
Studia Logica (2007) 87: 171–197
DOI: 10.1007/s11225-007-9087-0 © Springer 2007

Anne Preller Linear Processing with
Pregroups

Abstract. Pregroup grammars have a cubic recognition algorithm. Here, we define

a correct and complete recognition and parsing algorithm and give sufficient conditions

for the algorithm to run in linear time. These conditions are satisfied by a large class of

pregroup grammars, including grammars that handle coordinate structures and distant

constituents.

Keywords: Pregroup grammars, categorial grammars, linear parsing, algorithmic comple-

xity, coordinate structures, distant constituents.

1. Introduction

Pregroup grammars were introduced in [Lambek 99] as an algebraic tool
for the syntactical analysis of sentences and shown to be weakly equiva-
lent to context free grammars by [Buszkowski]. Therefore the usual cubic
recognition algorithms of [CYK] or [Earley] for context-free grammars can be
used for pregroup grammars after transforming them into rewrite-grammars.
Cubic algorithms tailored to pregroups were given in 2004 independently by
[Oehrle] and [Degeilh-Preller]. The algorithm proposed in the latter improves
on the usual algorithms for context-free languages by the fact the constant
factor of n3 no longer depends on the number of rules or the number of
symbols in the grammar and that it also works for infinite dictionaries. In
particular it shows that proof search in compact bilinear logic is proportional
to the cube of the length of the string of simple types.

However, cubic complexity easily exceeds human memory capacity and
therefore natural languages are most likely to have grammars which permit
linear processing. Two observations are important as far as pregroup gram-
mars are concerned: A low number of types per word or a low number of basic
types does not diminish the complexity of the recognition algorithm nor the
number of different parsings. As an example, consider the rigid dictionary
listing three words, each with a single type, say sa�, aa� and aara respec-
tively. The general algorithm still requires cubic time. Moreover, the num-
ber of different parsings increases exponentially with the length of the string.

Special Issue Categorial Grammars and Pregroups
Edited by Wojciech Buszkowski and Anne Preller

172 A. Preller

It seems appropriate to divide the task of finding a linear recognition and
parsing algorithm as follows

1. choose a lexical entry for each word, i.e. choose a meaning

2. decide if the choice of types has a reduction to the sentence type and, if
there is one, provide at least one such reduction.

We impose conditions on the dictionary concerning both aspects. After the
basic notions on pregroups and reductions we present a dictionary cover-
ing distant dependencies and coordination in Section 3. as an example of
the language fragments for which complete linear parsing is possible. In
Section 4. we introduce a parsing algorithm and indicate a class of dictio-
naries for which it is complete. Restricting the class of dictionaries even
more we make the parsing algorithm linear. These conditions are relaxed
in Sections 5. where we define the minimal reduction, representative for all
reductions to the sentence type. Finally in Section (6), we modify the earlier
parsing algorithm by incorporating minimal reductions and define a class of
dictionaries for which it is complete.

2. Geometry of derivations

We briefly recall the definition of pregroups and the construction of a freely
generated pregroup defined in [Lambek 99]. As we are interested in parsing
and semantical interpretation, we look at the actual derivations in a free
pregroup concentrating on derivations that consist of generalized contrac-
tions only. The geometrical structure of these derivations is at the base of
the semantical interpretation in Section 3.
A preordered monoid < P, 1, ·,→> is a set with at least one element 1 ∈ P ,
a binary operation · and a binary relation → satisfying for all x, y, z, u, v ∈ P

1 · x = x = x · 1
(x · y) · z = x · (y · z)
x → x
x → y and y → z imply x → z
x → y implies u · x · v → u · y · v.

The dot denotes multiplication and is generally omitted. The arrow →
denotes the preorder.

A pregroup is a preordered monoid in which every element x has both a
left adjoint x� and a right adjoint xr satisfying

Linear Processing with Pregroups 173

(Contraction) x�x → 1, xxr → 1

(Expansion) 1 → xrx, 1 → xx� .

One derives

(1.) x → y if and only if y� → x� if and only if yr → xr,
(2.) x → y if and only if xyr → 1 if and only if y�x → 1 .

The free pregroup P (B) generated by a partially ordered set of basic
types B = {a, b, ...} is characterized in [Lambek 99] as the preordered free
monoid generated from the set of simple types Σ consisting of the basic types
and their iterated adjoints

Σ =
{
a(z) : a ∈ B, z ∈ Z

}
where a(0) is identified with a. Note that the empty string is not a simple
type. Elements X ∈ P (B) are called types. They are strings of the form

X = a
(z1)
1 . . . a

(zk)
k ,

where a1, . . . , ak are basic types and z1, ..., zk are integers. The unit 1
denotes the empty string and multiplication is the same as concatenation.
The left and right adjoints of a type are defined by

(a(z1)
1 . . . a

(zk)
k)� = a

(zk−1)
k . . . a

(z1−1)
1

(a(z1)
1 . . . a

(zk)
k)r = a

(zk+1)
k . . . a

(z1+1)
1 .

Hence, identifying a ∈ B with a(0) ∈ Σ we have

a�� = a(−2), a� = a(−1), a = a(0), ar = a(1), arr = a(2) etc.

If t = a(z) we call z the iterator of t.
Finally, the preorder on types is defined as the transitive closure of the

union of the following three relations

(Induced step) Xa(z)Y → Xb(z)Y

(Generalized contraction) Xa(z)b(z+1)Y → XY

(Generalized expansion) XY → Xa(z+1)b(z)Y

where either z is even and a → b or z is odd and b → a. Here X, Y are
(possibly empty) strings of simple types and a and b are basic.

As usual, a substring of a string s1 . . . sn has the form si0 . . . sik where
1 ≤ i0 < . . . < ik ≤ n. A segment sl . . . sm is a substring such that l =
i0, l + 1 = i1, . . . , l + k = ik and m = l + k. By convention, if m < l, then
sl . . . sm stands for the empty segment.

174 A. Preller

The property which makes the theory of pregroups decidable is expressed
in the so-called
Switching Lemma (Proposition 2 of [Lambek 99]):
Let s1, . . . , sn and t1, . . . , tm be simple types. Then s1 . . . sn → t1 . . . tm if
and only if there are a substring si1 . . . sik of s1 . . . sn and a substring ti1 . . . tik
of t1 . . . tm such that

s1 . . . sn → si1 . . . sik → ti1 . . . tik → t1 . . . tm,

sip → tip , for 1 ≤ p ≤ k,

where si1 . . . sik is obtained from s1 . . . sn by generalized contractions only,
t1 . . . tm is obtained from ti1 . . . tik by generalized expansions only and
ti1 . . . tik is obtained from si1 . . . sik by induced steps only.
A string of simple types s1 . . . sn is irreducible if no two adjacent simple
types satisfy sisi+1 → 1. In particular, the empty string 1 is irreducible. A
type si1 ...sik is an irreducible form of s1...sn if it is irreducible and obtained
from s1 . . . sn by generalized contractions only. If s and the si’s are simple
for 1 ≤ i ≤ n, then s1 . . . sn → s if and only if for some i, si is an irreducible
form of s1 . . . sn and si → s.

