:

−̃ f u t

t u f

∪̃ f u t

f f u t

u u {u, t} t

t t t t

∩̃ f u t

f f f f

u f {f,u} u

t f u t

where f,u and t stand for the appropriate singleton sets.

It can be easily checked that in view of the rules (2) governing the in-
terplay between the operations of lower and upper approximations and set-
theoretic operations in the rough sets framework, the interpretation of the
latter operations in the Nmatrix MRS corresponds to the intended interpre-
tation (1) of the Ax type of formulas in that framework. Note that comple-
ment is in fact a deterministic operation, while the semantic tables for union
and intersection have just one “non-determinacy point” each: namely, the
result of the operation on two undefined arguments.

6.2. Propositional Rough Set Logic

Our next goals are to produce efficient proof systems for the three-valued
rough set logic LRS defined by the language LRS with the semantics given by
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MRS , as well as to compare it to the two most well-known three-valued log-
ics — namely, Kleene [12] and �Lukasiewicz [17] logics. However, we cannot
make such a comparison directly — for the latter logics are standard propo-
sitional ones, featuring no predicate symbols or object variables. Hence our
comparison must be based not on the logic LRS with the language LRS it-
self, but on a propositional logic with the semantics defined by the Nmatrix
MRS derived from the rough sets framework. This does not make a real
difference with regard to the proof system, since LRS has no quantifiers or
logical connectives, and a proof system for the propositional logic mentioned
above can easily be translated to a proof system for LRS (see Note 2 below).

What is more, basing on the well-known fact that conjunction and dis-
junction can be expressed in terms of negation and implication in both
Kleene and �Lukasiewicz logics, in order to simplify development of the proof
system for that logic, we will switch to a propositional language using just
the latter connectives. The implication in that language will be defined as

A → B = ¬A ∨ B

where the connectives ¬ and ∨ correspond to the operations − and ∪ in
MRS . (The use of such a negation-implication language will facilitate com-
parison with Kleene and �Lukasiewicz logics, for which we will also use their
negation-implication versions.). More exactly, we consider a propositional
logic LI

RS with propositional variables in P = {p, q, r, . . .} and connectives
¬,→. The formulas of LI

RS are denoted by A,B,C, . . ., and the set of all
well-formed formulas — by WI .

It can be easily seen that the Nmatrix corresponding to LI
RS is MI

RS =
(T ,D,OI), where T ,D are the same as before, and OI contains the inter-
pretations of ¬ and → defined by the following semantic tables:

¬̃ f u t

t u f

→̃ f u t

f t t t

u u {u, t} t

t f u t

(3)

It should be noted here that the two possible “determinizations” of the
above Nmatrix give ordinary matrices underlying the two famous three-
valued logics of Kleene and �Lukasiewicz. As a result, the logic based on
MI

RS can be seen as a “common denominator” for Kleene and �Lukasiewicz
logics, which we can safely work with if we are not sure which of the above
logics to choose for our application. Indeed: if out of the two possibilities
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for the value of u → u given in the implication table (3) we choose u, we
obtain Kleene logic, whereas the choice of t yields �Lukasiewicz logic.

A (legal) valuation of LI
RS under the matrix MI

RS is defined according
to Definition 4.

From now on, by the rough set logic we shall mean the implication and
negation logic LI

RS defined in this section.

7. Sequent Calculus for the Logic Generated by MI
RS

Now we shall present a proof system for the logic LI
RS based on MI

RS . Note
that this logic has no tautologies, but only valid entailments, represented
by valid sequents. Accordingly, the deduction formalism best suited to LI

RS

should necessarily be a sequent calculus.

