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Abstract. Algebraic work [9] shows that the deep theory of possible world semantics is

available in the more general setting of substructural logics, at least in an algebraic guise.

The question is whether it is also available in a relational form. This article seeks to set the

stage for answering this question. Guided by the algebraic theory, but purely relationally

we introduce a new type of frames. These structures generalize Kripke structures but are

two-sorted, containing both worlds and co-worlds. These latter points may be viewed as

modelling irreducible increases in information where worlds model irreducible decreases in

information. Based on these structures, a purely model theoretic and uniform account of

completeness for the implication-fusion fragment of various substructural logics is given.

Completeness is obtained via a generalization of the standard canonical model construction

in combination with correspondence results.

1. Introduction

A plethora of models of computation and information are based on various
types of non-classical propositional logics including modal logics and sub-
structural logics. For modal logics, possible world semantics, or relational
semantics, play an absolutely fundamental role in making these logics useful
by providing a means of obtaining theoretical results as well as by providing
computational viability and intuitive links to transition systems. Conse-
quently, relational semantics for modal logics by now have an extensive,
deep, and powerful theory. The immense success of relational semantics in
the setting of modal logics has prompted a sprawling literature that attempts
to apply the methods in the setting of substructural logics as well, but the
level of unity and power of these methods in the setting of substructural
logic is not the same.

Recent developments in the algebraic theory of canonical extensions have
lead to results extending many aspects of the deep theory of Kripke seman-
tics for modal logics, formulated algebraically, to a much broader setting
including that of most substructural logics, e.g., see [11, 12, 9]. What is
more is that the methods needed in this vastly generalized setting are easily
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seen to parallel the ones needed in the classical setting, and they are not
more complicated. A case in point is the work in [9] which provides re-
lational semantics for a hierarchy of substructural logics in a uniform and
modular way. The methodology is completely parallel to the algebraic route
to similar results in the classical modal setting.

The purpose of the current paper is to try to understand the semantics
developed in [9] and the proof methods used there from a purely model the-
oretic perspective. Thus we treat the same semantics and the same results
as in [9], but our entire approach is model theoretic. The result is rela-
tional semantics for a hierarchy of substructural logics obtained on the basis
of a canonical model construction for the basic logic (i.e., non-associative
Lambek calculus), augmented by a modular addition of first-order proper-
ties corresponding to various additional axioms via a Sahlqvist-like calculus.
The modularity and uniformity of this approach reach beyond what has been
achieved by other completeness proofs, see, e.g., [8].

One main feature of the models obtained is that they are two-sorted.
Algebraically, this stems from the fact that the join-irredicibles (i.e., atoms
in the Boolean case) are not enough to reconstruct the lattice when it is not
distributive. The join-irreducibles, in terms of logic, model, in the Boolean
case, maximal consistent theories, that is, maximal consistent pieces of in-
formation. The order-dual points that are part of these structures may be
viewed as modelling irreducible jumps in information. The two-sorted ap-
proach is not new and has already been explored in the setting of relational
semantics in [4]. There as well as here the structures used are essentially
polarities in the sense of Birkhoff and the potential interpretants for logical
formulas over these structures are Galois-closed subsets of these polarities.
Not surprisingly, the strength of this approach over a one-sorted approach
is that the toggle between the two sorts allows us to get around problems
created by the lack of distributivity of the lattice operations. The two-sided
approach to relational semantics is not restricted to the models themselves
but is also carried over to the notion of interpretations. Thus an interpreta-
tion is encoded by two relations: a satisfaction relation, °, which specifies
which formulas hold at which worlds, and a ’part of’ relation, ≻, which spec-
ifies which co-worlds, or irreducible information jumps, are part of which
formulas. The toggle between these two relations allows us to reproduce
standard Sahlqvist-type correspondence arguments in a uniform way.

One problem with general polarities is that the lattice of its Galois-
closed sets need not be discrete in any sense, e.g., in the Boolean setting,
all complete Boolean algebras occur as the Galois-closed subsets of some
polarity – not just the atomic ones. However, this problem is circumvented
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in our approach. The point is that, as dictated by the algebraic theory,
we restrict our attention to polarities in which the elements of both sorts
satisfy an irreducibility condition. This restriction is a very central and
important feature of our approach and is what allows us to reproduce a
kind of Sahlqvist correspondence without much complication. This feature
separates our semantics from the ones in [4].

The paper is organized as follows: In Section 2 we introduce our two-
sorted generalization of sets of worlds. We show how they generalize the sets
of worlds used in the Boolean and general distributive settings and we show
how they fit in with the special posets used in [9]. The fact that our two-
sorted structures may actually be thought of as single posets with special
properties is a great help for the intuition when working with these struc-
tures. In Section 3 we discuss morphisms of these structures and identify
subobjects. We show that the morphisms as defined correspond exactly to
the complete homomorphisms of the corresponding algebras and that they
restrict correctly in the Boolean and distributive settings. In Section 4 we de-
scribe the frames needed for modelling the basic connectives of substructural
logics. We then give the canonical model construction and give a detailed
proof of the completeness of the basic logic.

Much prior work contains parts of the material presented here. The
properties and results in Section 2 are essentially all part of the theory of
polarities. A general reference where much of this work can be found is
[10]. However, the algebraic perspective offered by [9] and from whence we
arrived at these results has lead us to stress the order theoretic nature of the
polarities, and we do believe that this makes arguments more transparent
and intuitive. Some very interesting earlier work which seems to align very
closely with our point of view is that of Crapo, see [7]. It treats only the
finite case but has identified all the essential features we work with here.
It also includes several ideas not pursued here which seem very interesting.
The work in Section 4 on relational semantics is most closely related to the
work of Bimbo and Dunn in [4].