In linguistic applications, a dictionary lists each word with types belong-
ing to a free pregroup. Then a string of words is a sentence, if one can
assign to every word a type from the dictionary such that the concatenation
t1 . . . tm of these types has a derivation to a distinguished basic type s, called
sentence type. In view of Property (2.) above, t1 . . . tm → s is equivalent to
t1 . . . tmsr → 1. By the Switching Lemma, a derivation to the empty string
can be obtained by generalized contractions only. For example, consider the
set of basic types

B = {νs, π3s, o, ns, cs, s1, s},
where νs → π3s, νs → o, ns → π3s, ns → o, s1 → s. Here ν3 is the type for
proper names singular, π3s for 3-person singular subjects, o for direct object
complements of a verb, ns for singular noun phrases, cs for singular common
nouns and finally, s and s1 are sentence types, the latter for statements in
the present tense, the former for statements when the tense does not matter.
Then the dictionary may list

Mary : νs
buys : πr

3ss1o
�

a : nsc
�
s

book : cs

Linear Processing with Pregroups 175

Therefore, the grammar generates the sentence
Mary buys a book
(νs) (π3s

r s1 o�)(ns c�
s)(cs) sr

The underlinks indicate the generalized contractions used in the deriva-
tion, namely νsπ

r
3s → 1, o�ns → 1, cs

�cs → 1 and s1s
r → 1. In fact, the

underlinks together uniquely determine a derivation to the empty string or
more generally, a derivation of s1 . . . sn to a substring si1 . . . sip consisting
of generalized contractions only. We decompose such a derivation into a
geometrical part, consisting of the set of underlinks, and an algebraic part,
consisting of the generalized contractions. The geometrical part R, also
called reduction, has the following definition

Definition 2.1. A reduction R with respect to n is a set of two-element
subsets {i, k} ⊆ {1, . . . , n}, called underlinks, which satisfy

1) for every i with 1 ≤ i ≤ n, there is at most one k such that {i, k} ∈ R,

2) if {i, k} ∈ R and i < l < k then there is i < m < k such that {l, m} ∈ R.

The algebraic part consists of the generalized contractions

3) sisk → 1, for i < k such that {i, k} ∈ R

Let {i1, . . . , ip} be the subset of {1, . . . , n} consisting of the elements il for
which there is no k such that {il, k} belongs to R . A reduction R is called
a transition from s1 . . . sn to si1 . . . sip , written

R : s1 . . . sn ⇒ si1 . . . sip

if all three conditions above hold. If the substring si1 . . . sip cannot be con-

tracted any further, it is called an irreducible form of s1 . . . sn.

The empty string 1 and every simple type is irreducible. A string of
simple types has at least one irreducible form. Some strings have several
irreducible forms, and there may be different reductions bringing it to the
same irreducible form, e.g. the first two reductions below are transitions to
the empty string, the third reduction is a transition to the irreducible ara

1) a� a a�a ar a 2) a�a a� aar a 3) a�a a�a ara (I)

On the other hand, the same reduction may constitute a transition to the
empty string for quite different strings of simple types. For example, assume
a → b and consider the three different transitions below

176 A. Preller

b� a b� a ar a , b�a b� a ar a , c c� cr crr c cr .

The first and the third transition have the same links, the common geomet-
rical part is R = {{1, 6} , {2, 5} , {3, 4}}. The second transition, however, has
a different reduction R′ = {{1, 2} {3, 6} {4, 5}}. This geometrical difference
corresponds to different meanings of the same sentence, as illustrated by the
examples (1a) and (1b) of the next section.

Using the graphical representation of {i, k} ∈ R , i < k , by an underlink

. . . si . . . sk . . . ,

we may describe a reduction as a planar graph which has a linearly ordered
set of vertices labeled by simple types such that

• there are no loops

• every i �∈ {i1, . . . , ip} is endpoint of exactly one underlink

• underlinks do not cross

• there is no underlink {i, k} such that i ≤ il ≤ k for 1 ≤ l ≤ p.

If i < k , we call i or si the left endpoint and k or sk the right endpoint of
the link {i, k} . If the reduction R is a transition R : s1 . . . sn ⇒ si1 . . . sip ,
then the iterator of the right endpoint of an underlink is the successor of
the iterator of its left endpoint: Indeed, if {i, k} ∈ R and i < k, then the
algebraic condition sisk → 1 implies that si = a(z) and sk = b(z+1) for some
integer z and basic types a and b.

Finally, we remark that an arbitrary transition can always be obtained
as the union of transitions to the empty string. Indeed, let Rl, 0 ≤ l ≤ p,
be reductions such that R0 : s1 . . . si1−1 ⇒ 1, Rl : sil+1...sil+1−1 ⇒ 1 for
1 ≤ l < p, and Rp : sip+1 . . . sn ⇒ 1. Then the union

R =
⋃ {Rl : 0 ≤ l ≤ p}

is a reduction such that R : s1 . . . sn ⇒ si1 . . . sip .

3. Coordinate Structures and Unbounded Dependencies

We illustrate parsing with pregroup grammars by a few examples on coordi-
nation and unbounded dependencies involving the relative pronoun. The se-
mantical dependencies are expressed by (multi)links. Consider the dictionary

Linear Processing with Pregroups 177

Mary : νs
bought : πrs2o

�, πrôrŝ2, π̂rŝ2o
�

a : nsc
�
s

horse : cs
which : cr

scsŝ
�ô, cr

scsŝ
�π̂3s

John : νs
detests : πr

3ss1o
�, πr

3sô
rŝ1, π̂r

3sŝ1o
�

Recall that o is the type of a direct object complement, π3s stands for the
subject third person singular and π for the subject if the person and number
do not matter. The dictionary lists three types for the definite verb form.
This reflects the grammatical distinction between statements and relative
clauses. In particular, the basic type ŝ1 is the sentence type for relative
clauses in the present and ŝ the type for relative clauses if the tense does
not matter. The other new basic types are used as dummies, namely ô for
a direct object complement, π̂3s for a third person subject in the singular,
π̂ if the number and person do not matter. The set of basic types occurring
in the dictionary is B = {s, s1, s2, π3s, π, o, νs, ns, cs, ŝ1, ŝ, π̂3s, π̂, ô}
where

νs → π3s, ns → π3s, νs → o, ns → o, π3s → π, s1 → s, s2 → s, ŝ1 → ŝ .

Then we use different type assignments for the relative pronoun which, ac-
cording to its role as an object complement or subject in the relative clause.

Example I
Mary bought a horse which John detests
(νs) (πr s2 o�) (ns c�

s) (cs) (cr
s cs ŝ� ô) (νs) (πr

3s ôr ŝ1) sr (1a)

Mary bought a horse which detests John

(νs) (πr s2 o�) (ns c�
s) (cs) (cr

s cs ŝ� π̂3s) (π̂r
3s ŝ1 o�) (νs) sr (1b)

The two reductions above differ only by the links whose left endpoint
is under which or later. This becomes more evident with the following
abbreviation, called a multilink :

Y Xr for t1 . . . tp sr
p . . . sr

1, where X = s1 . . . sp, Y = t1 . . . tp .