Let IRS be the following sequent calculus over LI
RS :

Axioms:

(A1) A ⇒ A; (A2) ¬A,A ⇒

Inference rules:

Weakening on both sides, together with the following logical rules:

(¬¬ ⇒)
Γ, A ⇒ ∆

Γ,¬¬A ⇒ ∆
(⇒ ¬¬)

Γ ⇒ ∆, A
Γ ⇒ ∆,¬¬A

(⇒→ I)
Γ ⇒ ∆,¬A

Γ ⇒ ∆, A → B
(⇒→ II)

Γ ⇒ ∆, B
Γ ⇒ ∆, A → B

(→⇒ I)
Γ ⇒ ∆, A Γ, B ⇒ ∆

Γ, A → B ⇒ ∆
(→⇒ II)

Γ,¬A ⇒ ∆ Γ ⇒ ∆,¬B
Γ, A → B ⇒ ∆

(⇒ ¬ →)
Γ ⇒ ∆, A Γ ⇒ ∆,¬B

Γ ⇒ ∆,¬(A → B)

(¬ →⇒ I)
Γ, A ⇒ ∆

Γ,¬(A → B) ⇒ ∆
(¬ →⇒ II)

Γ,¬B ⇒ ∆
Γ,¬(A → B) ⇒ ∆

Note 1. When presenting IRS, we chose a set of rules where each premise
has exactly one active formula. However, we can also obtain a set of rules
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which is more economic in size by combining certain pairs of rules. Namely,
rules (⇒→ I) and (⇒→ II) above can be combined to

Γ ⇒ ∆,¬A,B

Γ ⇒ ∆, A → B

while rules (→⇒ I) and (→⇒ II) can be combined to

Γ,¬A ⇒ ∆ Γ, B ⇒ ∆ Γ ⇒ ∆, A,¬B

Γ, A → B ⇒ ∆

and, finally, rules (¬ →⇒ I) and (¬ →⇒ II) can be combined to

Γ, A,¬B ⇒ ∆

Γ,¬(A → B) ⇒ ∆

As we can see (especially from the three-premise rule obtained in this way),
there is a clear trade-off between the size of the set of rules and the com-
plexity of the individual rules — so the choice of a particular option should
depend on the intended application.

Lemma 1.

1. The axioms of the system IRS are valid.

2. For any inference rule r of IRS and any valuation v, if v satisfies all the
premises of r then v satisfies the conclusion of r.

Proof. Both parts can be easily verified based on the truth tables of MI
RS .

By way of example, we shall prove the second part for the rule:

(⇒ ¬ →)
Γ ⇒ ∆, A Γ ⇒ ∆,¬B

Γ ⇒ ∆,¬(A → B)

Suppose v |= Γ ⇒ ∆, A and v |= Γ ⇒ ∆,¬B. Then either (1) v(γ) �= t for
some γ ∈ Γ or v(δ) = t for some δ ∈ ∆, or (2) v(A) = t and v(¬B) = t
(and so v(B) = f). If (1) holds, then clearly v |= Γ ⇒ ∆,¬(A → B). If (2)
holds, then from the truth table of → in MI

RS it follows that v(A → B) = f,
whence v(¬(A → B)) = t, and again v |= Γ ⇒ ∆,¬(A → B).

Clearly, from the above Lemma we immediately conclude:

Corollary 1. The inference rules of IRS are sound, i.e. they preserve
the validity of sequents.
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Theorem 1. The sequent calculus IRS is sound and complete for �MI

RS

.

Proof. Let us denote provability in IRS by �IRS. More exactly, for any
sequent Σ over LI

RS

�IRS Σ if Σ has a proof in IRS

We have to prove that, for any sequent Σ over LI
RS :

|= Σ iff �IRS Σ (4)

The backward implication, representing soundness of the system, follows
immediately from Lemma 1 and Corollary 1.

To prove the forward implication (completeness), we argue by contradic-
tion. Suppose Σ is a sequent over LI

RS such that ��IRS Σ. We shall prove
that �|= Σ.

Let us assume that inclusion and union of sequents are defined compo-
nentwise, i.e.:

(Γ′ ⇒ ∆′) ⊆ (Γ′′ ⇒ ∆′′) iff Γ′ ⊆ Γ′′ and ∆′ ⊆ ∆′′

(Γ′ ⇒ ∆′) ∪ (Γ′′ ⇒ ∆′′) = (Γ′,Γ′′ ⇒ ∆′,∆′′)

Call a sequent Σ0 saturated if is closed under all the rules in IRS applied
backwards. More exactly, for any rule r in IRS whose conclusion is contained
in Σ0, one of its premises must also be contained in Σ0 (for a single premise
rule, this means its only premise must be contained in Σ0). For example,
if Σ0 = (Γ0 → ∆0) is saturated and (A → B) ∈ ∆0, then in view of the
rules (⇒→ I) and (⇒→ II) we must have both ¬A ∈ ∆ and B ∈ ∆.
In turn, if (A → B) ∈ Γ0, then in view of the rules (→⇒ I) and (→⇒ II)
we must have either A ∈ ∆ or B ∈ Γ, and at the same time either ¬A ∈ Γ
or ¬B ∈ ∆.

