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Abstract. A continuous t-norm is a continuous map ∗ from [0, 1]2 into [0, 1] such that

〈[0, 1], ∗, 1〉 is a commutative totally ordered monoid. Since the natural ordering on [0, 1]

is a complete lattice ordering, each continuous t-norm induces naturally a residuation

→ and 〈[0, 1], ∗,→, 1〉 becomes a commutative naturally ordered residuated monoid, also

called a hoop. The variety of basic hoops is precisely the variety generated by all algebras

〈[0, 1], ∗,→, 1〉, where ∗ is a continuous t-norm. In this paper we investigate the structure

of the variety of basic hoops and some of its subvarieties. In particular we provide a

complete description of the finite subdirectly irreducible basic hoops, and we show that

the variety of basic hoops is generated as a quasivariety by its finite algebras. We extend

these results to Hájek’s BL-algebras, and we give an alternative proof of the fact that

the variety of BL-algebras is generated by all algebras arising from continuous t-norms on

[0, 1] and their residua. The last part of the paper is devoted to the investigation of the

subreducts of BL-algebras, of Gödel algebras and of product algebras.
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A continuous t-norm is a continuous map ∗ from [0, 1]2 into [0, 1] such that
〈[0, 1], ∗, 1〉 is a commutative totally ordered monoid. There are three fun-
damental continuous t-norms: the �Lukasiewicz t-norm defined by x ∗L y =
max(x+y−1, 0), the Gödel (or lattice) norm x∗G y = x∧y and the product
norm x ∗P y = xy. Indeed it is known ([24, 35]) that, up to isomorphism,
every continuous t-norm behaves locally as one of the above.

Since the natural ordering on [0, 1] is a complete lattice ordering, each
t-norm induces naturally a residuation, or an implication in more logical
terms, by x → y = sup{z : z ∗ x ≤ y}. The implications associated to the
three fundamental norms are:

x →L y = min(y − x + 1, 1)

x →G y =

{
1 if x ≤ y

y otherwise
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and x →P y =

{
1 if x ≤ y

y/x otherwise
.

It is clear that the residual → of a continuous t-norm on [0, 1] satisfies

x → x = 1
x → 1 = 1
1 → x = x

x → y = 1 and y → x = 1 imply x = y.

Hence the variety VK generated by any class K of algebras of the form
〈[0, 1], ∗,→, 0〉, where ∗ is a continuous t-norm and → is its residual, is
ideal-determined [23] and therefore it is the equivalent algebraic semantics
of its assertional logic (see [3], Section 3). In particular, there is a propo-
sitional calculus naturally associated to VK that is strongly complete with
respect to VK.

In his important monograph [24], Hájek considers in detail the three
relevant cases and provides an axiomatization for the corresponding va-
rieties of algebras and logics. Algebras in the variety WA generated by
〈[0, 1], ·L,→L, 0, 1〉 are known as Wajsberg algebras [22] or MV-algebras [13]
and the propositional calculus of which they constitute a complete semantics
is the �Lukasiewicz many-valued logic [13]. Algebras in the variety GA gener-
ated by 〈[0, 1], ·G,→G, 0, 1〉 are called Gödel algebras and form an equivalent
algebraic semantics for Dummett’s Logic [17], also called Gödel Logic, the
infinite-valued version of the infinitely many finitely-valued systems, which
Gödel considered in his proof that Intuitionist Logic is not finitely-valued.
The variety PA of product algebras is generated by 〈[0, 1], ·P ,→P , 0, 1〉, with
product logic [25] as its associated propositional calculus. Last but not least,
Hájek introduces the variety BL of BL-algebras and calls basic logic the as-
sociated propositional calculus; then he formulates the conjecture that this
variety is in fact generated by all algebras of the form 〈[0, 1], ∗,→, 0, 1〉, where
∗ is a continuous t-norm on [0, 1]. This conjecture has been verified in [14];
we give a simpler proof of a stronger statement.

One of the relevant algebraic aspects of a continuous t-norm on [0, 1]
is the fact that the associated monoid is residuated. Residuated (partially
ordered) monoids have long been considered of interest by algebraists, start-
ing from the classical example of the lattice-ordered monoid of the ideals of
a ring with unit. In particular Bosbach [12] devoted several papers to the
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study of left-complemented monoids, i.e. the residuated monoids in which
the underlying ordering is natural:

x ≤ y if and only if ∃ z (x = zy).

Bosbach’s work seems to have been the main source of inspiration for Büchi
and Owens’ research on commutative complemented monoids, which they
called hoops. They prepared a manuscript entitled “Complemented Monoids
and Hoops” in the middle seventies but, mainly because the manuscript
was never published, their ideas caught on slowly. Blok and Pigozzi in
[10] applied these ideas in the study of hoops with dual normal operators,
which are a generalization of Boolean algebras with operators, but the first
systematic study of the structural properties of hoops appeared in Ferreirim’s
thesis [19]. Some of the results obtained there can be found in two joint
papers with Blok [5] and [6]; in particular the description of subdirectly
irreducible hoops ([6, Theorem 2.9]) will play a crucial role in this paper.

Since the ordering induced by the residual of any continuous t-norm is the
natural ordering on [0, 1], any algebra of the form 〈[0, 1], ∗,→, 0, 1〉 is a hoop
that is also bounded, i.e., has a smallest element 0. Hence all the varieties we
have considered so far are varieties of (bounded) hoops. This suggests the
possibility that the structure theory of hoops can be used to achieve a better
understanding of these varieties (and of the logics involved); conversely the
class of varieties arising from these logics might shed more light on the be-
havior of other classes of hoops (and their implicative subreducts). The aim
of this paper is to show that this enterprise can be successful. In Section 1
we investigate the variety of basic hoops, i.e., the variety of hoops naturally
associated with basic logic; we clarify its relationship with the variety of
basic BL-algebras and we characterize completely its finite subdirectly irre-
ducible members in terms of ordinal sums of hoops. Then we do the same for
its implicative subreducts. In Sections 2 and 3 we proceed to show that the
variety of basic hoops is generated as a quasivariety by its finite algebras and
the same holds for its implicative subreducts. As a by-product we are able
to give a new proof and a slight improvement of the completeness result in
[14]. In Section 4 we point out that the variety of G-hoops, naturally associ-
ated with Gödel logic, consists of well-known objects and we characterize its
implicative subreducts. Sections 5 and 6 are devoted to product hoops, i.e.,
hoops coming from the product t-norm. In Section 5 we study the structure
of product hoops and their implicative subreducts, while in Section 6 we
describe completely the lattice of subvarieties of product hoops.
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1. Basic hoops and BL-algebras

As mentioned in the introduction, a thorough algebraic study of the variety
of hoops may be found in [6]. We start this section by recalling some known
definitions and results. Then we study in detail the variety of basic hoops,
which is generated by all totally ordered hoops.