2. Generalizing sets of worlds

Underlying a Kripke structure is a non-empty set W of worlds. A potential
interpretant over a Kripke frame is an arbitrary subset of worlds, and the
intuition is that these are the worlds at which the proposition being inter-
preted holds. There is already precedence for some logics requiring a richer
notion of underlying structure than just a set. In the frames introduced by
Jansana and Celani for positive modal logic, [6], the set of possible worlds
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is given an order and interpretants are required to be upward-closed subsets
of worlds. Likewise in [13] the set underlying a frame is required to be or-
dered, but there interpretants are taken among downward closed sets. This
difference is of course not essential.

Here, as in [4], we will take a particular kind of two-sorted structures as
underlying structures for our frames. The idea is that interpretants are not
only described ‘from below’ but also ‘from above’. In order to understand
this better, notice first that these notions of up and down easily can be
reversed. In a Kripke structure worlds describe interpretants ‘from below’
in the sense that single worlds generally are smaller units and interpretants
consist of sets with (typically) many worlds in them. On the other hand, in
terms of information content, worlds are maximal: their theories are (in the
Boolean case) the maximal consistent ones. One could, in this upside-down
world of information, also ask to describe formulas from below. The units
of such a description one may then call ‘information quanta’ or ‘co-worlds’.
These may be thought of, in the Boolean case, as the smallest units of infor-
mation, that is, the pieces of information just below True (whereas worlds
are maximal pieces of information, that is, the ones just above False). In the
non-Boolean case, just like worlds need not be just above False, ‘informa-
tion quanta’ need not be just below True but are rather irreducible jumps
in information.

We begin with a general definition that goes back at least to Birkhoff
[5] and that is at the heart of various approaches to logic including Formal
Concept Analysis (FCA), Chu-spaces, and classifications [10, 17, 2].

Definition 2.1. A polarity is a triple P = (X, Y, R) where X and Y are
non-empty sets and R ⊆ X × Y is a binary relation from X to Y .

We will call the elements of X worlds, the elements of Y information
quanta, and when xRy is the case, we say that y is a part of x.

One central idea of our models is that interpretants should be two-sorted,
consisting both of a set of worlds and a set of information quanta, but that
either completely determines the interpretant. Thus if a proposition p has
interpretant consisting of the set A of worlds and the set B of information
quanta, we will say that p holds exactly at those worlds that are in A and
that p consists exactly of the information quanta that are in B. With these
ideas in mind we see that the following are natural requirements: (1) If x is
in A, and y is in B then y must be part of x as the information content of
x includes that of p which includes that of y; (2) If x is a world containing
all the information quanta that p consists of then x should be in A since
p is completely determined by its information content; (3) If y is an infor-
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mation quantum that is part of each world in A, then, since p should be
completely determined by the set of worlds in which it holds, y better be in
B. These ideas, which are also at the heart of the concept-formation mech-
anism of FCA [10], exactly identify potential interpretants of a structure
P = (X, Y, R) as the Galois stable sets of the Galois connection associated
with P . To fix notation, we define the Galois connection by:

( )R : P(X) → P(Y )

A 7→ {y : ∀x (x ∈ A implies xRy)}

R( ) : P(Y ) → P(X)

B 7→ {x : ∀y (y ∈ B implies xRy)}

and then the complete lattice of Galois stable subsets of X is given by

G(P ) = {A ⊆ X : A = R (AR)}.

As we shall see, choosing polarities as the basic structures and the Galois
stable subsets of such as the potential interpretants ensures that we do indeed
have structures which simultaneously determine our potential interpretants
from above and from below. However, polarities are too general for it to
be reasonable to say that they capture the notion of sets of worlds in this
two sorted setting. To see this, notice that for a set of worlds W , the
corresponding set of potential interpretants is the power set Boolean algebra,
P(W ). Power set algebras are abstractly characterized as the complete and
atomic Boolean algebras. By contrast, for a polarity P , the corresponding set
of potential interpretants is the complete lattice of Galois stable sets G(P ).
These lattices are abstractly characterized simply as complete lattices. That
is, within the Boolean setting they restrict to the class of all complete (and
not necessarily atomic) Boolean algebras. Thus, in order to truly capture the
notion of sets of worlds, we need to make further restrictions on the class of
structures we will consider. The property that is missing is the irreducibility
of worlds, and dually, the irreducibility of the information quanta. Before we
make the necessary definitions, we derive some basic facts about polarities
and their stable sets. Our first task is to restrict to those polarities for which
X and Y are subsets of G(P ) just like W is a subset of P(W ).

Proposition 2.2. Let P = (X, Y, R) be a polarity and let

Ξ : X → G(P ) Υ : Y → G(P )
x 7→R ({x}R) y 7→R {y} = Ry.
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then the following hold:

1. Ξ is one-to-one if and only if ∀x1, x2 ∈ X(x1 6= x2 implies x1R 6= x2R).
2. Υ is one-to-one if and only if ∀y1, y2 ∈ Y (y1 6= y2 implies Ry1 6= Ry2).

Proof. Suppose Ξ is injective and let x1 6= x2. Then

R({x1}
R) = Ξ(x1) 6= Ξ(x2) =R ({x2}

R).

But then

x1R = {x1}
R = (R({x1}

R)R 6= (R({x2}
R))R = {x2}

R = x2R

since ( )R is an anti-automorphism from the stable sets in X to the sta-
ble sets in Y . For the converse, if x1R 6= x2R, then since R( ) is an
anti-automorphism from the stable sets in Y to the stable sets in X and
since x1R = {x1}

R and x2R = {x2}
R are stable sets in Y we conclude

that Ξ(x1) =R ({x1}
R) 6=R ({x2}

R) = Ξ(x2) as desired. Statement 2 is
completely trivial since Υ(y) = Ry for any y ∈ Y .

Definition 2.3. A polarity P = (X, Y, R) is said to be a separating frame,
or S frame, provided

∀x1, x2 ∈ X(x1 6= x2 implies x1R 6= x2R)

and
∀y1, y2 ∈ Y (y1 6= y2 implies Ry1 6= Ry2)

Thus for an S frame F = (X, Y, R) we may ( and we will) think of X
and Y as subsets of G(P ).