Let Σ = (Γ ⇒ ∆). We shall first prove that Σ can be extended
to a saturated sequent Σ∗ = (Γ∗ ⇒ ∆∗) which is not provable in IRS.
If Σ is already saturated, we are done. Otherwise we start with the sequent
Σ and expand it step by step by closing it under the subsequent rules of
IRS without losing the non-provability property. More exactly, we define a
sequence Σ0,Σ1,Σ2 . . . such that:

1. Σi−1 ⊆ Σi for each i ≥ 1;

2. Σi is not provable.
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We take Σ0 = Σ1 = Σ; then conditions 1,2 above are satisfied for
i = 1. Assume now we have constructed sequents Σ0,Σ1, . . . ,Σk satisfy-
ing those conditions, and Σk is still not saturated. Then there is a rule

r =
Π1 · · · Πl

Π
in IRS such that Π ⊆ Σk but Πi �⊆ Σk for i = 1, . . . , l.

Since Σk is not provable, there must be a i such that Σk∪Πi is not provable.
Indeed, if Σi ∪ Πi were provable for all i, 1 ≤ i ≤ l, then we could deduce
Σk ∪ Π from the provable sequents Σk ∪ Πi, i = 1, · · · , l, using rule r, which
in view of Σk ∪ Π = Σk would contradict the fact that Σk is not provable.
Thus there is an i0, 1 ≤ i0 ≤ l, such that Σk ∪ Πi0 is not provable, and we
take Σk+1 = Σk ∪ Πi0 . Obviously, the sequence Σ0,Σ1, . . . ,Σk+1 satisfies
conditions 1,2 above.

Since all the rules in IRS have the subformula property, it is clear that
after a finite number n of such steps we will have added all the possible
premises of the rules r in IRS whose conclusions are contained in the original
sequent Σ or its descendants in the constructed sequence, obtaining finally
a saturated extension Σ∗ = Σn of Σ which is not provable in IRS.

Thus we have:

• Σ∗ = (Γ∗ ⇒ ∆∗) is closed under the rules in IRS applied backwards

• Γ ⊆ Γ∗,∆ ⊆ ∆∗

• ��IRS Σ∗

We use Σ∗ to define a counter-valuation for Σ, i.e. a legal valuation v of
LI

RS under MI
RS such that v �|= Σ. Namely, we put 1:

• For any propositional symbol p ∈ P,

v(p) =

⎧⎨
⎩

t if p ∈ Γ∗

f if ¬p ∈ Γ∗

u otherwise
(5)

• For any A,B ∈ WI

v(¬A) = ¬v(A) (6)

v(A → B) =

⎧⎪⎪⎨
⎪⎪⎩

v(A) → v(B) if not (v(A) = v(B) = u)
t if v(A) = v(B) = u

and (A → B) ∈ Γ∗

u otherwise

(7)

1For simplicity, we drop the ˜ decoration marking the interpretation of connectives.
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It is easy to see that v defined as above is a well-defined mapping of WI

into T . Indeed, as Σ∗ is not provable in IRS and A,¬A ⇒ is an axiom
of IRS, then by (5) v(p) is uniquely defined for any propositional symbol
p ∈ P, whence by (6, 7) v(ϕ) is uniquely defined for any ϕ ∈ WI .

What is more, by (6, 7) v is a legal interpretation of LI
RS under the

Nmatrix MI
RS , for the interpretations of ¬,→ under v are compliant with

the tables (3) of those operations for this Nmatrix.

As Σ∗ is an extension of Σ, in order to prove that v �|= Σ, is suffices to
prove that v �|= Σ∗. By Definition 4, we should prove that, for any ϕ ∈ WI ,

v |= γ for any γ ∈ Γ∗, v �|= δ for any δ ∈ ∆∗ (8)

Equation (8) is proved by structural induction on the formulas in S =
Γ∗ ∪ ∆∗.