A hoop is an algebra A = 〈A, ·,→, 1〉 such that 〈A, ·, 1〉 is a commutative
monoid and for all x, y, z ∈ A

1. x → x = 1

2. x(x → y) = y(y → x)

3. x → (y → z) = xy → z.

If A is a hoop, define a0 = 1, a
0→ b = b and a

n+1→ b = a → (a n→ b), for
any natural number n. Then an → b = a

n→ b for all n.
If A = 〈A, ·,→, 1〉 is a hoop then the binary relation defined by a ≤ b if

and only if a → b = 1 is a partial order on A with respect to which 〈A, ·, 1〉
is a naturally ordered residuated commutative monoid, or naturally ordered
pocrim. The residuation is given by ab ≤ c if and only if a ≤ b → c.

A bounded hoop is an algebra A = 〈A, ·,→, 0, 1〉 such that 〈A, ·,→, 1〉 is
a hoop and 0 ≤ a for all a ∈ A.

A Wajsberg hoop is a hoop satisfying the identity

(x → y) → y ≈ (y → x) → x. (T)

Bounded Wajsberg hoops are term-equivalent to Wajsberg algebras [22]—see
[10]; they are also term-equivalent to Chang’s MV-algebras [13] and Komori’s
CN algebras [33]. It follows from the fact that every Wajsberg hoop is
a {·,→, 1}-subreduct of a Wajsberg algebra [6, Proposition 1.14] and the
theory of algebraizable logics [9, Corollary 2.12] that the variety WH of
Wajsberg hoops is the equivalent algebraic semantics of the positive fragment
of �Lukasiewicz’s infinite-valued logic.

Finite Wajsberg hoops will play a crucial role in the sequel. For each
natural number n, Cn denotes the finite totally ordered Wajsberg hoop
whose universe is Cn = {1 = a0, a, a2, ..., an} and akam = amin(k+m,n), ak →
am = amax(m−k,0) for 0 ≤ k, m ≤ n; similarly Wan denotes the finite totally
ordered Wajsberg algebra 〈Cn, ·,→, an, 1〉.

A filter of a hoop A is a subset F containing 1 and closed under detach-
ment: if a, a → b ∈ F , then b ∈ F . Given a subset X of a hoop A, the filter
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generated by X in A, denoted FgA(X), is

FgA(X) = {b ∈ A | ∃ a1, . . . , an ∈ X a1 → (a2 → (. . . (an → b) . . . )) = 1}
= {b ∈ A | ∃ a1, . . . , an ∈ X a1a2 . . . an ≤ b}.

In particular, the principal filter generated by an element a is

FgA(a) = {b ∈ A | ∃n with a
n→ b = 1} = {b ∈ A | ∃n with an ≤ b}.

If θ is a congruence on A, then 1/θ is a filter. Moreover, the map θ �−→ 1/θ
determines a lattice isomorphism between the congruence lattice and the
filter lattice of a hoop, with inverse map F �−→ θF , where θF = {(a, b) :
a → b, b → a ∈ F} [12]. The variety of hoops is therefore congruence
regular at 1, with witness term (x → y) ∧ (y → x).

In the next proposition we collect two useful facts concerning the Wajs-
berg hoop 〈[0, 1], ∗L,→L, 1〉 (resp. the Wajsberg algebra 〈[0, 1], ∗L,→L, 0, 1〉).
Proposition 1.1. 1. If a < b ∈ R, then it is possible to define · and → on

[a, b] in such a way that 〈[a, b], ·,→, b〉 is isomorphic to 〈[0, 1], ∗L,→L, 1〉.
2. Each Cn is embeddable in 〈[0, 1], ∗L,→L, 1〉.
3. 1. and 2. hold for the Wajsberg algebras 〈[0, 1], ∗L,→L, 0, 1〉 and Wan.

Proof. 1. Define for all u, v ∈ [a, b]

uv = max(u + v − b, a) u → v = min(b − u + v, b).

Then the maps

f(x) = a + (b − a)x for x ∈ [0, 1] g(u) =
u − a

b − a
for u ∈ [a, b]

are mutually inverse isomorphisms between [0, 1] and [a, b].

2. The map defined by ak �−→ (n− k)/n, for k ≤ n, is an embedding of Cn

into 〈[0, 1], ∗L,→L, 1〉.
3. Clear.

We now turn our attention to implicative subreducts of hoops. It is well-
known that an implicative subreduct of a hoop is always a BCK-algebra.
BCK-algebras were introduced by Iséki [30] as algebraic models of C.A.
Meredith’s BCK-calculus and have been widely investigated since. They
form a quasivariety BCK that is not a variety [42], [28]. However, if V

is any variety of hoops then the class SSS→(V), consisting of all implicative
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subreducts of algebras in V, is a variety of BCK-algebras. This fact was
stated in [11, Section 4, Example III]; it also follows from [2, Theorem 2.14].
We give here a direct proof, based on the observation that, for every variety
of hoops V, the class SSS→(V) has the filter extension property, i.e., if A,
B ∈ SSS→(V), A ≤ B and F is a filter of A, then there exists a filter G of B
such that G ∩ A = F (namely G = FgB(F )).

Proposition 1.2. If V is any variety of hoops, then the class SSS→(V) is a
variety of BCK-algebras.

Proof. Recall that the variety of hoops satisfies the following identity, in-
troduced by Cornish [16]:

(((x → y) → y) → x) → x ≈ (((y → x) → x) → y) → y (J)

[5, Corollary 4.8].
Let V be a variety of hoops; it is sufficient to show that SSS→(V) is closed

under homomorphisms. Let A be a {→, 1}-subreduct of B ∈ V; if B→

denotes the {→, 1}-reduct of B, we may write A ≤ B→. Let θ ∈ Con(A)
and let G be the filter of B generated by 1/θ; it is easy to see that G =
FgB(1/θ) = FgB→(1/θ). Clearly θ ⊆ θG ∩ A2. On the other hand, if
(a, b) ∈ θG ∩ A2, then ((a → b) → b) → a θG ((a → a) → a) → a = 1
and similarly ((b → a) → a) → b θG 1. Thus both expressions belong to
1/θG∩A = G∩A = 1/θ (by the filter extension property) and hence, by (J),

a = 1 → a θ (((a → b) → b) → a) → a

= (((b → a) → a) → b) → b θ 1 → b = b.

Thus θ = θG ∩ A2, and therefore A/θ is a subreduct of B/θG ∈ V.

Identity (J) determines a variety of BCK-algebras [16], which contains
the variety HBCK, consisting of all implicative subreducts of hoops. Indeed,
HBCK is the variety of BCK-algebras satisfying identities (J) and

(x → y) → (x → z) ≈ (y → x) → (y → z) (H)

[5, 20]. A syntactic derivation of (J) from axioms for BCK-algebras together
with (H) may be found in [34].