Remark 2.4. In Formal Concept Analysis this property of a context (i.e.,
polarity) is called clarified. The property on X alone is in Chu-spaces called
separated (there the dual property is called spatial). Thus in the Chu-space
terminology our separating frames are both separated and dually separated,
or doubly separated.

Definition 2.5. Given an S frame F = (X, Y, R) we let Z(F ) (or simply
Z) denote the partially ordered subset of G(P ) given by Im(Ξ) ∪ Im(Υ).
We write Z = X ∪ Y identifying X and Y with their images under Ξ and
Υ, respectively. Note that X ∩ Y = Im(Ξ)∩ Im(Υ) need not be empty and
that when we talk about S frames we tacitly assume that the intersection of
X and Y corresponds exactly to Im(Ξ) ∩ Im(Υ).
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Proposition 2.6. Let P = (X, Y, R) be a polarity and let x ∈ X and y ∈ Y
then xRy if and only if Ξ(x) ⊆ Υ(y).

Proof. First note that for x ∈ X and y ∈ Y we have xRy if and only if
x ∈ Ry if and only if x ∈ Υy. Also, since Υy is Galois stable and Ξ(x) is
the Galois stable closure of {x} we have x ∈ Υy implies Ξ(x) ⊆ Υy. For the
converse, we always have x ∈ Ξ(x) so Ξ(x) ⊆ Υy implies x ∈ Υy. Thus we
have shown that xRy if and only if x ∈ Υy if and only if Ξ(x) ⊆ Υy.

Proposition 2.7. Let F = (X, Y, R) be an S frame and let z1, z2 ∈ Z then
the following hold:

1. If z1, z2 ∈ X then z1 ≤ z2 if and only if

∀y ∈ Y (z2Ry implies z1Ry);

2. If z1, z2 ∈ Y then z1 ≤ z2 if and only if

∀x ∈ X(xRz1 implies xRz2);

3. If z1 ∈ X and z2 ∈ Y then z1 ≤ z2 if and only if

z1Rz2

4. If z1 ∈ Y and z2 ∈ X then z1 ≤ z2 if and only if

∀x ∈ X∀y ∈ Y (xRz1 and z2Ry implies xRy)

Proof. This is a simple translation of the containment statements for the
corresponding stable sets. We leave out the details.

Remark 2.8. These descriptions of the order on the worlds and information
quanta of an S frame are also intuitively natural: The order on worlds is
given by reverse information content (the more information, the smaller the
world); One information quantum is less than another provided it is part of
less worlds (i.e., it is a bigger piece of information); The order from worlds
to information quanta is simply the ’is a part of’ relation (and thus again
the smaller holds more information); A information quantum is below a
world if the world contains less information than the information quantum or
equivalently if the world is above every world that the information quantum
is a part of (and here again, even though the formulation is more complicated,
the order is the reverse order of information content).
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Notation 2.9. In an S frame F = (X, Y, R), the relation R is really the
order from X to Y , so we will usually denote it by ≤ even though it is only
the restriction of the order on Z = X ∪ Y to X × Y . Accordingly, rather
than calling the maps in the Galois connection associated with F for ( )R

and R( ), we will call them ( )u and ( )l as is customary in order theory.

We now turn to the generation properties of the components of a polarity
in its lattice of Galois stable sets. For a set W we have that P(W ) is join
generated by W . Here, as is well known, we have something similar:

Proposition 2.10. Let P = (X, Y, R) be any polarity then Im(Ξ) join gen-
erates G(P ), and Im(Υ) meet generates G(P ).

Proof. Let S ⊆ X, then

SR = {y : ∀x(x ∈ S implies xRy)}

=
⋂

{xR : x ∈ S}.

Since SR is stable and R( ) is an anti-automorphism from the Galois closed
sets in Y to those in X we have

R(SR) =
∨

{R(xR) : x ∈ S}

=
∨

{Ξ(x) : x ∈ S}.

In particular if S ∈ G(P ), then S =R (SR) and we get

S =
∨

{Ξ(x) : x ∈ S}

and we see that im(Ξ) does join generate G(P ). Similarly for S ∈ G(P ) we
have

S =R (SR) = {x : ∀y(y ∈ SR implies xRy)}

=
⋂

{Ry : y ∈ SR}

=
⋂

{Υ(y) : y ∈ SR}

and thus Im(Υ) meet generates G(P ).

Corollary 2.11. Let F = (X, Y,≤) be an S frame and Z the associated
poset. Then the following hold:

1. X join generates G(F ) (and thus also Z);
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2. Y meet generates G(F ) (and thus also Z);

3. G(F ) = Z where Z is the Dedekind-MacNeille completion of Z.

Proof. For the proof of statement 3 one must know that Z is uniquely
characterized as the complete lattice that is both join and meet generated
by Z [1].

As mentioned above, an essential property of P(W ) among Boolean al-
gebras is that it is atomic, that is, not only do the singletons {w} for w ∈ W
join generate P(W ), they are also completely join irreducible. In our two-
sorted setting this irreducibility corresponds to the following property:

Definition 2.12. Let F = (X, Y,≤) be an S frame. We say that F is
reduced, and in this case we call F an RS frame, provided the following two
properties hold:

1. ∀x ∈ X∃y ∈ Y with x £ y and ∀x′ ∈ X, if x′ < x, then x′ ≤ y.

2. ∀y ∈ Y ∃x ∈ X with y ¤ x and ∀y′ ∈ Y , if y′ > y, then y′ ≥ x.

Note that, for an S frame, F = (X, Y,≤), being reduced exactly means
that all the elements of X are completely join irreducible in X (or equiva-
lently in Z; or equivalently in Z = G(F )), and, dually, that all the elements of
Y are completely meet irreducible in Y (or equivalently in Z; or equivalently
in Z = G(F )).