We begin with literals in S, having the form either p or ¬p, where p ∈ P.
We have the following cases:

• ϕ = p. Then by (5) and the fact that Γ∗ and ∆∗ are disjoint (for
otherwise Σ∗ would be provable), we have: v(ϕ) = t if ϕ ∈ Γ∗ and
v(ϕ) �= t if ϕ ∈ ∆∗

• ϕ = ¬p. If ϕ ∈ Γ∗, then by (5) v(p) = f, whence v(ϕ) = ¬f = t by (6).
In turn, if ϕ ∈ ∆∗, then ϕ �∈ Γ∗, whence v(p) �= f and v(ϕ) = ¬v(p) �= t.

Define the rank ρ of a formula ϕ by:

ρ(p) = 1, ρ(¬ϕ) = ρ(ϕ) + 1, ρ(ϕ → ψ) = ρ(ϕ) + ρ(ψ) + 1

Now assume that (8) is satisfied for formulas in S of rank up to n, and
suppose that A,B ∈ S are at most of rank n. We need to prove that (8)
holds for ¬A and A → B

We begin with negation. Let ϕ = ¬A. As the case of A = p ∈ P has
already been considered, it remains to consider the following two cases:

• A = ¬B. Then we have ϕ = ¬¬B.

– If ϕ ∈ Γ∗, then by rule (¬¬ ⇒) we have B ∈ Γ∗, since Σ∗ is a
saturated sequent. Hence by inductive assumption v(B) = t, and by
(6) v(ϕ) = ¬¬t = t.

– In turn, if ϕ ∈ ∆∗, then by rule (⇒ ¬¬) we have B ∈ ∆∗, whence by
inductive assumption v(B) �= t, and in consequence v(ϕ) �= t.

• A = B → C. We again have two cases:



Rough Sets and 3-valued Logics 83

– If ϕ ∈ Γ∗, then by rules (¬ →⇒ I) and (¬ →⇒ II) we have A,¬B ∈
Γ∗ since Σ∗ is saturated. Hence by inductive assumption v(A) = t
and v(B) = f (because v(¬B) = t). Thus by (7) v(A → B) = f, and
v(ϕ) = ¬f = t.

– If ϕ ∈ ∆∗, then by rule (⇒ ¬ →) we have either A ∈ ∆∗ or ¬B ∈ ∆∗.
By the inductive assumption, this yields either v(A) �= t or v(B) �= f.
Thus by (7) v(A → B) �= f, whence v(ϕ) �= t.

It remains to consider implication. Let ϕ = A → B. We have the following
two cases:

• ϕ ∈ Γ∗. If v(A) = v(B) = u, then v(ϕ) = t by (7).

Assume now that (v(A), v(B)) �= (u,u). As Σ∗ is saturated, then by
rules (→⇒ I) and (→⇒ II) we have

(i) either A ∈ ∆∗ or B ∈ Γ∗, and

(ii) either ¬B ⇒∈ ∆∗ or ¬A ∈ Γ∗.

If B ∈ Γ∗, then by the inductive assumption v(B) = t, and v(ϕ) =
v(A → B) = t by (7). By analogous reasoning, if ¬A ∈ Γ∗, then
v(A) = f, and v(ϕ) = t as well.

It remains to consider the case when A ∈ ∆∗ and ¬B ⇒∈ ∆∗. Then by
the inductive assumption we have v(A) �= t, v(¬B) �= t, with the latter
implying v(B) �= f. As by assumption (v(A), v(B)) �= (u,u), then by the
foregoing and (7) we have v(ϕ) ∈ {f → u, f → t,u → t} = {t}.

• ϕ ∈ ∆∗. Then, as Σ∗ is saturated, by rules (⇒→ I) and (⇒→ II) we
have ¬A ∈ ∆∗ and B ∈ ∆∗. Hence by the inductive assumption we have
v(¬A) �= t, i.e. v(A) �= f, and v(B) �= t. In view of (7) and the fact that
ϕ �∈ Γ∗, this yields v(ϕ) = v(A) → v(B) ∈ {u → f, t → f, t → u}∪{u} =
{f,u}, whence v(ϕ) �= t. 2

Thus (8) holds and v �|= Σ, which ends the completeness proof.