It is known that for BCK-algebras identity (T) implies (J). Therefore
(T) defines a subvariety of HBCK, the variety LBCK of �Lukasiewicz BCK-
algebras. �Lukasiewicz BCK-algebras were introduced by Komori [32], under
the name C algebras, to study the implicative fragment of �Lukasiewicz many-
valued logic. The variety LBCK coincides with the variety of implicative
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subreducts of Wajsberg hoops (algebras) [5] and it plays a relevant role in
characterizing subdirectly irreducible members of HBCK [20, Theorem 4.9].

It is also known that if A is a BCK-algebra that belongs to a variety
of BCK-algebras, then the filter lattice and the congruence lattice of A are
isomorphic.

The underlying order of a hoop is always a ∧-semilattice order (where
a ∧ b = a(a → b)), but not necessarily a lattice order.

When the join of two elements exists, it reflects in the lattice of filters
as follows:

Proposition 1.3. Let A be a hoop and a, b ∈ A. If a ∨ b exists, then

FgA(a ∨ b) = FgA(a) ∩ FgA(b).

This property is shared by many ordered structures, for example Heyting
algebras and Wajsberg algebras. In a more general context, it was first
established for BCK-algebras whose underlying poset is a ∨-semilattice [39,
Corollary 2], [41, Corollary 3]. However, its proof depends only on the
existence of the required join; it appears in full generality in [40].

Next we investigate a class of hoops with a (term-definable) lattice order,
closely related to the logical system introduced by Hájek in his monograph
[24]. This propositional calculus, which Hájek called basic (many-valued)
logic, is proposed as the “most general” many-valued logic with truth values
in [0, 1]. The algebraic semantics for basic logic given in [24] consists of
BL-algebras.

Definition 1.4. A BL-algebra is an algebra 〈A,∨,∧, ·,→, 0, 1〉 such that

1. 〈A,∨,∧, ·,→, 0, 1〉 is a bounded residuated lattice;

2. x ∧ y = x(x → y);

3. (x → y) ∨ (y → x) = 1.

The class of BL-algebras is denoted by BL.

The binary connective ∨ defined in basic logic (BL) by

φ ∨ ψ := ((φ → ψ) → ψ) ∧ ((ψ → φ) → φ)

corresponds, via the completeness theorem [24, Theorem 2.3.19], to the join
operation on BL-algebras. Thus, join is term-definable using only meet and
implication

x ∨ y = ((x → y) → y) ∧ ((y → x) → x).
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In [24] it was shown that BL-algebras satisfy all axioms of hoops. Thus, given
a BL-algebra A = 〈A,∨,∧, ·,→, 0, 1〉, it is appropriate to call 〈A, ·,→, 1〉 the
hoop reduct of A.

Definition 1.5. A hoop is called a basic hoop if it is a hoop subreduct (i.e.,
a subhoop of the hoop reduct) of a BL-algebra. The class of basic hoops is
denoted by BH.

The algebraic translation of axiom (A6) in [24, Definition 2.2.4] is the
identity

(x → y) → z ≤ ((y → x) → z) → z. (B)

which holds in every BL-algebra. It follows that every basic hoop also satis-
fies (B). Next we show that identity (B) plays a crucial role in characterizing
the class of basic hoops. Our main tools are the notion of ordinal sum, as
well as the characterization of subdirectly irreducible hoops described in [6,
Theorem 2.9(iii)]. Recall that, given two hoops A and B, A ⊕ B denotes
their ordinal sum. If A is a subdirectly irreducible hoop then it is of the form
F⊕S, where F and S are subhoops of A, and S is a subdirectly irreducible
Wajsberg hoop.

Theorem 1.6. Let A be a hoop. The following are equivalent:1

(i) A is a basic hoop.

(ii) A satisfies the identity

(x → y) → z ≤ ((y → x) → z) → z. (B)

(iii) A is isomorphic to a subdirect product of linearly ordered hoops.

Proof. (i)⇒(ii). Clear from the remarks following the definition of basic
hoop.

(ii)⇒ (iii). Without loss of generality, we may assume that A is sub-
directly irreducible. Then, by [6, Theorem 2.9] A decomposes as F ⊕ S,
where S is a non-trivial subdirectly irreducible (hence linearly ordered) Wa-
jsberg hoop. By way of contradiction, let a, b ∈ A be such that a �≤ b and
b �≤ a. Then necessarily a, b ∈ F , since S is totally ordered and if x ∈ S and
y ∈ F \ {1} then y ≤ x. Let c ∈ S \ {1} (such c exists since |S| > 1). Since
a → b and b → a are in F \ {1}, one has a → b ≤ c and b → a ≤ c, but
c �= 1, and (B) fails in A, yielding a contradiction.

1The equivalence between (ii) and (iii) has been considered by Pa�lasinski in [38], with
respect to BCK-algebras.
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(iii)⇒(i). It is enough to prove that every linearly ordered hoop is basic.
If A is a linearly ordered hoop, then 2 ⊕ A is a bounded linearly ordered
hoop in which the lattice join is definable by x∨ y = ((x → y) → y)∧ ((y →
x) → x)(= max(x, y)), and (x → y) ∨ (y → x) = 1. Then, 2 ⊕ A is a
BL-algebra, of which A is a hoop subreduct.

Note that if A = 〈A, ·,→, 0, 1〉 is a bounded hoop, its congruence lattice
is the same as the congruence lattice of its hoop reduct 〈A, ·,→, 1〉. Hence, a
consequence of Theorem 1.6 is the following characterization of BL-algebras:

Theorem 1.7. The variety BL, of all BL-algebras, is term-equivalent to the
variety of bounded hoops satisfying

(x → y) → z ≤ ((y → x) → z) → z. (B)

Proof. Given an arbitrary bounded hoop A, satisfying (B), it is a subdirect
product of subdirectly irreducible factors, each of which is linearly ordered,
by Theorem 1.6. In A, the operations ∧ and ∨ are term definable by x∧y =
x(x → y) and x ∨ y = ((x → y) → y) ∧ ((y → x) → x) respectively.
These are the lattice operations corresponding to the order on A, making
〈A, ·,→,∧,∨, 0, 1〉 a BL-algebra.

Recall that an algebra A is finitely subdirectly irreducible if any finite
family of nontrivial congruences of A has a nontrivial intersection. Clearly,
an algebra is finitely subdirectly irreducible if and only if any two nontrivial
principal congruences have a nontrivial intersection.

In view of the lattice isomorphism between congruences and filters (under
which principal congruences correspond to principal filters), one can say that
a hoop A is finitely subdirectly irreducible if and only if any pair of nontrivial
principal filters has a non-trivial intersection. In particular, if A is a totally
ordered hoop, it is necessarily finitely subdirectly irreducible, since a ≤ b
implies FgA(b) ⊆ FgA(a). Moreover we have the following proposition.

Proposition 1.8. A basic hoop is finitely subdirectly irreducible if and only
if it is totally ordered.