Remark 2.13. In [9] we say a poset Z is perfect provided it is join generated
by J∞(Z), the set of its completely join irreducible elements, it is meet
generated by M∞(Z), its set of completely meet irreducible elements, and
every element of the poset is completely join or completely meet irreducible.
It is straight forward to check that if F = (X, Y,≤) is an RS frame then
the associated poset is perfect, and conversely, if Z is a perfect poset, then
F = (J∞(Z), M∞(Z),≤), where ≤ is the order on Z restricted to J∞(Z)×
M∞(Z), is an RS frame. Thus RS frames are just a two-sorted way of
describing the perfect posets of [9].

We now show that if one restricts to distributive and Boolean lattices,
then one gets exactly the usual notion of interpretants.

Theorem 2.14. Let F = (X, Y,≤) be an RS frame. Then the following hold:

1. If G(F ) is distributive, then G(F ) ∼= O(X);

2. If G(F ) is Boolean, then G(F ) ∼= P(X).
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We prove this theorem by proving several lemmas. We will adhere, here
and in the rest of the paper, to the convention that if a frame F = (X, Y,≤)
is given then variables named by x (including xi, x′ etc.) range over the set
X of the frame, variables named by y range over the set Y of the frame,
variables named by z range over the poset Z corresponding to the frame,
and variables named by u, v, and w range over the corresponding lattice
G(F ) = Z. While the point of view is different here, these results may be
found in [10] where they are attributed to Erné.

Lemma 2.15. Let F = (X, Y,≤) be an RS frame and suppose G(F ) is dis-
tributive, then the following hold:

1. ∀x ∃!y [x £ y and ∀x′(x′ < x implies x′ ≤ y)];
2. ∀x ∃y [x £ y and ∀u(x ≤ u or u ≤ y)];
3. The map κ : X → Y given by x 7→

∨
{x′ : x £ x′} is an order isomor-

phism;
4. ∀x ∀u (x £ u if and only if u ≤ κ(x)).

Proof. Let F = (X, Y,≤) be an RS frame, let x ∈ X and suppose G(F )
is distributive. The existence part of statement 1 is given by reducedness of
F . Thus we just have to prove uniqueness. To this end suppose y1, y2 ∈ Y
with

x £ yi and ∀x′(x′ < x implies x′ ≤ yi)

for both i = 1 and i = 2. Let u =
∨
{x′ : x′ < x}, then from the assumptions

on y1 and y2 it is clear that

x ∧ y1 = u = x ∧ y2,

and thus, by distributivity, we have u = x∧ (y1 ∨ y2). Now either y1 ≮ y2 or
y2 ≮ y1. We assume WLOG that y2 ≮ y1. Let v = x∨y1, and w = (y1∨y2)∧v.
Then we have

x ∧ w = x ∧ (y1 ∨ y2) ∧ v

= u ∧ v

= u.

Now using the fact that y1 = y1 ∧ v ≤ (y1 ∨ y2) ∧ v = w ≤ v we also have

v = x ∨ y1

≤ x ∨ w

≤ x ∨ v = v
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and thus x ∨ w = v. That is, x ∧ w = u = x ∧ y1 and x ∨ w = v = x ∨ y1,
and thus, again by distributivity, it follows that y1 = w = (y1 ∨ y2) ∧ v.
Also, recall that y1 ∈ Y is completely meet irreducible and v = x ∨ y1 > y1

since x £ y1. Thus it follows that y1 = y1 ∨ y2. In combination with our
assumption that y2 ≮ y1 we get y1 = y2 as desired.

Now in order to prove statement 2, we show that the element y ∈ Y
stipulated to be unique in 1 does the job. So let x ∈ X, let y ∈ Y with

x £ y and ∀x′(x′ < x implies x′ ≤ y)

and suppose u ∈ G(F ) with x £ u. Then by distributivity x £ y ∨ u,
and thus, since Y is meet dense in G(F ), there is y′ ∈ Y with x £ y′ and
y ∨ u ≤ y′. But y ≤ y ∨ u ≤ y′ and ∀x′(x′ < x implies x′ ≤ y) implies that
∀x′(x′ < x implies x′ ≤ y′). Now by the uniqueness, we must have y = y′

and thus u ≤ y. This means that y is the largest element in G(F ) that is
not above x and thus statement 2 is true.

In order to prove statement 3, we first need to know that κ(x) ∈ Y , but
this is clear as κ(x) must be the element y stipulated in statement 2. Notice
that this also means that for each x we have

x £ κ(x) and ∀u(x ≤ u or u ≤ κ(x)).

Therefore if x1, x2 ∈ X then x1 £ κ(x1) and if x2 £ x1, then by the definition
of κ we have x1 ≤ κ(x2). So x2 £ x1 implies κ(x2) £ κ(x1). It is also clear
from the definition of κ that it is an order preserving map. Thus κ is an
oder embedding. Finally since all the assumptions are self-dual, it follows
that for all y ∈ Y there is x ∈ X with

y ¤ x and ∀u(y ≥ u or u ≥ x)

and thus κ(x) = y and κ is also surjective.
Finally it is straight forward to see that statement 4 holds since κ(x) is

the element y stipulated in statement 2.

Lemma 2.16. Let F = (X, Y,≤) be an RS frame and suppose G(F ) is dis-
tributive, then G(F ) ∼= O(X).

Proof. For any RS frame F (in fact for any polarity), G(F ) is a subposet of
O(X), so we just need to prove that G(F ) is not proper. Let U ∈ O(X) and
let x′ /∈ U . Then for each x ∈ U we have x′ £ x, and thus x ≤ κ(x′). But
then κ(x′) ∈ U≤ and thus, for each x′′ ∈≤ (U≤) we must have x′′ ≤ κ(x′).
Since x′ £ κ(x′), we can conclude that x′ /∈≤ (U≤). That is, ≤(U≤) ⊆ U
and thus ≤(U≤) = U and u ∈ G(F ).
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Lemma 2.17. Let F = (X, Y,≤) be an RS frame and suppose G(F ) is
Boolean, then X is an antichain and thus G(F ) ∼= O(X) ∼= P(X).