Replacing the two links under ŝ�ô . . . ôrŝ1 by a multilink and omitting
the types in the first example, we get the dependencies

178 A. Preller

which John detests (1a)
. . .

giving the correct the semantical analysis of the relative clause. Applying
the same simplifications to the second example, we obtain the dependencies

which detests John (1b)
. . .

Dummies are entities not explicitly named in a sentence but are implied
by the statement. Their syntactical role is to fill what [Gazdar] calls a
hole. It is pointed out in [loc. cit.] that holes have a syntactic category. In
pregroup grammars, the hole is marked by a right or left adjoint of a dummy
type and therefore also has a syntactic representation. We take advantage of
this fact when analysing coordinate structures conjoined by and. The sample
sentences are adapted from [loc. cit.].

and : xrxx�, x = ôrŝ1 (2a)
and : xrxx�, x = π̂r

3sŝ1 (2b)
Consider the case where the hole is the object complement of the verb in
the relative clause, i.e.

x = ôrŝ1 .
Let y = ôrŝ. Then

detests, loves : πr
3sx

and
which : cr

scsy
� .

It follows that x → y and we find the following reduction

Mary bought a horse which John detests and Jo loves
(νs) (πr s2 o�) (ns c�

s)(cs) (cr
s cs y�) (νs) (πr

3s x) (xr x x�) (νs)(πr
3s x) sr .

The conjunction and distributes the holes both times to the position of
the second argument of the relation expressed by the verb. This position
corresponds by convention to the direct object of the verb:

horse which John detests and Jo loves
() () () () () () ()

Next, consider the case where the hole is the subject of the relative clause:
x = π̂r

3sŝ1, y = π̂r
3sŝ.

Linear Processing with Pregroups 179

Then
detests, loves : xo� and which : cr

scsy
�

As before, we find x → y and with this construct the reduction of the sen-
tence

Mary bought a horse which detests John and loves Jo
(νs) (πr s2 o�) (ns c�

s) (cs) (cr
s cs y�) (x o�) (νs) (xr x x�) (x o�) (νs) sr

This time, the holes are distributed by the conjunction and to the first
argument place of the verb, i.e. to the position of the subject:

which detests John and loves Jo
() () () () () ()

However the two different kinds of holes cannot be conjoined:

*Mary bought a horse which John detests and loves Jo

For a proof, it suffices to consider every type assignment from our dictio-
nary and verify that it has no reduction to the sentence type. Therefore
which cannot be both subject and object of verb phrases constituting the
relative clause.

4. Lazy Parsing

We give a ‘lazy’ recognition and parsing algorithm and define sufficient con-
ditions on the dictionaries for which it is linear and complete.

In the following, the partially ordered set B and the free pregroup P (B)
generated by B are fixed. As usual, a dictionary D over B for a set of words
V is a map from V to the set of subsets of P (B). Instead of Tl ∈ D(vl)
we may write vl : Tl and call it a lexical entry. We distinguish a basic type
s , the so-called sentence type. A string of types T1 . . . Tn is called a type
assignment for v1 . . . vn if vl : Tl is a lexical entry for 1 ≤ l ≤ n. A parsing
of a string v1...vn consists of a type assignment Tl ∈ D(vl) and a reduction
of T1...Tn to s.

We begin by describing an algorithm which combines the search for a re-
duction with type assignment. It processes by stages, reading the string of
words v1 . . . vn from left to right. At each stage, it either chooses a type
for the word under examination or processes the assigned type by reading
its simple types from left to right. The result is a reduction of the type
processed so far to an irreducible type.

180 A. Preller

The set of stages associated to v1 . . . vn consists of an initial stage sin and
of triples s = (l, T1 . . . Tl, p) where

l is the number of the word vl being processed
Tk = ak1 . . . akqk

in D(vk), 1 ≤ k ≤ l, a type assignment for v1 . . . vl

p a position, 0 ≤ p ≤ ql.

The stages are partially ordered as follows

sin < s for all s

(l, T1 . . . Tl, p) ≤ (l′, T ′
1 . . . T ′

l′ , p
′) ⇔ l ≤ l′, Tk = T ′

k for 1 ≤ k ≤ l, p ≤ p′ .

We remark that all non-initial stages s have a unique immediate prede-
cessor, which we denote by s − 1, i.e.

(l, T1 . . . Tl, p) − 1 =

⎧⎪⎨
⎪⎩

(l, T1 . . . Tl, p − 1), if 1 ≤ p ;
(l − 1, T1 . . . Tl−1, ql−1) if p = 0 and l > 1,

sin , if p = 0 and l = 1.

It follows that the set of stages smaller than or equal to a given stage s is
totally ordered.

This total order can be used to control the way how the algorithm moves
through the stages and define the actual position p(s) and the type ap(s) read
at this position. At the initial stage p(sin) = 0, a0 = 1 . A stage of the form
(l, T1 . . . Tl, 0) , 1 ≤ l ≤ n, is called a downloading stage and serves to choose
a type Tl ∈ D(vl) as soon as the word vl has been given. At a downloading
stage s = (l, T1 . . . Tl, 0) , the examined position remains unchanged

p(s) = p(s − 1) = q1 + · · · + ql−1 + 0 .

After downloading, the string of simple types Tl is read from left to right.
Each stage which is not initial and not downloading is called a testing stage.
To reach the testing stage s = (l, T1 . . . Tl, p), p ≥ 1, the preceding position
p(s − 1) is incremented by 1:

p(s) = p(s − 1) + 1 = q1 + · · · + ql−1 + p .

It follows that the simple type occupying this position satisfies

ap(s) = alp .

The type processed at stage s = (l, T1 . . . Tl, p) can be defined inductively by

Linear Processing with Pregroups 181

T (sin) = 1 = a0

T (s) = T (s − 1) = T1 . . . Tl−1 if 0 = p
T (s) = T (s − 1)ap(s) = T1 . . . Tl−1al1 . . . alp if 0 < p

More generally, for every i such that 1 ≤ i ≤ p(s) there are a unique k and
a unique p′ such that 1 ≤ k ≤ l, 1 ≤ p′ ≤ qk, i = q1 + · · · + qk−1 + p′ and

ai = akp′ .

The simple type ap(s) is tested for generalized contraction with the last not
contracted type in the string. This test can be done in one time unit by
accessing the partial order relation on the set of basic types. If it fails, p(s)
is added on the top of the stack indicating that ap(s) is the latest not (yet)
contracted type. The other data remain unchanged. If the test succeeds,
the stack is popped and the link consisting of the contracting positions is
added to the reduction computed so far.