Proof. Let A be a basic hoop and a, b ∈ A. Then A is a hoop subreduct of
a BL-algebra and therefore (a → b)∨ (b → a) = 1. It follows that FgA(a →
b) ∩ FgA(b → a) = {1}, by Proposition 1.3. If A is finitely subdirectly
irreducible, this implies that either FgA(a → b) = {1} or FgA(b → a) = {1}.
Hence either a ≤ b or b ≤ a and A is totally ordered.
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Ordinal sums can be defined for an arbitrary number of finitely many
summands. Clearly, the class of totally ordered hoops is closed under ordinal
sums.

Since, for finite algebras, being subdirectly irreducible is equivalent to
being finitely subdirectly irreducible, and every totally ordered hoop is nec-
essarily finitely subdirectly irreducible, then every finite totally ordered basic
hoop is subdirectly irreducible. In particular, it follows from [32, Theorem
3.13] that each finite totally ordered Wajsberg hoop (algebra) is simple and
isomorphic to some Cn (Wan).

This yields an interesting classification of finite subdirectly irreducible
basic hoops.

Corollary 1.9. A is a finite subdirectly irreducible basic hoop if and only
if there are k, n1, . . . , nk ∈ N such that

A ∼= Cn1 ⊕ Cn2 ⊕ · · · ⊕Cnk
.

Proof. First note that Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnk
is a (finite) totally ordered

subdirectly irreducible basic hoop. Conversely, let A be a finite subdirectly
irreducible basic hoop. We prove the claim by induction on the cardinality
of A. If |A| = 1, then there is nothing to prove. Suppose that |A| = r;
then by [6, Theorem 2.9 (iii)] there is a basic hoop F and a totally ordered
Wajsberg hoop S, with A ∼= F ⊕ S and |S| > 1. Since A is totally ordered,
so is F and hence it is finitely subdirectly irreducible (by Proposition 1.8).
Since |F | < r, by the induction hypothesis there exist k − 1, n1, . . . , nk−1

such that F ∼= Cn1 ⊕ · · · ⊕ Cnk−1
. Moreover S is a finite totally ordered

Wajsberg hoop, hence it is isomorphic to some Cnk
. In conclusion we have

A ∼= Cn1 ⊕ · · · ⊕Cnk
,

as claimed.

Since every BL-algebra is a bounded hoop satisfying (B), it is easy to
see that the congruence lattice of a BL-algebra A = 〈A,∨,∧, ·,→, 0, 1〉 is
the same as the congruence lattice of its hoop reduct 〈A, ·,→, 1〉 (and of its
bounded hoop reduct 〈A, ·,→, 0, 1〉). Therefore, congruences on BL-algebras
correspond to filters and conversely. We can then extend the results above
to BL-algebras.

It follows from Theorem 1.6 that the class BH, of all basic hoops (i.e.,
hoop subreducts of BL-algebras), is a variety — the variety of hoops sat-
isfying (B). This result may be generalized as follows. For any class K of
BL-algebras, let SSSh(K) denote the class of hoop subreducts of members of K.
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Proposition 1.10. If V is a variety of BL-algebras, then the class SSSh(V),
of all hoop subreducts of members of V, is a variety of basic hoops.

Proof. If A is a basic hoop and B is a BL-algebra, let us write A ≤h B
to mean that A is isomorphic to a hoop subreduct of B. The class of hoop
subreducts of V is clearly closed under subalgebras and direct products.
To show that SSSh(V) is closed under homomorphisms, let A ∈ SSSh(V) and let
α ∈ Con(A). Then 1/α = F is a hoop filter and hence it has the detachment
property (i.e., if a, a → b ∈ F then b ∈ F ). Let B be a BL-algebra such
that A ≤h B, let G be the filter of B generated by F and let θG be the
congruence associated to G in B. Then (u, v) ∈ θG if and only if there are
a1, . . . , an ∈ F such that

a1 → (a2 → . . . → (an → (u → v)) . . . ) = 1
a1 → (a2 → . . . → (an → (v → u)) . . . ) = 1

If u, v ∈ A, then u → v, v → u ∈ F by the detachment property, hence
(u, v) ∈ α. Therefore α = θG ∩ A × A and hence A/α ≤h B/θG.

Corollary 1.11. [24] The variety of BL-algebras consists entirely of sub-
direct products of totally ordered BL-algebras. Any subdirectly irreducible
BL-algebra is totally ordered. A BL-algebra is finitely subdirectly irreducible
if and only if it is totally ordered, hence any finite totally ordered BL-algebra
is subdirectly irreducible.

Corollary 1.12. A finite BL-algebra A is subdirectly irreducible if and only
if there are k, n1, . . . , nk ∈ N such that

A ∼= Wan1 ⊕ Wan2 ⊕ · · · ⊕Wank
.

2. Generation by finite algebras

In this section we shall show that both BH and BL are generated as qua-
sivarieties by their finite algebras. As a by-product we will obtain a new
proof and a slight improvement of the completeness result [14] mentioned
in the introduction. The results obtained in this section are a refinement
for the varieties BH and BL of similar results obtained for a large class of
varieties of hoops—see [6, section 3]. An algebra A in a class K has the
finite embeddability property (FEP) with respect to K if for any finite partial
subalgebra A′ of A there exists a finite algebra B ∈ K such that A′ is em-
beddable in B. A class K has the FEP if each of its members has the FEP
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with respect to K. It is well known that if a variety V has the FEP, then
V = HHHSSSPPP (Vfin), where Vfin is the class of all finite members of V (see [18,
Theorem 4]). This argument was extended to show that, if V has the FEP,
then V = SSSPPPPPP u(Vfin), i.e., V is generated, as a quasivariety, by its finite
members (see [6]).

In [6, Lemma 3.7] the authors proved that if the class of subdirectly
irreducible members of V has the FEP, so does V. Then they established
that both the variety of hoops and the variety of Wajsberg hoops (hence
Wajsberg algebras) have the FEP, hence WH = SSSPPPPPP u(Cn : n ∈ N) and
WA = SSSPPPPPP u(Wan : n ∈ N). In particular they showed that the class of
totally ordered Wajsberg hoops (algebras) has the FEP (see [6, proof of The-
orem 3.9]). This fact is crucial to the following:

Theorem 2.1. The class of totally ordered basic hoops has the FEP.

Proof. Let C be a totally ordered basic hoop and let C′ be a finite partial
subhoop of C. Let C ′ = {c1, . . . , cn}, where c1 > c2 > · · · > cn. The proof is
by induction on n. If n = 1, then trivially C ′ embeds into the trivial hoop.
If n > 1, then the finite set {ci → cj : 1 ≤ i < j ≤ n} has a largest element,
say ci0 → cj0 . We claim that any maximal congruence ϕ separating ci0 and
cj0 also separates any pair (ci, cj) with i < j. Suppose that (ci, cj) ∈ ϕ; then
(ci → cj , 1) ∈ ϕ and, since F = 1/ϕ is a filter and ci → cj ≤ ci0 → cj0 we get
(ci0 , cj0) ∈ ϕ, a contradiction. Therefore ϕ separates any pair (ci, cj) with
i < j and C′ embeds into C/ϕ, which is a subdirectly irreducible, totally
ordered hoop. By [6, Theorem 2.9] C/ϕ = D ⊕ T, where D and T are
totally ordered subhoops of C/ϕ and T is a Wajsberg hoop. Let ci denote
ci/ϕ; by definition of ϕ, any nontrivial congruence of C/ϕ identifies ci0 and
cj0 , hence if C

′ = {c1, . . . , cn}, then C
′ ∩ D has fewer elements than C ′.