Proof. Let x ∈ X then for any u ∈ G(F ) we have

x = (x ∧ u) ∨ (x ∧ ¬u)

and since x is join irreducible, it follows that x ≤ u or x ≤ ¬u, that is, x ≤ u
or u ≤ ¬x. Therefore we must have κ(x) = ¬x. So for each u < x we have
u ≤ ¬x and thus u ≤ x ∧ ¬x = 0. That is, x is an atom. The rest now
follows by the preceding lemma.

These three lemmas have now proved the theorem. We also note the
following correspondences obtained from this:

Corollary 2.18. There is a one-to-one correspondence between RS frames
whose Galois stable sets form a distributive lattice and posets. It is given by
F = (X, Y,≤) 7→ (X,≤) where ≤ is the order on X induced by the frame
F , and by (X,≤) 7→ (X, X, R) where, for x, y ∈ X, we have xRy if and
only if y £ x. Furthermore, if (X,≤) and F correspond to each other then
G(F ) = O(X).

Corollary 2.19. There is a one-to-one correspondence between RS frames
whose Galois stable sets form a Boolean lattice and sets. It is given by
F = (X, Y,≤) 7→ X and by X 7→ (X, X, R) where, for x, y ∈ X, we have
xRy if and only if y 6= x. Furthermore, if X and F correspond to each other
then G(F ) = P(X).

Remark 2.20. Notice that these corollaries tell us that in the distributive
and Boolean setting information quanta are in one-to-one correspondence
with worlds and simply consist of the information “does not hold at x” for
some world x.

We close this section with the definition of an interpretation into an RS
frame.

Definition 2.21. Let P be a set of variables and F = (X, Y,≤) an RS
frame. Then an interpretation of P in F is a map V : P → G(F ). This
yields a satisfaction relation defined for x ∈ X:

(F, V ), x ° p ⇐⇒ x ∈ (V (p))l ⇐⇒ x ≤ V (p),

and when (F, V ), x ° p holds we say p holds at x in (F, V ). We also obtain
an information content relation defined for y ∈ Y :

(F, V ), y ≻ p ⇐⇒ y ∈ (V (p))u ⇐⇒ y ≥ V (p),

and when (F, V ), y ≻ p holds we say y is part of p in (F, V ).
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This is of course the only possible definition of an interpretation as long
as the interpretants have to be Galois closed subsets. Accordingly, it is
the standard one considered for semantics involving Galois closed sets, e.g.,
see [4].

Having interpretations is not very interesting so far as we have not in-
troduced any logic connectives. RS frames in themselves already encode a
notion of conjunction, disjunction, True, and False. While we will not con-
sider these logical connectives as such in the latter part of this paper, we
spell out here how these are interpreted in an RS frame model. For this pur-
pose, fix a set P of propositional variables and an RS frame F = (X, Y,≤).
We then give the inductive conditions for extending the relations ° and ≻
to the set of all compound formulas in the connectives ∧,∨, 0, 1 over the set
P . Suppose φ and ψ are formulas for which (F, V ), x ° and (F, V ), y ≻ have
already been determined to hold or not to hold for each x ∈ X and each
y ∈ Y . Then we define for x ∈ X and y ∈ Y :

(F, V ), x ° φ ∧ ψ ⇐⇒ (F, V ), x ° φ and (F, V ), x ° ψ,

(F, V ), y ≻ φ ∧ ψ ⇐⇒ ∀x′ ((F, V ), x′
° φ ∧ ψ ⇒ x′ ≤ y),

(F, V ), y ≻ φ ∨ ψ ⇐⇒ (F, V ), y ≻ φ and (F, V ), y ≻ ψ,

(F, V ), x ° φ ∨ ψ ⇐⇒ ∀y′ ((F, V ), y′ ≻ φ ∨ ψ ⇒ x ≤ y′),

(F, V ), x 1 0 (F, V ), y ≻ 0,

(F, V ), x ° 1 (F, V ), y ⊁ 1.

3. Morphisms for RS frames

In the previous section we provided an exposition of RS frames from a (more
or less) purely relational structures point of view instead of starting from the
dual concrete algebras point of view as was done in [9]. For the morphisms
of these structures, we do not quite see how to do this yet, but since the
structure preserving maps for any mathematical setting are crucial for the
understanding of the structures, we do include a treatment of these here.
Our treatment here, even though still rooted in algebra, hopefully gives a
little more insight than what was already said in [9]. Nevertheless, it is
clear that a lot of work still remains before we have an in depth relational
understanding of RS frame homomorphisms.

Just like maps between sets are exactly duals of complete homomor-
phisms between the corresponding complex algebras, we want our morphisms
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to be dual to complete lattice homomorphisms between the corresponding
perfect lattices. This requirement dictates the notion of morphism that we
must choose. Because their origin is based in duality, it is not surprising
that these morphisms are closely related to those defined in [14].

Consider RS frames F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) and h :
G(F2) → G(F1) a complete lattice homomorphism between their dual lat-
tices. Since the lattices are complete, the fact that h is a complete ho-
momorphism is equivalent to the fact that h is both residuated and dually
residuated. That is, there are f, g : G(F1) → G(F2) with

∀u1 ∈ G(F1) ∀u2 ∈ G(F2) f(u1) ≤ u2 ⇐⇒ u1 ≤ h(u2)

h(u2) ≤ u1 ⇐⇒ u2 ≤ g(u1)

We list the following facts that are well known about residuated pairs of
maps in general or that are simple consequences of the fact that here we
have two pairs of residuated maps linked by h that is doubly residuated.