A stack S(s) constructed by this algorithm at stage s is an ordered pair
〈S′, i〉 where i is a non-negative integer and S′ is either the empty stack ∅ or
the stack of a preceding stage. As the test is only performed for non-initial
and non-downloading stages, all positions i stored in the stack at stage s
correspond to a unique stage s′ ≤ s for which ap(s′) = i . The functions top
and pop send a stack 〈S′, i〉 to its top i and its tail S′ respectively. They are
undefined for the empty stack. A stack of positions defines a substring of
a1 . . . an as follows

〈∅, 0〉 = 1
〈S′, i〉 = S′ai

Definition 4.1. Lazy Parsing Algorithm
� At the initial stage, let

S(sin) = 〈∅, 0〉 , R(sin) = ∅
� At a downloading stage s = (l, T1 . . . Tl, 0), the stack and reduction remain
unchanged

S(s) = S(s − 1), R(s) = R(s − 1)

� If s = (l, T1 . . . Tl, p) is not downloading and not initial, let t(s − 1) =
top(S(s − 1)) . Then

S(s) =

{
pop(S(s − 1)), if at(s−1)ap(s) → 1
〈S(s − 1), p(s)〉 , else

R(s) =

{
R(s − 1) ∪ {{t(s − 1), p(s)}} , if at(s−1)ap(s) → 1
R(s − 1), else

.

182 A. Preller

The stack can increase and decrease during processing, but it will never
get empty. Indeed, if S(s − 1) = 〈∅, 0〉 then the test will fail, as a0ap(s) =
ap(s) �→ 1. Hence S(s) = 〈〈∅, 0〉 , p(s)〉. Note also that the entries of the stack
form a strictly increasing string of integers between 0 and p(s). Moreover,
the set R computed at stage s is a reduction of the string processed so far
to an irreducible string, which is defined by the stack S:

Theorem 4.2 (Irreducible From). For every stage s = (l, T1 . . . Tl, p) , the
string S(s) associated to the stack S(s) is an irreducible substring of T (s)
and R(s) is a transition from T (s) to S(s) .

Proof. Use induction on the linearly ordered set of the predecessors of s.
Clearly, the property holds for the initial stage. Now assume that the prop-
erty holds up to s − 1. If s is a downloading stage, the property follows
immediately from the induction hypothesis. If s is a testing stage, let
t(s) = top(S(s)) and decompose the processed string T (s) = a1 . . . ap(s)

into an initial and a terminal segment
a1 . . . ap(s) = (a1 . . . at(s))(at(s)+1 . . . ap(s))

and show that R(s) is the union of two reductions
(1) R′(s) : a1 . . . at(s) ⇒ S(s)
(2) R′′(s) : at(s)+1 . . . ap(s) ⇒ 1 .

For that purpose, distinguish two cases:

Case I : at(s−1)ap(s) �→ 1.
Then t(s) = p(s), S(s) = 〈S(s − 1), p(s)〉 and R(s) = R(s − 1) and S(s) =
S(s − 1)at(s) . Then at(s)+1 . . . ap(s) is the empty string and the restriction
R′′(s) of R(s) to this string is the empty set. Therefore (2) holds trivially.

Next, from at(s−1)at(s) �→ 1 and the induction hypothesis follows that
S(s) = S(s − 1)at(s) is an irreducible form of a1...ap(s) = (a1...ap(s)−1)ap(s) .
Recall that p(s − 1) = p(s) − 1 and that R(s − 1) : a1...ap(s−1) ⇒ S(s − 1)
by induction hypothesis. Hence R(s) : a1...ap(s) ⇒ S(s − 1)ap(s)=S(s). As
R′(s) = R(s), (1) holds.

Case (II) : at(s−1)ap(s) → 1.
In this case,

S(s − 1) = 〈S′, t(s − 1)〉
where S′ is the stack computed at some stage s′ preceding s− 1. Moreover,

S(s) = pop(S(s − 1)) = S′

and
R(s) = R(s − 1) ∪ {t(s − 1), p(s)} .

Then t(s) = top(S′), S(s) = S′ and S(s − 1) = S′at(s−1) = S(s)at(s−1).

Linear Processing with Pregroups 183

By induction hypothesis
(1) R′(s − 1) : a1 . . . at(s−1) ⇒ S(s − 1)
(2) R′′(s − 1) : at(s−1)+1 . . . ap(s−1) ⇒ 1 .

Now decompose a1 . . . ap(s) as follows
a1 . . . ap(s) =
(a1 . . . at(s))(at(s)+1 . . . at(s−1)−1)at(s−1)(at(s−1)+1 . . . ap(s−1))ap(s) .

Note that R′(s), the restriction of R(s) to {1, ..., t(s)}, is also the restric-
tion of R(s − 1) to {1, ..., t(s)}. Hence

R′(s) : a1 . . . at(s) ⇒ S(s) .

Next, let R∗(s) be the restriction of R(s− 1) to {t(s) + 1, . . . , t(s − 1) − 1} .
It reduces the segment at(s)+1 . . . at(s−1)−1 between two consecutive positions
of S(s − 1) to 1 . Finally, the restriction of R(s) to {t(s) + 1, . . . , p(s)} is

R′′(s) = R∗(s) ∪ R′′(s − 1) ∪ {t(s − 1), p(s)}) .

Hence

R′′(s) : (at(s)+1 . . . at(s−1)−1)(at(s−1)(at(s−1)+1 . . . ap(s−1))ap(s)) ⇒ 1 .

We remark that the number of steps necessary to compute S(s) from its
predecessor S(s − 1) is bounded by a constant which depends only of the
dictionary. Hence we have the following property

Corollary 4.3. For every stage s = (n, T1 . . . Tn, qn), Lazy Parsing com-
putes the irreducible form S(s) and the reduction R(s) : T1 . . . Tn → S(s) in
time proportional to the length of T1 . . . Tn.

Note that Lazy Parsing also works on infinite dictionaries. Consider
the identity map on the set of simple types Σ, i.e. the dictionary with the
entries t : t, for t ∈ Σ . The set of stages associated to the string t1 . . . tn is
{1, . . . , n} and Lazy Parsing produces a derivation of t1 . . . tn to one of its
irreducible forms.

Backward Lazy Parsing, that is to say reading a string of words from right
to left, is defined similarly. In particular, the positions stored in the stack are
decreasing and the test for contraction is ap(s)at(s−1) → 1. The appropriate
variant of the preceding theorem then holds for Backward Lazy Parsing. In
general, the computed irreducible form may be different from that computed
by ‘forward’ lazy parsing. For example, backward parsing finds the second
reduction of (I) in Section (2) and forward parsing the third.

184 A. Preller

If the computed irreducible form happens to be the sentence type, the
algorithm gives a parsing of the sentence. If this is not the case, we cannot
conclude in general that T1 . . . Tn has no reductions to the sentence type.
Hence, the algorithm is not complete unless we impose some conditions
on the dictionary. The rest of this section is devoted to define a class of
pregroup grammars for which the Parsing Algorithm is complete. An even
more comprehensive class of pregroup grammars can also be parsed in linear
time by a slight variant of our algorithm, as we shall see in the next section.

Definition 4.4. (Complexity:)
A connected component C of basic types has complexity K ≥ 0, if there is
an integer u satisfying the following two conditions

whenever b ∈ C and b(z) occurs in D, then u ≤ z ≤ u + K
there are bi ∈ C for which bi

(u+i) occurs in D, for 0 ≤ i ≤ K.
A simple type t = a(z) has complexity K if a belongs to a connected com-
ponent of complexity less than or equal to K. A string of simple types has
complexity K if every simple type in the string has complexity K . A gram-
mar is of complexity K if every type in its dictionary has complexity K.