It should be noted that results stronger than Theorem 1 can be proved for
IRS: actually, we could also prove strong completeness and compactness of
that calculus (for the natural consequence relation between sequents induced
by MI

RS). However, we have refrained from doing it, since such results would
be superfluous here in view of the main focus of our paper.

2This is the only place in the proof in which the axioms are needed in their general
form. Indeed, unlike the calculi for classical logic, the calculus here is not complete if the
identity axioms A ⇒ A are restricted to sequents containing only literals.
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Note 2. As disjunction and conjunction can be represented using negation
and implication according to the relationships:

A ∨ B ≡ ¬A → B, A ∧ B ≡ ¬(A → ¬B)

they can be treated as derived operations in our language. From the above
representation and IRS, we can derive the following sequent rules for con-
junction and disjunction:

Γ ⇒ ∆, A

Γ ⇒ ∆, A ∨ B

Γ ⇒ ∆, B

Γ ⇒ ∆, A ∨ B

Γ ⇒ ∆,¬A Γ ⇒ ∆,¬B

Γ ⇒ ∆,¬(A ∨ B)

Γ,¬A ⇒ ∆

Γ,¬(A ∨ B) ⇒ ∆

Γ,¬B ⇒ ∆

Γ,¬(A ∨ B) ⇒ ∆

Γ, A ⇒ ∆ Γ ⇒ ∆,¬B

Γ, A ∨ B ⇒ ∆

Γ, B ⇒ ∆ Γ ⇒ ∆,¬A

Γ, A ∨ B ⇒ ∆

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧ B

Γ ⇒ ∆,¬A

Γ ⇒ ∆,¬(A ∧ B)

Γ ⇒ ∆,¬B

Γ ⇒ ∆,¬(A ∧ B)

Γ, A ⇒ ∆

Γ, A ∧ B ⇒ ∆

Γ, B ⇒ ∆

Γ, A ∧ B ⇒ ∆

Γ,¬A ⇒ ∆ Γ ⇒ ∆, B

Γ,¬(A ∧ B) ⇒ ∆

Γ,¬B ⇒ ∆ Γ ⇒ ∆, A

Γ,¬(A ∧ B) ⇒ ∆

The above system, complemented with the negation rules from IRS, can
be used for reasoning in the rough set logic LRS . Namely, if we first apply
an obvious translation τ from the language of LRS to the language L′

RS of
atomic predicate expressions combined with ¬,∨,∧ such that

τ((A ∪ B)x) = τ(Ax) ∨ τ(Bx) τ((A ∩ B)x) = τ(Ax) ∧ τ(Bx)
τ((−A)x) = ¬τ(Ax)

then the system mentioned above, together with the substitution principle,
is complete for L′

RS — and so also for LRS .
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8. Relations with Kleene and �Lukasiewicz 3-valued Logics

8.1. LI
RS as the Common Part of Kleene and �Lukasiewicz Logics

Our next task is to compare the logic LI
RS with the well-known propositional

three-valued logics proposed by Kleene and �Lukasiewicz. Let us denote the
latter logics by LK and LL, respectively. Obviously, without any loss of
generality we can assume that LK and LL have the same set of well-formed
formulas as LI

RS . From now on, we will denote that set by W .
First, recall that LI

RS is given by the Nmatrix MI
RS = (T ,D, {¬̃, →̃}),

where

¬̃ f u t

t u f

→̃ f u t

f t t t

u u {u, t} t

t f u t

(9)

Now, using the same notational convention, we can say that the {¬,→}
versions of Kleene and �Lukasiewicz logics are given by ordinary matrices
MK and ML with T ,D and the common interpretation ¬̃ of negation as
in the Nmatrix MI

RS , but different interpretations of implication, given,
respectively, by →K and →L defined below:

→K f u t

f t t t

u u u t

t f u t

→L f u t

f t t t

u u t t

t f u t

(10)

From (9) and (10) it clearly follows that the matrices MK and ML are
included in the Nmatrix MI

RS , and represent its two different “determiniza-
tions”. An obvious consequence of this fact is:

Lemma 2. The system IRS is sound for both Kleene and �Lukasiewicz logics.