Proposition 3.22. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames,
and h : G(F2) → G(F1) a complete lattice homomorphism. Let f, g : G(F1) →
G(F2) be the dual residual and the residual of h, respectively. Then the
following statements are true:

1. For each u1 ∈ G(F1), we have that g(u1) is the greatest element of G(F2)
that is mapped below u1 by h, and f(u1) is the least element of G(F2)
that is mapped above u1 by h.

2. Im(h) is a complete sublattice of G(F1) that is isomorphic to both of the
subposets Im(f) and Im(g) of G(F2) and the isomorphisms are provided
by the restriction of h in one direction and by the restrictions of f and
g, respectively, in the other direction.

3. Im(f) is a complete join semilattice of G(F2) whereas Im(g) is a com-
plete meet semilattice of G(F2).

4. h is surjective if and only if f is injective if and only if g is injective.

5. h is injective if and only if f is surjective if and only if g is surjective.

6. h is an isomorphism if and only if f is an isomorphism if and only if g
is an isomorphism if and only if f = g.

Given a homomorphism h : G(F2) → G(F1), the idea is then essentially
that the dual object is given by the maps f and g. However, these don’t
always restrict correctly to the dual structures. First we go through some
cases where they do:
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Proposition 3.23. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames,
and h : G(F2) → G(F1) a complete lattice homomorphism. Let f, g : G(F1) →
G(F2) be the dual residual and the residual of h, respectively. If G(F1) is
distributive, then f ↾ X1 : X1 → X2 and g ↾ Y1 : Y1 → Y2.

Proof. We just show the first claim, the second being order dual. Let
x1 ∈ X1 and suppose f(x1) =

∨
C where C is a subset of G(F2). Then we

have x1 ≤ h(f(x1)) =
∨
{h(u2) : u2 ∈ C} by the residuation property and

because h preserves arbitrary joins. Now since G(F1) is distributive we have
G(F1) = O(X1) and each completely join irreducible in G(F1) is completely
join prime. Therefore we conclude that there is u2 ∈ C with x1 ≤ h(u2). And
then f(x1) ≤ f(h(u2)) ≤ u2. That is, f(x1) is completely join irreducible as
required.

Remark 3.24. In the distributive and Boolean setting, i.e, when both G(F1)
and G(F2) are at least distributive, then we can throw away half the dual
structures and the dual of a complete homomorphism is just the order pre-
serving map f ↾ X1 : X1 → X2. This is of course the usual dual map.

Essentially the same argument goes in general as long as h is surjective.

Proposition 3.25. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames,
and h : G(F2) → G(F1) a complete lattice homomorphism. Let f, g : G(F1) →
G(F2) be the dual residual and the residual of h, respectively. If h is surjec-
tive, then f ↾ X1 : X1 → X2 and g ↾ Y1 : Y1 → Y2.

Proof. The proof is very similar to the one in the distributive case: Here
also we just show the first claim, the second being order dual. Let x1 ∈ X1

and suppose f(x1) =
∨
C where C is a subset of G(F2). Then, because h

is surjective, we have x1 = h(f(x1)) rather than just x1 ≤ h(f(x1)). Thus
we get x1 = h(f(x1)) =

∨
{h(u2) : u2 ∈ C} because h preserves arbitrary

joins. Now since x1 is completely join irreducible we conclude that there is
u2 ∈ C with x1 = h(u2) and we get f(x1) ≤ f(h(u2)) ≤ u2. That is, f(x1) is
completely join irreducible.

The surjective homomorphisms on the lattice side of course correspond
to subobjects on the RS frame side. First we show that RS subobjects are
subobjects in the usual sense of relational structures.

Proposition 3.26. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames,
and h : G(F2) → G(F1) a complete lattice homomorphism. Let f, g : G(F1) →
G(F2) be the dual residual and the residual of h, respectively. If h is surjec-
tive, then the following hold:
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1. f ↾ X1 : X1 → X2 is an order embedding;
2. g ↾ Y1 : Y1 → Y2 is an order embedding;
3. x1 ≤ y1 if and only if f(x1) ≤ g(y1).

Proof. Statements 1 and 2 follows as f and g are order isomorphisms
between G(F1) and Im(f) and Im(g), respectively, whenever h is surjective.
If x1 ≤ y1, then x1 ≤ y1 = h(g(y1)) and thus f(x1) ≤ g(y1) since f is
the dual residual of h. Conversely, if f(x1) ≤ g(y1), then x1 = h(f(x1)) ≤
h(g(y1)) = y1.

In [9] we described the structures studied here, not as two sorted struc-
tures, but as special posets, called perfect posets. As spelled out in Section
1, given an RS frame, F = (X, Y,≤), the corresponding perfect poset is the
induced poset Z = X∪Y . We still believe that there is great advantage to be
gained by thinking of F and Z somewhat interchangeably, and to remember
that an RS frame induces an (quasi-)order on X ∪ Y of which the relation
that is part of the frame is exactly the order from X to Y . However, the
danger of thinking of these frames as the special posets Z is that a subobject
is NOT necessarily a subposet. On the two sorted level however, as we’ve
just seen in the above proposition, subobjects are at least subobjects in the
usual sense of relational structures.

Example 3.27. Consider the complete homomorphism π1 : 22 → 2 which
projects the four element Boolean algebra onto its first coordinate. Then
the two element chain Z(2) = J(2) ∪ M(2) = 2 is not a subposet of the two
element anti-chain Z(22) = {(1, 0), (0, 1)} even though f : 1 7→ (1, 0) embeds
X(2) in X(22), g : 0 7→ (0, 1) embeds Y (2) in Y (22), and the order from X1

to Y1 is empty just like the order from Im(f) to Im(g).

The following example shows that an RS frame which is a subobject in
the usual sense of relational structures of another RS frame need not be a
subobject of the second frame in the category of RS frames.