Our sample dictionary of Section (3) has complexity 2 . Indeed, the
simple types occurring in the dictionary are either basic or right or left
adjoints of basic types. Without the words which and and, it would be of
complexity 1 .

Grammars of complexity 1 are interesting because of their algorithmic
properties, but they are not expressive enough. The next class, that of
complexity 2 , is as expressive as the whole class of pregroup grammars.
Indeed, every pregroup grammar is strongly equivalent to a dictionary using
only basic types, right adjoints of basic types and left adjoints of basic types,
see [Preller 07]. Here strongly equivalent means not only that the grammars
generate the same sentences but also that a reduction of a type-assignment
in one grammar is also a reduction for some type assignment in the other
grammar. Hence the links under the words are the same in both grammars.

We will show that the Lazy Parsing Algorithm is complete for dictionaries
of complexity 1 and indeed for an even larger class, the linear dictionaries.

Definition 4.5. (Critical types, critical triples and linear types)
A simple type t = c(z+1) is critical if there are simple types a, b in the
connected component of c such that a(z−1) and b(z) occur in D.
A simple type t = b(z) occurring in D is said to be right-only if c(z+1) does
not occur in D for all c in the connected component of b . The notion of
left-only is defined similarly.

Linear Processing with Pregroups 185

Let T = t1 . . . tn be a string of simple types and assume that 1 ≤ i < j <
k ≤ n . We say that ti, tj , tk is a critical triple if

titj → 1, tjtk → 1,
ti+1 . . . tj−1 → 1, tj+1 . . . tk−1 → 1.

A string of simple types without critical triples is called linear. A dictio-
nary is linear, if all type assignments with a reduction to the sentence type
are linear.

Compare the notion of a critical triple with that of a critical type. The
former is relative to a given string of simple types, whereas the latter de-
pends only of the dictionary. The last of a critical triple is necessarily a
critical type. If the dictionary has complexity 2, the last of a critical triple
. . . ti . . . tj . . . tk . . . is right-only and the first left-only. A string is necessar-
ily linear if no critical type occurs in it. Hence dictionaries of complexity 1
are linear.

Lemma 4.6 (Uniqueness of Links in Linear Strings). Suppose t1 . . . tm is a
linear string of simple types. Then for every position k there is at most one
i satisfying

i < k, titk → 1 and ti+1 . . . tk−1 → 1,
or

i > k, tkti → 1 and tk+1 . . . ti−1 → 1 .

Proof. Note that k can not be both the right endpoint of a link {i, k} and
the left endpoint of a link {k, j}, because if this was the case, the string
would have the critical triple ti . . . tk . . . tj . Show that k can not be endpoint
of two different links using induction on the length m of the longer link , i.e.
m = max {|k − i|, |k − j|} . If m = 1, tk would be linked to tk−1 and to tk+1,
which is impossible as we just saw. If m = 2 we would have a link {i, i + 2}
with ti+1 → 1, which is impossible for a simple type. Suppose the property
holds up to m − 1, with 3 ≤ m . Assume first that tk is right endpoint of
two different links, i.e. that for some i, j ≥ 1

i < j < k

titk → 1
ti+1 . . . tk−1 → 1

tjtk → 1
tj+1 . . . tk−1 → 1

By hypothesis, there are a reductions R and R∗ such that R : ti . . . tk ⇒
1 and {i, k} ∈ R and R∗ : tj . . . tk ⇒ 1 and {j, k} ∈ R∗. Using under-

186 A. Preller

brackets for the links of R and underbraces for the links of R∗, the situation
is represented by the graph

. . . ti . . . tj tk︸ ︷︷ ︸

Then R links j to some position k′ with i + 1 ≤ k′ ≤ k − 1 . Note that k′ is
necessarily to the right of j, as otherwise the string would have the critical
triple

. . . tk′ . . . tj . . . tk︸ ︷︷ ︸ . . . , which is impossible.

Hence, j < k′ < k and

. . . ti . . . tj . . . tk′ . . . tk︸ ︷︷ ︸

Then tj would be left endpoint of two different links. As |j − k| < |i − k| ,
this contradicts the induction hypothesis. The case where tk is left endpoint
is similar.

This local property of unique links has useful global consequences. The
first one is the following Lemma

Lemma 4.7 (Uniqueness of Reductions of Linear Strings). Every linear string
of simple types t1 . . . tm has a unique irreducible form ti1 . . . tip and a unique
reduction R to that irreducible form. This reduction is computed by Lazy
Parsing.

Proof. If t1 . . . tm is irreducible, the property holds trivially. Else, note
that in all reductions to an irreducible form, the links with neighboring
endpoints must be identical. Indeed, let R and R′ be reductions such that
R : t1 . . . tm ⇒ ti1 . . . tip and R′ : t1 . . . tm ⇒ tj1 . . . tjq with ti1 . . . tip and
tj1 . . . tjq irreducible. Assume {k − 1, k} ∈ R. As tk−1tk → 1, one of k − 1
or k must belong to a link in R′. If it is k, it can not be the left endpoint of
a link {k, i} ∈ R′, because otherwise the string would have a critical triple,
contradicting linearity. Hence R′ can link k only to some position i < k. By
the preceding lemma, it follows that i = k− 1. Similarly, if it is k− 1 that is
linked in R′ to some position, the latter is necessarily the position k. Hence
R and R′ coincide on all links with neighboring endpoints. Omitting these
links from R and R′ and the corresponding segments tk−1tk from t1 . . . tm,
the new reductions are reductions of the new string to the same irreducible
forms ti1 . . . tip and tj1 . . . tjq respectively. It follows by induction hypothesis,

Linear Processing with Pregroups 187

that the same positions are linked by R and by R′. But then the positions
that are not linked also coincide in both reductions. Therefore p = q, ik = jk ,
for 1 ≤ k ≤ p and ti1 . . . tip = tj1 . . . tjq .

Theorem 4.8 (Linear Completeness). A string of words from a linear dictio-
nary v1 . . . vn is a sentence if and only if at some final stage s =
(n, T1 . . . Tn, qn), the reduction R(s) reduces T1 . . . Tn to the sentence type.
Moreover, for a given final stage, the reduction has been computed by Lazy
Parsing in time proportional to the length of the corresponding type assign-
ment.

Proof. The last assertion follows from the fact that the definition of R(s)
only involves the predecessors of s and that for each stage the number of
computation steps is constant. The rest is a straightforward consequence of
Theorem 4.2 and Lemma 4.7.

Hence Lazy Parsing finds the unique reduction of a linear string to an ir-
reducible form. The same algorithm does as well for certain strings with
critical triples. Consider a string which has all critical types at the end, like

b b b�b b�b br br .

Such a string has at most one reduction to the empty string, which is com-
puted by Lazy Parsing.

Lemma 4.9 (Quasi-Linearity). Suppose that none of the simple types in S =
s1 . . . sn is critical and all of the simple types in T = t1 . . . tm are right-only.
Then ST has at most one reduction to the empty string. Moreover, if a
reduction to the empty string exists, it is computed by Lazy Parsing.