Applying the induction hypothesis, there exists a finite totally ordered hoop
D1 such that C′∩D embeds into D1. On the other hand, C′∩T is a totally
ordered partial Wajsberg hoop, hence by the result in [6] quoted above, it
can be embedded into a finite totally ordered Wajsberg hoop T1. Hence C′

embeds into D1 ⊕T1 and since it is isomorphic as a partial hoop to C′, the
result follows.

Since it is clear that the ordinal sum of a totally ordered BL-algebra and
a totally ordered Wajsberg hoop is a totally ordered BL-algebra, the same
proof goes through for totally ordered BL-algebras. Thus:

Corollary 2.2. The class of totally ordered BL-algebras has the FEP.
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Combining the results above with the description of finite subdirectly
irreducible basic hoops and BL-algebras in Corollary 1.9 and Corollary 1.12
we get:

Corollary 2.3. The varieties BH and BL are generated as quasivarieties
by their finite members. In fact

BH = SSSPPPPPP u(Cn1 ⊕ · · · ⊕ Cnk
: k, n1, . . . , nk ∈ N)

BL = SSSPPPPPP u(Wan1 ⊕ · · · ⊕Wank
: k, n1, . . . , nk ∈ N)

A well-known result on logical systems due to Harrop [26], applied to
quasivarieties [5, Lemma 3.13] and combined with FEP yields the following:

Corollary 2.4. The quasi-equational theories of BH and BL are decidable.

Since the variety of BL-algebras is the equivalent algebraic semantics of
basic logic, the quasi-equational theory of BL is (equivalent to) propositional
basic logic, which is therefore decidable. It follows that the consequence
relation in basic logic is decidable. In [24] the author conjectured that basic
logic is “the logic of continuous t-norms”; in algebraic terms this is equivalent
to showing that BL is generated as a variety by all algebras of the form
〈[0, 1], ∗,→, 1, 0〉, where ∗ is a continuous t-norm on [0, 1] and → is the
associated residual. This conjecture has been verified in [14]. Using a simple
algebraic argument, we extend the result by showing that BL is generated
as a quasivariety by all algebras of the form 〈[0, 1], ∗,→, 1, 0〉.
Theorem 2.5. The variety of basic hoops is generated as a quasivariety by
all algebras of the form 〈[0, 1], ∗,→, 1〉, where ∗ is a continuous t-norm on
[0, 1] and → is its residual.

Proof. By Corollary 2.3 it is sufficient to show that any finite subdirectly
irreducible basic hoop A can be embedded in 〈[0, 1], ∗,→, 1〉 for some con-
tinuous t-norm ∗ on [0, 1]. By Corollary 1.9 there are k, n1, . . . , nk ∈ N with
A ∼= Cn1 ⊕ · · · ⊕ Cnk

. Moreover, by Proposition 1.1.2, each Cnk
is embed-

dable in 〈[0, 1], ∗L,→L, 1〉; let Bi be the copy of 〈[0, 1], ∗L,→L, 1〉 in which
Cni is embedded. By Proposition 1.1.1, Bi is isomorphic to the algebra
Di = 〈[ai, bi], ·,→, bi〉 where

ai =
i − 1

k
bi =

i

k

and the operations are defined accordingly. It follows that Cn1 ⊕ · · · ⊕ Cnk

is embeddable in D = D1 ⊕ · · · ⊕ Dk. The universe of D is clearly [0, 1];
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moreover, the binary operation ∗ defined on D, the ordinal sum of Di, i ≤ k,
is clearly a t-norm. Continuity of ∗ is easy to verify: given a, b ∈ [0, 1], either
a, b ∈ Di for some i �= k; or a ∈ Di, b ∈ Dj for some i, j. In the first case,
a ∗ b = a ·i b in Di and ·i is continuous. In the latter case, we may assume,
with loss of generality, that i > j and b �= 1; hence a ∗ b = b, which clearly
preserves continuity.

Remark 2.6. By Theorem 2.5, the (finite) consequence relation defined by
basic logic is complete with respect to continuous t-norms and their residuals,
i.e. for every finite set Γ of basic logic formulas and for every basic logic
formula φ, one has Γ � φ if and only if for every BL-algebra B = 〈[0, 1], ∗,→,
∨,∧, 0, 1〉, where ∗ is a continuous t-norm and → is its residual, and for every
evaluation e in B such that e(ψ) = 1 for all ψ ∈ Γ, one has e(φ) = 1. Hence,
it follows from Corollary 2.4 that the consequence relation defined by basic
logic is decidable.

3. The implicative reducts: basic BCK-algebras

In this section we shall characterize the class of implicative subreducts of
basic hoops. By Proposition 1.2, the class of such subreducts is a variety of
BCK-algebras, contained in HBCK.

Definition 3.1. A BCK-algebra is called a basic BCK-algebra if it is a
{→, 1}-subreduct of a basic hoop. We denote the variety of basic BCK-
algebras by BBCK.

Note that every subdirectly irreducible basic BCK-algebra satisfies (B)
and (H) and, hence, is a HBCK-algebra satisfying (B). By the proof of The-
orem 1.6, (ii) ⇒ (iii), every subdirectly irreducible HBCK-algebra satisfying
(B) and therefore every subdirectly irreducible basic BCK-algebra, is totally
ordered.

Remark 3.2. It is known that BCK-algebras that are subdirect products of
totally ordered BCK-algebras coincide with BCK-algebras satisfying (B) [38,
proof of Theorem 3]. However, the quasivariety of BCK-algebras satisfying
(B) turns out to be strictly larger than BBCK. Consider the algebra A =
〈[0, 1],→, 1〉, where for a, b ∈ A

a → b =

{
1 if a ≤ b

max{1 − a, b} otherwise
.
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Note that → is the residual of the nilpotent minimum t-norm [21], defined
by

a · b =

{
min{a, b} if a ≥ 1 − b

0 otherwise
.

Thus, A is the implicative reduct of a commutative integral residuated lat-
tice, hence a BCK-algebra. However A does not satisfy (H). This can be
seen by taking x = 2/3, y = 1/3 and z = 0. It follows that A is a (totally
ordered) BCK-algebra that is not a subreduct of any hoop, hence does not
belong to BBCK.

Using [32, Theorem 3.13] and [5, Theorem 4.3] we can characterize the
finite subdirectly irreducible HBCK-algebras satisfying (B). Here the build-
ing blocks are the implicative reducts of the hoops Cn, which will be denoted
henceforth by Ln.