Example 3.28. Let D be the perfect lattice shown in Figure 1. The cor-
responding perfect poset, Z(D), is obtained by removing 0 and 1. Fur-
thermore, X(D) consists of all the elements of Z(D) except the element y,
and Y (D) consists of the maximal elements of Z(D). Now the relational
substructure of (X(D), Y (D),≤) obtained by removing y from Y (D) yields
again an RS frame. It is easy to verify that this RS frame corresponds to
the perfect lattice C obtained from D by removing y. However, the injection
f : X(C) → X(D) does not extend to a join preserving map from C to D
since x ∨C x′ = 1 whereas x ∨D x′ = y.
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Figure 1. The lattice D.

Proposition 3.29. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames,
and h : G(F2) → G(F1) a surjective complete lattice homomorphism. Let
f, g : G(F1) → G(F2) be the dual residual and the residual of h, respectively.
We assume (WLOG) that f(x1) = x1 and g(y1) = y1 for all x1 ∈ X1 and
y1 ∈ Y1. Then the following hold:

1. For all x2 ∈ X2, (↓ x2 ∩ X1)
u =↑ x2 ∩ Y1;

2. For all y2 ∈ Y2, (↑ y2 ∩ Y1)
l =↓ y2 ∩ X1.

Here the arrows are taken over the frame F2, whereas the (u, l)-connection
is taken over the frame F1.

Proof. Throughout the proof, we will subscript various operations and
relations with 1 and 2 to indicate which frame we are working over. Let
x2 ∈ X2 and y1 ∈ (↓2 x2 ∩ X1)

u1 , then we have

∀x1 (x1 ≤2 x2 ⇒ x1 ≤1 y1).

But x1 ≤2 x2 means f(x1) ≤2 x2 which is equivalent to x1 ≤1 h(x2). Thus
we have

∀x1 (x1 ≤1 h(x2) ⇒ x1 ≤1 y1).

That is, h(x2) ≤1 y1 and thus x2 ≤2 g(y1) = y1 as desired. The other
inclusion of statement 1 is obvious, and statement 2 is handled similarly.
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Definition 3.30. Let F1 = (X1, Y1,≤1) and F2 = (X2, Y2,≤2) be RS
frames. We say that F1 = (X1, Y1,≤1) is an RS subframe of F2 = (X2, Y2,
≤2) provided the following hold:

1. X1 ⊆ X2;
2. Y1 ⊆ Y2;
3. ≤1=≤2 ∩(X1 × Y1);
4. ∀x2 ∈ X2 (↓ x2 ∩ X1)

u =↑ x2 ∩ Y1;
5. ∀y2 ∈ Y2 (↑ y2 ∩ Y1)

l =↓ y2 ∩ X1;

Theorem 3.31. Let F1 = (X1, Y1,≤) be an RS subframe of F2 = (X2, Y2,≤),
then

h : G(F2) → G(F1)

u2 7→
∨

(↓ u2 ∩ X1) =
∧

(↑ u2 ∩ Y1)

is a complete homomorphism. Furthermore, f, g : G(F1) → G(F2), the dual
residual and the residual of h, are given by f(x) = x and g(y) = y, respec-
tively.

Proof. Again, in the proof we will mark various constructs with subscripts
of 1 or 2 to indicate which of the two frames it is referring to. Let u2 ∈ G(F2)
then

(↓2 u2 ∩ X1)
u1 = (

⋃
{↓2 x2 ∩ X1 : x2 ≤2 u2})

u1

=
⋂

{(↓2 x2 ∩ X1)
u1 : x2 ≤2 u2}

=
⋂

{↑2 x2 ∩ Y1 : x2 ≤2 u2}

=↑2 u2 ∩ Y1

and thus
∨

1(↓2 u2 ∩ X1) =
∧

1(↑2 u2 ∩ Y1), and h is well-defined.
Clearly h is order preserving. Let U2 ⊆ G(F2) with

∨
2 U2 = u2. Then∨

1 h(U2) ≤1 h(u2). To show the reverse inequality, we show that any upper
bound y1 ∈ Y1 in G(F1) of h(u2) is a common upper bound in G(F1) of all
the elements of h(U2). Suppose y1 ≥1 h(u2) =

∧
1(↑2 u2 ∩ Y1). Recall that

in order to show that h is well-defined, we computed that (↓2 u2∩X1)
u1 =↑2

u2 ∩ Y1. Notice that this implies that ↑2 u2 ∩ Y1 is a stable set for F1, thus
(
∧

(↑2 u2∩Y1))
u1 =↑2 u2∩Y1. So y1 ∈↑2 u2∩Y1. But then for each u′

2 ∈ U2,
since u′

2 ≤2 u2, we must have y1 ∈↑2 u′
2 ∩ Y1 = (h(u′

2))
u1 . We conclude

that h is completely join preserving. The proof that h is completely meet
preserving is of course order dual.

Finally we want to show that h is surjective. Let u1 ∈ G(F1) and let
u2 =

∨
2{x1 : x1 ≤1 u1}. Since h is completely join preserving, we have
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h(u2) =
∨

1{h(x1) : x1 ≤1 u1}. In order to show that h(u2) = u1, we show
that h(x1) = x1 for each x1 ∈ X1. By definition h(x1) =

∧
1(↑2 x1 ∩Y1), but

for y1 ∈ Y1 we have x1 ≤2 y1 if and only if x1 ≤1 y1, and thus h(x1) =
∧

1(↑1

x1 ∩ Y1) = x1. Notice that this also shows that f(x1) = x1 for all x1 ∈ X1.
The fact that g(y1) = y1 for all y1 ∈ Y1 is order dual.

Corollary 3.32. There is a one-to-one correspondence between surjective
homomorphisms from the lattice of Galois stable subsets of an RS frame and
RS subframes of that RS frame.

When a complete homomorphism is not surjective, then f ↾ X1 and g ↾ Y1

do not necessarily map into X2 and Y2, respectively. Nevertheless, these
two restrictions encode f and g and are therefore sufficient for describing
the fact that h is a complete homomorphism. We sketch the development
now. Some details are omitted, but they should be fairly straightforward to
anyone familiar with residuation. Alternatively, the same content, presented
differently, is proved in [9].