Proof. Suppose R : ST ⇒ 1 . Every critical type is a right endpoint and
cannot be linked to another critical type. Hence it is linked to some si with
i ≤ n .

. . . si1 sim−1 . . . sim . . . t1 t2 tm

Omitting these links from R, we obtain a reduction R′ of S to the irreducible
string si1 . . . sim−1sim . Indeed, the segment between sim and t1 is reduced by
R to the empty string, because links do not cross. For the same reason, the
segments between two consecutive sik ’s and the initial segment up to s1 are
reduced to the empty string by R and hence by R′. Now assume Q : ST ⇒ 1
is another reduction to the empty string. Then its restriction to Q′ to S as
well is a reduction of S to an irreducible form sj1 . . . sjm′ . By the Linearity

188 A. Preller

Lemma, S has a unique irreducible form and a unique reduction to this
irreducible form. Therefore Q′ = R′, m = m′ and ik = jk for 1 ≤ k ≤ m .
As links do not cross, it follows that Q = R . Finally, as S is linear, Lazy
Parsing computes the unique reduction R′ : S ⇒ si1 . . . sim . The indices
i1, . . . , im are stored in its stack in increasing order. Thus im is on the top
of the stack after computing at stage n. Reading the type t1 at the next
stage, it will pop im and add {im, n + 1} to the reduction and so on.

We call a string of the form ST in the lemma above quasi-linear and
remark that it can have several irreducible forms. For example, the empty
string and bb� are two irreducible forms of bb�bb�bbr .

In the next section we relax the restrictive conditions above, motivated
by properties of the sample dictionary of Section 3. We also modify the
parsing algorithm slightly so that it is complete and linear for the larger
class of dictionaries defined by the weaker conditions.

5. Minimal Reductions

Dictionaries of complexity 2 may have type assignments with critical triples.
Such strings often have different irreducible forms and even for a given irre-
ducible form there may be different reductions to it. The time necessary to
find all possible reductions to the sentence type can increase exponentially
with the number of words, and this even if the dictionary lists just one type
per word. The best we can attempt therefore is to compute one particu-
lar reduction to the sentence type per type assignment, provided there is at
least one. In this section we single out the minimal reduction always present
among all reductions to the sentence type.

The critical triples of our sample dictionary of Section 3 are due to the
lexical entries

which : cr
scsŝ

�ô, cr
scsŝ

�π̂3s

and : xrxx�,

A critical type in these entries is followed by its own left adjoint or is in
a segment that is followed by its left adjoint. This property is the key to
complete linear parsing.

Definition 5.1. (Guards) A type T = XCY is guarded if
- there are no critical types in X nor Y
- every simple type in C is critical
- C� is the smallest element in its connected component
- Y = C�Y ′ for some Y ′ .

If C is not empty, the following segment C� is called the guard of C .

Linear Processing with Pregroups 189

A dictionary D is guarded if every type T ∈ D(v) is guarded for all v .
A pregroup grammar is guarded if its dictionary is guarded.

Every dictionary of complexity 1 is guarded, because such a dictionary
has no critical types. In general, the dictionaries proposed for natural lan-
guages so far are guarded or have equivalent guarded dictionaries. At this
stage it is not known if guarded grammars are as expressive as the whole
class of pregroup grammars.

Our aim is to define a subset of the set of all reductions that is small
enough for a slightly amended Lazy Parsing algorithm to compute its mem-
bers. It also must be big enough so that if a given string has a reduction to
the sentence type, one of them is in the subset. We can do this for guarded
dictionaries of complexity 2, for which we define the minimal reductions
below.

Definition 5.2. (Fans:) Consider a reduction R of t1 . . . tn. A fan of R is a
subset of underlinks {{ip, k} , {ip−1, k + 1} . . . , {i1, k + p − 1}} such that the
right endpoints form a segment.

. . . ti1 tip−1 . . . tip . . . tk tk+1 . . . tk+p−1

A fan is critical, if every right endpoint is a critical type. A guarded fan is a
critical fan such that tk+p . . . tk+2p−1 guards the segment tk . . . tk+p−1 of its
right endpoints.

A fan reduces the segments between to left endpoints to the empty type and
the same is true for the segment between the last left and the first right
endpoint. This follows at once from the following, more general property.

Lemma 5.3. Fan Lemma Consider the following underlinks

. . . ti1Γ1 tip−1Γp−1 tipΘtk Λ1tk+1 . . . Λp−1tk+p−1

of a reduction R. Then R : Γi ⇒ 1 if and only if R : Λp−i ⇒ 1 for
1 ≤ i ≤ p − 1 . Moreover, R : Θ ⇒ 1. In particular, the segments between
two consecutive left endpoints of a fan reduce to the empty string.

Proof. The last assertion holds in any reduction. Moreover, a link that
has one endpoint in Γi has the other endpoint either in Γi itself or in Λp−i .
Hence R : Λp−i ⇒ 1 implies R : Γi ⇒ 1 and vice versa.

190 A. Preller

Definition 5.4. (Minimal reductions:) Let t1 . . . tn be a string of simple
types. The fan

. . . tj1 tjp−1 . . . tjp . . . tk tk+1 . . . tk+p−1 .

is shorter than the fan

. . . ti1 tip−1 . . . tip . . . tk tk+1 . . . tk+p−1 .

if ip < j1 . A fan is minimal if there is no shorter fan with the same right
endpoints.
A reduction of t1 . . . tn to the empty string is minimal if all guarded critical
fans are the right endpoint of a minimal fan.

In the case where a minimal fan has just one right endpoint, we call it a
minimal link. Note that a minimal reduction may have non-minimal links.
For example, consider the reductions

a�a a� a ar a a� a a�a ar a b b�b b�b br a� b� b a a�a ar br b a .

The first reduction is minimal because all its links are minimal. The second
is not minimal, it has a guarded non minimal link. The third reduction is
also minimal, because its only critical type br is not guarded and therefore
is not required to be minimal. The fourth is again minimal, even though the
link through ar is not.

Theorem 5.5 (Completeness of Minimal Reductions). Assume that D is a
guarded dictionary of complexity 2. Then for every type assignment Xi ∈
D(vi) such that X1...Xn → s there is a minimal reduction of X1...Xn to s.

Proof. We must show that whenever R : X1...Xnsr = t1...tm ⇒ 1 is a
reduction then there is a minimal reduction M such that M : t1...tm ⇒ 1.
We use induction on the number of critical types in t1...tm .

The property is trivially true if there is no critical type. Otherwise, let tk
be the leftmost critical type. Note that the string t1 . . . tk−1 is linear. As the
dictionary is guarded, tk is either the last type in the string or is followed by
another critical type or tk+1 is the guard of tk. In the first case the reduction
R is trivially minimal. Now assume that tk+1 is the guard of tk .