Proposition 3.3. A finite HBCK-algebra A, satisfying (B), is subdirectly
irreducible if and only if there are k, n1, . . . , nk ∈ N with

A ∼= Ln1 ⊕ · · · ⊕ Lnk
.

Our next goal is to show that the variety BBCK is generated by its finite
algebras. Since every subdirectly irreducible basic BCK-algebra is a totally
ordered HBCK-algebra, it suffices to show that the class of totally ordered
HBCK-algebras has the FEP; using [5, Theorem 4.3], the proof of Theorem
2.1 will go through for totally ordered HBCK-algebras. It is only necessary
to show that the class of totally ordered �Lukasiewicz BCK-algebras has the
FEP, so we proceed to prove it.

Lemma 3.4. The class of totally ordered �Lukasiewicz BCK-algebras has the
FEP.

Proof. Let L be a totally ordered �Lukasiewicz BCK-algebra and let P be
a partial subalgebra of L. By [5, Lemma 4.1], it is known that L may be
embedded in a totally ordered Wajsberg hoop A; hence P may be regarded
as a partial subalgebra of A. It follows that there is a finite totally ordered
Wajsberg algebra A′ in which P is embeddable. But P is also embeddable
in the {→, 1}-reduct L′ of A′ and L′ is a totally ordered �Lukasiewicz BCK-
algebra.

Proposition 3.5. The class of totally ordered HBCK-algebras has the FEP.
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Theorem 3.6. The variety BBCK is generated as a quasivariety by its finite
members. In particular

BBCK = SSSPPPPPP u(Ln1 ⊕ · · · ⊕ Lnk
: k, n1, . . . , nk ∈ N)

Finally, we obtain an equational description of BBCK.

Theorem 3.7. The variety BBCK is the class of BCK-algebras which satisfy
the identities (B) and (H).

Proof. As observed before, every basic BCK-algebra satisfies (B) and (H).
Conversely, observe that the class of BCK-algebras which satisfy (B) and

(H) is a variety, since it is the subvariety of HBCK-algebras defined by (B).
Now, every algebra in a variety is a subalgebra of an ultraproduct of its
finitely generated subalgebras, hence it suffices to show that every finitely
generated BCK-algebra satisfying (B) and (H) is a {→, 1}-subreduct of a
basic hoop.

Using [5, Theorem 4.3] and the fact that subdirectly irreducible BCK-
algebras satisfying (B) and (H) are totally ordered HBCK-algebras, argue
by induction on the number of generators, as in [5, Theorem 4.4] (or [20,
Theorem 5.1]) to prove that every totally ordered finitely generated HBCK-
algebra is a {→, 1}-subreduct of a totally ordered (hence basic) hoop.

4. G-algebras and their reducts

In [24] a G-algebra is defined to be a BL-algebra satisfying the equation
x2 = x; the variety GA of G-algebras is proposed as an equivalent algebraic
semantics for Gödel logic, i.e. the propositional calculus naturally associated
with the Gödel t-norm. It is clear that the variety of hoop-subreducts of G-
algebras is the variety GH of basic hoops that satisfy x2 = x, i.e. idempotent
basic hoops. It is almost immediate to see that in an idempotent hoop the
meet and the product coincide: an idempotent hoop is always a subreduct
of a Heyting algebra [29] and it is better known as a Brouwerian semilattice
[31], [8] and [7]. It follows that the variety GH coincides with the variety of
Brouwerian semilattices that are subdirect products of chains.

The algebras in GH are term-equivalent to relative Stone algebras [27]
or semi-Boolean lattices [37]; their properties have been thoroughly inves-
tigated. In particular, it is well-known that this variety and the variety of
Heyting algebras generated by chains are locally finite and so the quasi-
equational theories of GH and GA are decidable. Thus, Gödel logic is decid-
able, a fact already known, since Gödel logic is coNP-complete [24].
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We consider now the variety GBCK consisting of implicative subreducts
of algebras in GH. Since algebras in GH are Brouwerian semilattices, the
variety GBCK consists entirely of Hilbert algebras. It is well-known that the
variety of Hilbert algebras is the variety of BCK-algebras satisfying

x → (x → y) = x → y (G)

hence the algebras in GBCK are basic BCK-algebras satisfying (G). We shall
see that the converse also holds.

Theorem 4.1. GBCK is the variety of basic BCK-algebras satisfying (G).

Proof. It is enough to show that every subdirectly irreducible basic BCK-
algebra satisfying (G) is a reduct of basic hoop. If A is a subdirectly irre-
ducible basic BCK-algebra satisfying (G) then it is totally ordered and, by
(G), a Hilbert algebra. But a linearly ordered Hilbert algebra is the reduct
of a (linearly ordered) Brouwerian semilattice, hence of a basic hoop.

5. Product algebras and their reducts

Product algebras were introduced in [24] as an algebraic semantics of the
logical system naturally associated with the product t-norm. In any BL-
algebra it is possible to define a unary operation of negation (¬) by ¬x =
x → 0; a product algebra is a BL-algebra satisfying the equations

x ∧ ¬x = 0 (PA1)
¬¬z → ((xz → yz) → (x → y)) = 1. (PA2)

The variety PA of product algebras seems to be the most interesting object
associated with t-norms and has attracted a lot of attention recently. In
particular, in [1] it is shown that product algebras are term equivalent to a
class of bounded hoops and that PA is the equivalent algebraic semantics of
product logic. In [15] it is shown that PA is generated by any infinite totally
ordered product algebra and the finitely generated free product algebras are
characterized. Moreover it is observed that for any product algebra A the
set A \ {0} is a filter, hence the only simple product algebra is the two
element bounded hoop that is term-equivalent to the two element Boolean
algebra. Since any product algebra has the two element Boolean algebra
as a subalgebra, there are exactly three varieties of product algebras: the
trivial variety, the variety of Boolean algebras and the entire variety. Recall
the following lemma, necessary in the sequel.
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Lemma 5.1. [24] Let A be a totally ordered product algebra and let a, b, c ∈ A.
Then:

1. if a �= 0, then ¬a = 0.;

2. if a �= 0, then ba = ca implies b = c;

3. if a �= 0, then ba < ca implies b < c.

A hoop A is cancellative if its underlying monoid is cancellative. This
is equivalent to saying that for all a, b ∈ A a → ba = b. Cancellative hoops
form a variety C of Wajsberg hoops [6]; hence they satisfy (T).

Proposition 5.2. A is a subdirectly irreducible product algebra if and only
if either A = 2 or A = 2 ⊕ C, where 2 is the two element Boolean algebra
and C is a subdirectly irreducible cancellative hoop.

Proof. If A is subdirectly irreducible and different from 2, then it follows
from Lemma 5.1.2 and [6, Theorem 2.9] that A = 2⊕C for some subdirectly
irreducible hoop C. Hence, by Lemma 5.1.2, C is a totally ordered hoop and
its underlying monoid is cancellative. Conversely, let C be any cancellative
subdirectly irreducible hoop. It is easy to check that 2⊕C is a subdirectly
irreducible product algebra.