Proof. Immediate by the soundness of IRS for LI
RS and the fact that every

valuation v : W → T legal under the matrix MK or ML is also legal under
the Nmatrix MI

RS .

Now we will show that to make IRS also complete for LK and LL it
suffices to add just one sequent rule for each logic:

Theorem 2. Let (K) and (L) be the two following sequent rules:

(K)
Γ,¬A ⇒ ∆ Γ, B ⇒ ∆

Γ, A → B ⇒ ∆
(L)

Γ, A ⇒ ∆ Γ,¬B ⇒ ∆

Γ ⇒ ∆, A → B
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Then:

1. The system IRSK obtained by adding rule (K) to IRS is sound and
complete for Kleene logic;

2. The system IRSL obtained by adding rule (L) to IRS is sound and com-
plete for �Lukasiewicz logic.

Proof. As it is easy to check that rule (K) is sound for LK and rule (L)
is sound for LL, then both calculi are sound for the respective logics. The
proofs of their completeness are obtained by modifying in an appropriate
way the completeness proof for IRS in Theorem 1.

The first modification is common for both logics and consist in modifying
the definition of the counter-valuation v for complex formulas: namely, since
both logics are deterministic, we simply take v to be the unique extension
of the valuation of propositional variables defined as in Theorem 1.

Obviously, the valuations obtained in this way are legal for both matrices,
so it remains to prove that they are indeed counter-valuations.

Kleene logic. It can be easily seen that the proof of the fact that
v �|= Σ∗ given in Theorem 1 remains unchanged save for the case when
ϕ = (A → B) ∈ Γ∗ and v(A) = v(B) = u, for we can no longer make use of
the fact that in this case v(A → B) = t. However, if ϕ = (A → B) ∈ Γ∗,
then from rule (K) it follows that either ¬A ∈ Γ∗ or B ∈ Γ∗. Yet by the
inductive assumption ¬A ∈ Γ∗ implies v(A) = f �= u, while B ∈ Γ∗ implies
v(B) = t �= u, which means that we cannot have v(A) = v(B) = u.

�Lukasiewicz logic. For �Lukasiewicz logic, if ϕ = (A → B) ∈ Γ∗, and
v(A) = v(B) = u, then v(A → B) = u →L u = t, so we have no problem
in this case. However, we must search the proof of Theorem 1 for the places
where we use the fact that (u → u) �= t, and try to modify them to hold
true for �Lukasiewicz logic.

The only such place is the case when ϕ = (A → B) ∈ ∆∗. Then, as Σ∗

is saturated, by rules (L), (⇒→ I) and (⇒→ II), we have

(i) either A ∈ Γ∗, or ¬B ∈ Γ∗

(ii) ¬A,B ∈ ∆∗.

By the inductive assumption, this implies:

(i) either v(A) = t or v(¬B) = t (whence v(B) = f)

(ii) v(¬A) �= t (whence v(A) �= f), and v(B) �= t.
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If in (i) we assume that v(A) = t, then from the fact that v(B) �= t
and the table of implication for �Lukasiewicz logic it clearly follows that
v(A → B) �= t. In turn, as v(A) �= f by (ii), v(B) = f implies v(A → B) �= t.

The above reasoning clearly shows that the completeness proof of the cal-
culus IRS given in Theorem 1 can indeed be modified to yield completeness
proof for both IRSK and IRSL, which ends the proof of our theorem.

It can be easily seen that the sequent calculus IRSK is very similar
to the known calculi for Kleene logic given in [24, 1, 6], while IRSL is
simpler than the previous sequent calculi for �Lukasiewicz logics, given e.g.
in [1, 5, 2]. Of course, since the hitherto existing calculi are also complete for
those logics, then IRSK and IRSL must necessarily be equivalent to them.
This equivalence can also be proved directly — but we leave that as an
exercise to the reader.