Linear Processing with Pregroups 191

Consider two cases.
Case (i):

The link {i, k} is minimal.
Then the restriction R′ of R to {i, . . . , k} is a reduction R′ : ti . . . tk ⇒ 1.
Omit the segment ti . . . tk from t1 . . . tm and the links with an endpoint in
{i, . . . , k} from R, obtaining the string t1 . . . ti−1tk+1 . . . tm and a reduction
R1 : t1 . . . ti−1tk+1 . . . tm ⇒ 1. As the induction hypothesis applies to R1,
there is a minimal reduction M∗ : t1 . . . ti−1tk+1 . . . tm ⇒ 1. Inserting the
segment ti . . . tk with the underlinks of R′ into M∗ we obtain a minimal
reduction of t1 . . . tm to the empty type.
Case (ii): The link {i, k} is not minimal and tk+1 guards tk .
Let j be the rightmost position i < j < k such that there is a reduction R∗

satisfying
{j, k} ∈ R∗ (II)

tjtk → 1 (III)
R∗ : Θ = tj+1 . . . tk−1 ⇒ 1 (IV)

It suffices to construct a reduction R′ : t1 . . . tm ⇒ 1 linking j and k and
conclude by Case(i).

First we remark that R coincides with R∗ on Θ . Indeed, ti+1 . . . tk−1 is
linear and both R and R∗ link a type in Θ to a type in ti+1 . . . tk−1. Therefore
they coincide in Θ by the Linearity Lemma 4.6. Hence

R : Θ = tj+1 . . . tk−1 ⇒ 1. (V)

It follows that R links j to a position h between i and j. Hence

{h, j} ∈ R, h < j, thtj → 1 (VI)
R : Δ = th+1 . . . tj−1 ⇒ 1 . (VII)

Then R has the underlinks

tiΓ thΔtj Θtk . (VIII)

As R links each position in Θ to another position in Θ, the same holds for
Γ, i.e.

R : Γ = ti+1 . . . th−1 ⇒ 1. (IX)

Let l be the position linked to k+1 in R. Note that either l > k+1 or l < i .
If l > k + 1 , i.e. if

R . . . tiΓ thΔtj Θtk tk+1 . . . tl . . . , (X)

192 A. Preller

construct a new reduction R′ : t1 . . . tm ⇒ 1 by omitting the links {i, k},
{h, j} and {k + 1, l} from R and adding the links {j, k} , {h, k + 1} and
{i, l} instead. The other links remain unchanged. Then R′ looks like this

R′ . . . tiΓ thΔ tjΘtk tk+1 . . . tl (XI)

If l < i i.e. if

R . . . tl . . . tiΓ thΔtj Θtk tk+1 . . . , (XII)

let again R′ is obtained from R by omitting the links {i, k}, {h, j} and
{k + 1, l} from R and adding the links {j, k}, {h, k + 1} and {i, l} instead.
Now, R′ looks like this

R′ . . . tl . . . ti Γ thΔ tjΘtk tk+1 . . . (XIII)

To see that R′ : t1 . . . tm ⇒ 1 , note that the geographical conditions are sat-
isfied because of V, VII and IX. Moreover, the algebraic conditions obviously
hold for the unchanged links and for the minimal link {j, k}. They also hold
for the new links. Indeed, tk+1 = t�k is the smallest element in its connected
component by assumption. Hence whenever ttk → 1 then t = tk+1 .

Remains the case where tk+1 is another critical type, i.e. where the
leftmost critical fan has several right endpoints. We only consider the case
where R is not minimal. Let R∗ be a reduction that defines a shorter fan
than R .

R∗ a Λ b . . . br︸ ︷︷ ︸ ar︸ ︷︷ ︸ a b

Let Λq be the intermediary segment of any two successive left endpoints of
R∗. Using linearity of the string before the first critical type we show that
R coincides with R∗ on Λq and cancels the left endpoints of R∗ to the right
of its own left endpoints

R . . . a . . . b . . . b�Γ a� . . . aΛ b . . . br ar a b

From this follows by the Fan Lemma,

R : Λq ⇒ 1, R : Γq ⇒ 1

Now we construct R′ as above. This ends the proof.

Linear Processing with Pregroups 193

6. Minimal Parsing

Recall that a string with n critical types may have up to to 2n different
reductions. Hence looking for only one of them should diminish the work
considerably. In fact, Lazy Parsing can be amended to find such a mini-
mal reduction keeping its run-time still linear. We formulate the relevant
properties of Lazy Parsing in the next two lemmas. For a fixed string of
simple types T = t1 . . . tn , the stages of Lazy Parsing identify with the posi-
tions {0, 1, . . . , n}, where 0 stand for the initial stage. Hence, Lazy Parsing
processes ti at stage i .

Lemma 6.1. Assume that the reduction R : T = t1 . . . tn ⇒ 1 includes the
critical fan

. . . tj1 tjp−1 . . . tjp . . . tk tk+1 . . . tk+p−1

If T is of complexity 2 then tj1 . . . tjp is an irreducible form of tj1 . . . tk−1 .

Proof. All we must show is that tjq tjq+1 �→ 1 for 1 ≤ q ≤ p − 1 . Let
a(z) = tjq and b(u) = tjq+1 . As R links a(z) to tp+q−1 the latter has the
form tp+q−1 = a′(z+1) for an appropriate a′ in the connected component of
a. Similarly, tp+q = b′(u+1) for some b′ in the connected component of b . If
tjq tjq+1 → 1 , then u = z + 1 . Moreover, a, a′, b and b′ belong to the same
connected component and a(z), a′(z+1), b(z+1) and b′(z+2) occur in T . Then
a′(z+1) cannot be a critical type because T has complexity 2.

Lemma 6.2. Assume that R : t1 . . . tn ⇒ 1, that tk is the leftmost critical type
with corresponding link {j, k} in R . Let i be the top of the stack constructed
by Lazy Parsing when processing tk−1 . Then i ≤ j ≤ k − 1 .

In particular, if i < j , then there are l and m such that i < l < j ,
k < m , Lazy Parsing links tl to tj , R links tl to tm and the latter is not a
critical type.

Proof. Let R : t1 . . . tn ⇒ 1, i, j and k be as in the hypothesis of the
Lemma. As tk is a critical type in a dictionary of complexity 2, it can only
be a right endpoint, hence j ≤ k . To see that i ≤ j assume that this was
not the case, i.e. that

. . . tj . . . ti . . . tk

Hence R links i to some position l strictly between j and k . We remark
first that i < l is impossible. Indeed, Lazy Parsing reduces the segment

194 A. Preller

ti+1 . . . tk−1 to the empty string by property (2) of Theorem (4.2). Hence it
would link l to some p strictly between i and k

. . . ti . . . tp . . . tl︸ ︷︷ ︸ . . . tk . . . ,

contradicting the uniqueness of links in the linear segment ti . . . tk−1 . There-
fore R must link ti to tl for some l < i .

. . . tj . . . tl . . . ti . . . tk . . .

Next, we remark that l is put on top of the stack while processing tl,
because tl does not contract with any type on its left. For if it did, ti would
be a critical type, contradicting the assumption. When processing the string
from tl toward the right, Lazy Parsing cannot pop l from the stack before
reaching ti. Indeed, this would imply that tl is endpoint of two different
links in a linear string, contradicting Lemma (4.6). It follows that Lazy
Parsing computes an irreducible form of tl . . . ti different from the empty
string, contradicting Lemma (4.7). Therefore j < i is impossible and so
i ≤ j ≤ k − 1 .