Now, we want to describe the variety PH of product hoops, i.e. the variety
of hoop subreducts of product algebras. This is not nearly as straightforward
as the previous cases, since the constant 0, disguised as negation, appears in
the defining axioms. Hence we adopt indirect reasoning.

It is well-known [4] that the lattice of subvarieties of hoops has exactly
two atoms: the variety C of cancellative hoops and the variety G of generalized
Boolean algebras, i.e. the variety generated by the two element hoop 2. Both
varieties consist of basic hoops, so they are the only atoms in the lattice of
subvarieties of BH. The interesting fact is that the hoops belonging to these
varieties are both Wajsberg hoops and product hoops; this follows from well-
known facts about Wajsberg hoops and Proposition 5.2. Hence the varieties
WH and PH both lie above the join of G and C. However it is clear that no
finite Wajsberg chain other than 2 is a product hoop.

A hoop is semi-cancellative if it satisfies the following first order formula

∀xy(∃ z z < xy) =⇒ x = y → xy;

a hoop is quasi-cancellative if it satisfies

∀xyz (∃w < z) =⇒ (xz → yz) → (x → y) = 1.
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Any cancellative hoop is quasi-cancellative and any quasi-cancellative hoop
is semi-cancellative; moreover an unbounded quasi-cancellative hoop is can-
cellative and if A is a bounded (by 0) quasi-cancellative hoop, then A \ {0}
is cancellative.

Proposition 5.3. Any totally ordered Wajsberg hoop is semi-cancellative.
No finite Wajsberg chain with more than two elements is quasi-cancellative.

Proof. The second claim is easily proved by inspection, using the above
description of finite Wajsberg chains. Let A be a totally ordered Wajsberg
hoop and a, b, c ∈ A with c < ab. Then ab �≤ c and by residuation a �≤ b → c.
Since A is totally ordered, b → c ≤ a. By a repeated use of equation (T) we
get

a = a ∨ (b → c)
= (a → (b → c)) → (b → c)
= (ab → c) → (b → c)
= b → ((ab → c) → c)
= b → (ab ∨ c)
= b → ab.

Corollary 5.4. Let A be a nontrivial totally ordered hoop. Then A is
cancellative if and only if it is an unbounded Wajsberg hoop.

Proof. If A is cancellative, then no element different from 1 can be idem-
potent. However in a bounded hoop the lowermost element is always idem-
potent. It follows that a cancellative hoop must be unbounded.

Conversely, let A be an unbounded totally ordered Wajsberg hoop. Then
for all a, b ∈ A there is a c ∈ A with c < ab. Thus, by Proposition 5.3,
a = b → ab and A is cancellative.

We are now ready to characterize the variety of product hoops. We start
with a lemma.

Lemma 5.5. Let A be a subdirectly irreducible basic hoop satisfying the equa-
tion

(x → y) → y ≤ ((y → z) → ((y → x) → x)) → ((y → x) → x). (PB)

Then either A is a Wajsberg hoop or A = 2⊕B for some Wajsberg hoop B.

Proof. Let A be a subdirectly irreducible basic hoop satisfying (PB). Then
A = F⊕B, where B is a subdirectly irreducible Wajsberg hoop. The thesis



92 P. Aglianò, I. M.A. Ferreirim and F. Montagna

will be proved if we show that either F is trivial or it is equal to 2. Suppose
that b ∈ F , b < 1 and b is not the minimum element of A. Then there are
a, c ∈ A with c < b < a < 1 and a ∈ B. However, A is a basic hoop, in
which b = a → b = a(a → b) = ab. Since b → c ∈ F \ {1} and a ∈ B we
have b → c < a.

Hence

a = 1 → a = ((b → c) → a) → a since b → c ≤ a
= ((b → c) → ((b → a) → a)) → ((b → a) → a) since b < a
≥ (a → b) → b = b → b = 1 by (PB)

and, since a → b = b, that is a contradiction. This concludes the proof.

Theorem 5.6.2 The variety PH consists exactly of basic hoops satisfying

(y → z) ∨ ((y → xy) → x) = 1. (PH)

Proof. We prove first that (PH) holds in all product hoops. It suffices to
verify it in any totally ordered product hoop H. Now, if y is the minimum
of H then y → z = 1; otherwise (y → xy) → x = 1. Thus (PH) holds.

Conversely, we show that if H is a subdirectly irreducible (hence totally
ordered) basic hoop satisfying (PH), then H is a product hoop. Assume
that y is not the minimum of H. Take z < y. Then y → z < 1, therefore
(y → xy) → x = 1 for every x. Thus if H has no minimum, then it is
a cancellative hoop, hence a product hoop. If H has a minimum 0, then
by the above argument, H \ {0} is the domain of a cancellative hoop C,
and H = 2 ⊕ C is (the hoop reduct of) a product algebra, hence a product
hoop.

The description of finite subdirectly irreducible basic hoops in Theorem
1.9 is hardly useful in case of product hoops, since the only finite subdi-
rectly irreducible product hoop is 2. However subdirectly irreducible prod-
uct hoops are easily described.

Corollary 5.6. An algebra in PH is subdirectly irreducible if and only
if it is the two element generalized Boolean algebra 2 or is a subdirectly
irreducible cancellative hoop or else is of the form 2 ⊕ C, where C is a
subdirectly irreducible cancellative hoop.

Moreover subdirectly irreducible product hoops turn out to coincide with
subdirectly irreducible quasi-cancellative hoops.

2This axiom basis for PH was suggested by P. Jipsen.
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Proposition 5.7. A subdirectly irreducible hoop is quasi-cancellative if and
only if it belongs to PH.

Proof. It is easily seen that any subdirectly irreducible hoop in PH is quasi-
cancellative. Let now A be a quasi-cancellative subdirectly irreducible hoop.
Then A = B ⊕ C, where C is a subdirectly irreducible Wajsberg hoop. If
A is unbounded, then it is a cancellative hoop, therefore is in PH, being a
hoop subreduct of the product algebra 2 ⊕ A. If A is bounded by 0, then
0 ∈ B. If there is a b ∈ B with 0 < b < 1, then for c ∈ C \ {1} we have
cb = b = 1b. Since b > 0 and A is quasi-cancellative we must have 1 → c = 1,
i.e. c = 1, a contradiction. Hence B ∼= 2 and A ∼= 2⊕C. Moreover, since A
is quasi-cancellative and c > 0 for all c ∈ C, then C must be cancellative.

We now turn to implicative subreducts of product hoops (algebras). Re-
call that the variety LBCK of �Lukasiewicz BCK-algebras coincides with
implicative subreducts of Wajsberg hoops. Since the variety C of cancella-
tive hoops is contained in the variety WH of Wajsberg hoops it is clear that
SSS→(C) ⊆ LBCK. The fact that the converse also holds will be crucial in the
sequel.