8.2. Common Conservative Extension of the Three Logics

In the foregoing, we have shown how we can extend the complete sequent cal-
culus for LI

RS to obtain complete sequent calculi for Kleene and �Lukasiewicz
logics. Now we will show how to embed those logics in a natural exten-
sion of the above rough set logic by adding to its language a special unary
operator well known in 3-valued logics, which is usually used to represent
“definedness” [15] or “classicality” [11] or “normality” [7], but here denotes
“crispness” in the sense of rough sets. Namely, let C : T → T be given by:

C(f) = C(t) = t, C(u) = f

and let LC
RS ,MC

RS be the language LI
RS and the Nmatrix MI

RS extended
with the connective C and its interpretation given above, respectively. Then
it is easy to see that Kleene and �Lukasiewicz implications can be defined in
the logic LC

RS generated by MC
RS as follows:

A →L B ≡ (¬CA → CB) → (A → B)
A →K B ≡ (¬A →L B) →L B

Accordingly, Kleene and �Lukasiewicz logics can be treated as sublogics of
the logic LC

RS .

To obtain a complete proof system for LC
RS , it suffices to extend the

sequent calculus IRS we have developed for LI
RS with the following rules for

the connective C:
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(⇒ C I)
Γ ⇒ ∆, A

Γ ⇒ ∆,CA
(⇒ C II)

Γ ⇒ ∆,¬A
Γ ⇒ ∆,CA

(C ⇒)
Γ, A ⇒ ∆ Γ,¬A ⇒ ∆

Γ,CA ⇒ ∆
(⇒ ¬C)

Γ, A ⇒ ∆ Γ,¬A ⇒ ∆
Γ ⇒ ∆,¬CA

(¬C ⇒ I)
Γ ⇒ ∆, A

Γ,¬CA ⇒ ∆
(¬C ⇒ II)

Γ ⇒ ∆,¬A
Γ,¬CA ⇒ ∆

It is easy to see that the proof of Theorem 1 can be adapted in a straight-
forward way to incorporate C, thus providing a completeness proof for the
above-mentioned sequent calculus for LC

RS .

9. Weak Logics

Having examined the strong version of the logic LI
RS and its connections with

well-known 3-valued logics, we shall now turn to the weak version of that
logic. Denote by MI

RS,w the Nmatrix differing from MI
RS just by having

{u, t} as its set of designated values, and by LI
RS,w the logic generated by

that Nmatrix. Obviously, both the logics have the same sets of well-formed
formulas, and both Nmatrices — the same sets of legal valuations.

If we denote

A =

{
B if A = ¬B,
¬A otherwise

then the duality between the strong logic LI
RS and the weak logic LI

RS,w

mentioned in Section 3 can be expressed as follows:

Proposition 1. For any valuation v legal under MI
RS and MI

RS,w, and any
sequent Γ ⇒ ∆,

v |=w (∆ ⇒ Γ) iff v |=s (Γ ⇒ ∆) (11)

where the subscripts s,w denote satisfaction in MI
RS and MI

RS,w, respec-

tively, while S = {A | A ∈ S} for any set of formulas S.

Proof. By Definition 4, we have v |=w (∆ ⇒ Γ) iff

either v(δ) = f for some δ ∈ ∆ or v(γ) �= f for some γ ∈ Γ (12)

Considering the truth table of negation and the definition of A, we have:

v(δ) = f iff v(δ) = t and v(γ) �= f iff v(γ) �= t
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Hence (12) is equivalent to

either v(γ) �= t for some γ ∈ Γ or v(δ) = t for some δ ∈ ∆

As the latter condition reduces to v |=s (Γ ⇒ ∆), we have thus proved the
desired equivalence (11).

The above proposition shows that any result for the strong logic LI
RS

can be translated to a corresponding result for the weak logic logic LI
RS,w.

Thus it is easy to see that we can obtain a sound and complete sequent
calculus for LI

RS,w out of the calculus IRS for LI
RS by replacing the rules

(→⇒ I), (→⇒ II) and (⇒ ¬ →) of IRS with the rules given below:

(⇒ ¬ → I)
Γ,¬A ⇒ ∆ Γ ⇒ ∆,¬B

Γ ⇒ ∆,¬(A → B)

(⇒ ¬ → II)
Γ ⇒ ∆, A Γ, B ⇒ ∆

Γ ⇒ ∆,¬(A → B)

(→⇒)
Γ,¬A ⇒ ∆ Γ, B ⇒ ∆

Γ, A → B ⇒ ∆

The fact that the resulting system is sound and complete for LI
RS,w can

be either deduced from the duality principle and the soundness and com-
pleteness of IRS, or proved directly by appropriately modifying the proof
of Theorem 1.