Consider the case i < j. Recall Property (2) of Theorem (4.2) which
says that Lazy Parsing reduces ti+1 . . . tk−1 to the empty string. Hence it
links j to some position l with i < l < k . Moreover, we have l < j because
tk is the first critical type. Hence

. . . ti . . . tl . . .︸ ︷︷ ︸ tj . . . tk . . . ,

where the underbraces designate links of Lazy Parsing. Note that tl is left-
only, because the dictionary has complexity 2 . Therefore R links l to some
m > l . Moreover, if we had m ≤ k − 1, then l would be linked to two
different positions in the linear string t1 . . . tk−1 which is impossible. Hence
k + 1 ≤ m .

Lemma 6.3. Assume the notations of the preceding lemma and that tk is the
leftmost critical type of a fan

. . . tj1 tjp−1 . . . tjp . . . tk tk+1 . . . tk+p−1

If jp > i then jq > i for 1 ≤ q ≤ p . Moreover, there are j1 > l1 > · · · > lp > i
such that Lazy Parsing links tlq to tjq .

Linear Processing with Pregroups 195

Proof. Use induction on the number of critical types p. The case p = 1
is the preceding lemma. For the induction step, omit the segment tjp . . . tk
from t1 . . . tn and the corresponding links from R . Apply the induction
hypothesis to this string to obtain lp−1 < · · · < l1 and the corresponding
links of Lazy Parsing

. . . ti . . . tlp−1 . . . tl1 . . . tj1︸ ︷︷ ︸︸ ︷︷ ︸ tjp−1Γp tjp . . . tk tk+1 . . . tk+p−1

Use the usual argument to show that Lazy Parsing links tlp to tjp for some
lp between i and jp

. . . ti . . . tlp . . .︸ ︷︷ ︸ tjp . . . tk

We have lp < lp−1 or jp−1 < lp , for Lazy Parsing links lp−1 to jp−1 . We
remark that the latter is impossible. Indeed, if tlp was inside of Γp it would
be linked by R to some type before tjp contradicting the uniqueness of links
in the linear string Γp. Therefore lp < lp−1 .

Minimal Parsing
Let t1 . . . tn = T1 . . . Tmsr be a type assignment and assume that the dic-
tionary is guarded. Then the first critical type is the leftmost type of a
segment CC� within the type of some word. Hence the length of C is a
constant depending only on the dictionary.

We amend Lazy Parsing by back-tracking when arriving at the first crit-
ical type tk with i on the top of the stack. Instead of processing tk, we
process the string ti . . . tk−1 backward, starting at k−1 , but no further than
i + 1 included. We construct a separate stack and set of links for the back-
ward parsing. At each position, we compare the computed irreducible form,
say tj1 . . . tjq , with the string C�. If and when it satisfies C� = tj1 . . . tjp ,
we stop and update Lazy Parsing following the construction of a minimal
reduction in Theorem (5.5). We omit the links {lq, jq} from the reduction
computed so far and add the links {jq, k + q − 1} and {lq, k + p − 1 + q} in-
stead. The stack remains unchanged. Then we continue processing forward
with Lazy Parsing from tk+2p on. If on the contrary, the irreducible form
computed by backtracking never becomes equal to C� for k − 1 ≥ q ≥ i + 1 ,
we continue with forward Lazy Parsing from tk on, with the stack and set
of links as they were before backtracking. If this procedure links the critical
types successfully on the left, the corresponding segment tj1 . . . tk+p−1 will
be omitted in later backtracks. Hence every simple type in the string is
processed at most twice.

196 A. Preller

It follows from Lemmas (6.2) and (6.3) that Minimal Parsing is complete
if the dictionary is guarded and has complexity 2. Moreover, it computes a
reduction to the sentence type or fails if there is none, and does so in time
proportional to the length of the string T1 . . . Tm .

We can use Minimal Parsing for recognizing ‘losing’ type assignments
with no reduction to the sentence type, when processing a word that intro-
duces a critical type. If k+q is pushed onto the stack for some 0 ≤ q ≤ p−1,
then t1 . . . tn has no reduction to the empty string. Indeed, if Minimal Pars-
ing does not find a link for the critical type tk+q then there is no such link
by Theorem (5.5) and Lemmas (6.2) and (6.3). As tk+q cannot be cancelled
from the right, it remains in every irreducible form of t1 . . . tn. Note that we
do not even need to know what will come after the critical segment and its
guard. We only need to know the critical segment C so that we can test the
irreducible form during backtracking for equality with C�.

7. Conclusion

The conditions which make the Minimal Parsing algorithm linear apply to a
large class of pregroup grammars. Indeed, a pregroup grammar has a finite
dictionary and therefore is strongly equivalent to one of complexity 2. Prac-
tice shows that guarded dictionaries cover quite expressive natural language
fragments. However, Minimal Parsing depends on the selected type assign-
ment. Future work must investigate dictionaries for which the criterion for
recognizing losing type assignments during processing lowers the number
of processed type assignments sufficiently. The present work is only a first
step toward the claim that pregroup grammars can provide natural language
processing with linear algorithms.

References

[Buszkowski] Buszkowski, Wojciech, ‘Lambek Grammars based on pregroups’, in

P. de Groote et al. (eds.), Logical Aspects of Computational Linguistics,

LNAI 2099, Springer, 2001.

[CYK] Younger, David, ‘Recognition and Parsing of Context-Free Languages

in Time n3’, Information and Control 10:2, 1967.

[Degeilh-Preller] Degeilh, Sylvain, and Anne Preller, ‘Efficiency of Pregroups and

the French noun phrase’, Journal of Language, Logic and Information,

Springer, Vol. 14, 4:423–444, 2005.

[Earley] Earley, Jay, ‘An efficient context-free parsing algorithm’, Communi-

cations of the AMC, Volume 13, 2:94–102, 1970.

[Gazdar] Gazdar, Gerald, ‘Unbounded Dependency and Coordinate Structure’,

in Walter Salvitch (ed.), The Formal Complexity of Natural Language,

Reidel Publishing Company, 1987, pp. 183–226.

Linear Processing with Pregroups 197

[Lambek 99] Lambek, Joachim, ‘Type Grammar revisited’, in A. Lecomte et al.

(eds.), Logical Aspects of Computational Linguistics, Springer LNAI

1582, 1999, pp. 1–27.

[Lambek 04] Lambek, Joachim, ‘A computational algebraic approach to English

grammar’, Syntax 7, 2:128–147, 2004.

[Oehrle] Oehrle, Richard, ‘A parsing algorithm for pregroup grammars’, in

Proceedings of Categorial Grammars 2004, Montpellier France, 2004, pp.

59–75.

[Preller-Lambek] Preller, Anne, and Joachim Lambek, Free compact 2-categories,

October 2005, forthcoming in: Mathematical Structures for Computer

Sciences, Cambridge University Press

[Preller 07] Preller, Anne, Toward Discourse Representation Via Pregroup Gram-

mars, JoLLI, 16:173–194, 2007. doi:10.1007/s10849-006-9033-y

Anne Preller
LIRMM
CNRS
161, rue Ada
Montpellier, France
preller@lirmm.fr

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