Let G be an abelian �-group; the positive cone of G is the hoop P(G) =
〈{x ∈ G : x ≥ 0}, ·,→, 1P(G)〉 where

xy = x + y

x → y = 0 ∨ (y − x)
1P(G) = 0G.

It is easily seen that P(G) is cancellative. The converse is true as well [6,
Theorem 1.17]: if A is a cancellative hoop then there is an abelian �-group
G such that A ∼= P(G).

Lemma 5.8. Any �Lukasiewicz BCK-algebra is isomorphic to a subreduct of
a cancellative hoop; hence SSS→(C) = LBCK.

Proof. Let A ∈ LBCK. We may assume that A is subdirectly irreducible,
hence totally ordered. Therefore there exists a bounded Wajsberg hoop
B of which A is a subreduct [20, Theorem 3.3]. Being bounded, B is
(equivalent to) a Wajsberg algebra. By [36] there is an abelian �-group
G = 〈G,+,−,∨,∧, 0G〉 and u ∈ G such that B is isomorphic to the Wajs-
berg algebra

〈{x ∈ G : 0 ≤ x ≤ u},→, ·, 0B, 1B〉
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where:
xy = u ∧ (x + y)
x → y = 0 ∨ (y − x)
1A = 0G

0A = u.

Now it is easily checked that A is an implicative subreduct of the cancellative
hoop P(G).

An implicative subreduct of a product hoop will be called a product
BCK-algebra; we denote by PBCK the variety of product BCK-algebras.

Theorem 5.9. The variety PBCK consists exactly of basic BCK-algebras
satisfying the equation (PB).

Proof. Since (PB) holds in any subdirectly irreducible product algebra and
involves only implication, a fortiori it holds in any product BCK-algebra.

Conversely suppose that A is subdirectly irreducible basic BCK-algebra
satisfying (PB). As in Lemma 5.5 we can prove that either A is a �Lukasiewicz
BCK-algebra or else A = 2⊕B, where B is a �Lukasiewicz BCK-algebra. In
the first case, by Lemma 5.8, A is isomorphic to a subreduct of a cancellative
hoop C. Then 2⊕C is a (subdirectly irreducible) product hoop (by Corollary
5.6) of which A is a subreduct. In the other case let C be the cancellative
hoop of which B is a subreduct. Then A = 2 ⊕ B is a subreduct of 2 ⊕ C
that is again a product hoop.

Corollary 5.10. An algebra in PBCK is subdirectly irreducible if and only
if it is 2, or it is a subdirectly irreducible �Lukasiewicz BCK-algebra or it is
equal to 2⊕C for some subdirectly irreducible �Lukasiewicz BCK-algebra C.

6. The lattice of subvarieties of product hoops

The link between abelian �-groups, cancellative hoops and product algebras
has been explored in [6] and [15]. A similar result holds for product hoops.
It is well-known [4] that the variety C of cancellative hoops is generated
as a quasivariety by the cancellative hoop Cω = 〈Cω,→, ·, 1〉 (i.e. C =
SSSPPPPPP u(Cω)), where Cω = {an : n ∈ ω} is the free monogenerated monoid
and

anam = an+m an → am = amax(m−n,0).

It is also clear that Cω
∼= P(Z). Recall that if A is a cancellative hoop,

then 2⊕A is a product algebra. So there is an abelian �-group G such that
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A ∼= P(G). Since �-groups are torsion-free, then Z (regarded as a �-group)
is embeddable in G and since P(Z) ∼= Cω we have:

Lemma 6.1. The product algebra 2⊕Cω is embeddable in any product algebra
of the form 2 ⊕ A, where A is a cancellative hoop.

Theorem 6.2. The variety PH is generated as a quasivariety by 2 ⊕ Cω,
i.e. PH = SSSPPPPPP u(2 ⊕ Cω).

Proof. First we show that any subdirectly irreducible algebra A in PH

belongs to SSSPPPPPP u(2 ⊕ Cω). This is obvious if A = 2; if A is a cancellative
hoop, then A ∈ SSSPPPPPP u(Cω) ⊆ SSSPPPPPP u(2⊕Cω). Let now A = 2⊕C, where C
is cancellative, and let CI

ω/U the ultrapower in which C embeds. It is easily
seen that A embeds into (2 ⊕ Cω)I/U . By Corollary 5.6 there is nothing
else to check.

Since any algebra in PH is a subdirect product of subdirectly irreducible
product hoops, from the above we get that PH ⊆ SSSPPPSSSPPPPPP u(2 ⊕ Cω) ⊆
SSSPPPPPP u(2 ⊕ Cω). This is enough to prove the result.

We can now describe completely the lattice of subvarieties of product
hoops.

Theorem 6.3. The lattice of subvarieties of product hoops (depicted in Fig-
ure 1) consists exactly of five subvarieties: the trivial variety T, the variety
PH, the variety C of cancellative hoops, the variety G of generalized Boolean
algebras and the variety G ∨ C.

Proof. We know that G = VVV (2), C = VVV (Cω) and PH = VVV (2 ⊕ Cω).
Moreover G∨C < PH, since it consists entirely of Wajsberg hoops. Hence, by
Corollary 5.6, it is enough to show that PH is generated by any subdirectly
irreducible product algebra 2 ⊕ A, where A is a subdirectly irreducible
cancellative hoop. But by Lemma 6.1 and Theorem 6.2

PH = VVV (2 ⊕ Cω) ⊆ VVV (2 ⊕ A) ⊆ PH,

hence equality holds.

It is easy to check that the variety G and C are axiomatized (relative to
PH) by x → x2 ≈ 1 and x → x2 ≈ x respectively. Moreover:

Proposition 6.4. The variety G ∨ C is axiomatized, relative to PH by the
equation (T).
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Figure 1. The lattice of subvarieties of PH

Proof. It is clear that the only subdirectly irreducible product hoops in
G ∨ C are 2 and the subdirectly irreducible cancellative hoops. Since they
are all Wajsberg hoops, equation (T) holds in them.

Conversely suppose that V is a variety of product hoops satisfying (T)
and suppose, by way of contradiction, that 2 ⊕ A ∈ V for some subdirectly
irreducible cancellative hoop A. If a ∈ A with a < 1 from (T) we obtain

1 = (a → 0) → 0 = (0 → a) → a = 1 → a = a

a contradiction. It follows that no subdirectly irreducible product hoop of
the form 2 ⊕ A belongs to V and hence V = G ∨ C.
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[39] Pa�lasiński, M., ‘Ideals in BCK-algebras which are lower semilattices’, Math. Japon.

26 (1981), 245–250.

[40] Raftery, J.G., On ideals, congruences and extensions of BCK-algebras, Ph.D. the-

sis, University of Natal, Durban, 1987.

[41] Raftery, J.G., and T. Sturm, ‘On ideal and congruence lattices of BCK-

semilattices’, Math. Japon. 32 (1987), 465–474.
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