Using a similar method, we can also obtain a sound and complete sequent
calculus for the logic LC

RS,w (a weak version of the logic LC
RS , featuring the

operator C), as well as for the two possible determinizations of LI
RS,w.

Note 3. This time, the two possible determinizations of the Nmatrix MI
RS,w

lead to two 3-valued paraconsistent logics3. Though �Lukasiewicz implication
itself has not been used in the literature on paraconsistent logics, the lan-
guage of �Lukasiewicz 3-valued logic is equivalent with regard to its expressive
power to the language of the 3-valued paraconsistent logic J3 [10, 11], which
is the strongest logic considered by the Brazilian school of paraconsistent
logics [8, 7, 9]. Accordingly, the logic we obtain from the “�Lukasiewicz”
determinization of MI

RS,w is equivalent to J3, and the sequent calculus we
obtain for it is a new cut-free, sound and complete proof system for J3.

3A paraconsistent logic is a logic where a single contradiction does not imply every
formula.
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In turn, the “Kleene” determinization leads to the {¬,∨,∧}-fragment of
J3, also known as Pac [1] (and the sequent calculus we obtain for it is the
well-known one [1]).

10. Conclusions and Further Research

We have shown that the use of non-deterministic matrices is helpful in de-
scribing rough sets using 3-valued logics. What is more, it has turned out
that the strong version of the propositional logic generated by the non-
deterministic matrix underlying the basic rough set logic has close relations
to Kleene and �Lukasiewicz 3-valued logics, while the weak version of that
logic is closely related to two major 3-valued paraconsistent logics.

The rough set logic itself that we have considered here is very simple, so
the natural next step is to consider a more complex language for describing
rough sets. The first extension of the language can consist in treating the
membership formulas of the form Ax used here as atomic ones, and build-
ing over them a richer language using suitably chosen, three-valued logical
connectives. In addition, we could also use some kind of a two-valued oper-
ator(s) (like e.g. the definedness-crispness operator C employed here, or the
Jk operators of Rosser-Turquette logic, acting as selectors of the individual
logical values) to translate the formulas of the many-valued rough set logic
to two-valued ones, and then combine them using the classical logical con-
nectives. In this way, we could obtain a two-level logic of the type considered
in [13], combining the expressive power of 3-valued and classical logics.

A major extension in another direction would be to consider formulas
representing membership in rough sets according to more than just one
equivalence relation in the knowledge base. Then we could obtain a 3-valued
analogue of the two-valued, many-modal logic developed in [14].

Needless to say, the rich body of research in rough set theory suggests
further possible lines of research in rough set logics, like e.g. rough relations,
dependence on attributes, reducts, etc.

Finally, all the results obtained here or in any further extensions sug-
gested above can be presented in the framework of rough sets based on in-
formation systems rather than knowledge bases (in the sense of Definition 1),
which is more suitable for many practical applications.

Acknowledgement. This research was supported by the THE ISRAEL
SCIENCE FOUNDATION (grant No 809-06) and by the grant N N206
399334 of Polish Ministry of Science and Higher Education.



Rough Sets and 3-valued Logics 91

References

[1] Avron, A., ‘Natural 3-valued Logics — Characterization and Proof Theory’, Journal

of Symbolic Logic 56:276–294, 1991.

[2] Avron, A., ‘Classical Gentzen-type Methods in Propositional Many-Valued Logics’,

in M. Fitting and E. Orlowska (eds.), Beyond Two: Theory and Applications of

Multiple-Valued Logic, Studies in Fuzziness and Soft Computing 114, Physica Verlag,

2003, pp. 117–155.

[3] Avron, A., ‘Logical Non-determinism as a Tool for Logical Modularity: An Introduc-

tion’, in S. Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, and J. Woods

(eds.), We Will Show Them: Essays in Honor of Dov Gabbay, 1, 105–124, College

Publications, 2005.

[4] Avron, A. and I. Lev, ‘Non-deterministic Multiple-valued Structures’, Journal of

Logic and Computation 15:241–261, 2005.
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