Proposition 3.33. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames.
Then the following statements hold:

1. If h : G(F2) → G(F1) and g : G(F1) → G(F2) is a residuated pair, then
both maps are uniquely determined by the relation Rh ⊆ Y1 × X2 given
by

y1Rhx2 ⇐⇒ y1 ≥ h(x2) ⇐⇒ g(y1) ≥ x2.

Furthermore, since Rh[ , x2] =↑ h(x2) ∩ Y1 and Rh[y1, ] =↓ g(y1) ∩ X2

for any x2 ∈ X2 and y1 ∈ Y1 it follows that these are stable sets.
2. If R ⊆ Y1 × X2 is a relation such that R[ , x2] and R[y1, ] are stable

sets for all x2 ∈ X2 and y1 ∈ Y1, then the maps hR : G(F2) → G(F1) and
gR : G(F1) → G(F2) defined by

hR(x2) =
∧

R[ , x2] for x2 ∈ X2,

hR(u2) =
∨

{hR(x2) : u2 ≥ x2 ∈ X2}

=
∧

{y1 : ∀x2(x2 ≤ u2 ⇒ y1Rx2} for u2 ∈ G(F2),

gR(y1) =
∨

R[y1, ] for y1 ∈ Y1,

gR(u1) =
∧

{gR(y1) : u1 ≤ y1 ∈ Y1}

=
∨

{x2 : ∀y1(y1 ≥ u1 ⇒ y1Rx2} for u1 ∈ G(F1)

form a residuated pair.
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3. If h : G(F2) → G(F1) and g : G(F1) → G(F2) is a residuated pair then
hRh

= h and gRh
= g, and if R ⊆ Y1×X2 is a relation such that R[ , x2]

and R[y1, ] are stable sets for all x2 ∈ X2 and y1 ∈ Y1 then RhR
= R.

Now this allows us to define the dual of a complete lattice homomor-
phisms:

Definition 3.34. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames,
and h : G(F2) → G(F1) a complete lattice homomorphism. Then we define
the dual of h to be the pair (Rh, Sh), where Rh ⊆ Y1 × X2 is the relation
described above, and which arises from the fact that h is residuated, and
Sh ⊆ X1 × Y2 is the corresponding relation arising from the fact that h is
dually residuated. That is, Rh and Sh are given by

y1Rhx2 ⇐⇒ y1 ≥ h(x2)

and
x1Shy2 ⇐⇒ x1 ≤ h(y2).

That is, we encode h by remembering the value of h both on the completely
join irreducible elements and on the completely meet irreducible elements,
instead of encoding only the value of h on the atoms as is done in the setting
of sets and Boolean algebras.

We also make the following definition:

Definition 3.35. Let Fi = (Xi, Yi,≤) be RS frames for i = 1, . . . , n, and T
an n-ary relation in ♣1 × . . .♣n, where ♣i is either Xi or Yi for i = 1, . . . , n.
We say T is compatible (with the frames Fi) provided T yields stable sets
whenever all but one coordinate is fixed.

We’ve already seen that one of the characterizing properties of Rh, and
thus also of Sh, is that it is compatible with F1 and F2. The only additional
information we need to encode to characterize the pairs of relations we get as
dual morphisms is that the residuated map corresponding to Rh is equal to
the dually residuated map corresponding to Sh. For this purpose, suppose
F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) are RS frames, and that R ⊆ Y1 ×X2

and S ⊆ X1×Y2 are relations compatible with F1 and F2. Let hR : G(F2) →
G(F1) and gR : G(F1) → G(F2) be the residuated pair corresponding to R,
hS = g(S−1) : G(F2) → G(F1) and fS = h(S−1) : G(F1) → G(F2) the dually
residuated pair corresponding to S. Then we have:

∀u2 ∈ G(F2) hR(u2) ≤ hS(u2)

⇐⇒ ∀x2 ∀y2 (x2 ≤ y2 ⇒ hR(x2) ≤ hS(y2))

⇐⇒ ∀x2 ∀y2 (x2 ≤ y2 ⇒ R[ , x2]
l ⊆ S[ , y2])
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and for the reverse inequality we have to use the residuals:

∀u2 ∈ G(F2) hS(u2) ≤ hR(u2)

⇐⇒ ∀u2 ∀x1 ∀y1 [(x1 ≤ hS(u2) and hR(u2) ≤ y1) ⇒ x1 ≤ y1]

⇐⇒ ∀u2 ∀x1 ∀y1 [(fS(x1) ≤ u2 and u2 ≤ gR(y1)) ⇒ x1 ≤ y1]

⇐⇒ ∀x1 ∀y1 (fS(x1) ≤ gR(y1) ⇒ x1 ≤ y1)

⇐⇒ ∀x1 ∀y1 (
∧

S[x1, ] ≤
∨

R[y1, ] ⇒ x1 ≤ y1)

⇐⇒ ∀x1 ∀y1 (S[x1, ]l ⊆ R[y1, ] ⇒ x1 ≤ y1)

These calculations yield the following definition of morphism for RS
frames:

Definition 3.36. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames.
A morphism from F1 to F2 is a pair (R, S) satisfying:

1. R ⊆ Y1 × X2 is a compatible relation;
2. S ⊆ X1 × Y2 is a compatible relation;
3. ∀x2 ∀y2 (x2 ≤ y2 ⇒ R[ , x2]

l ⊆ S[ , y2]);
4. ∀x1 ∀y1 (S[x1, ]l ⊆ R[y1, ] ⇒ x1 ≤ y1).

Corollary 3.37. Let F1 = (X1, Y1,≤) and F2 = (X2, Y2,≤) be RS frames.
There is a one-to-one correspondence between the complete lattice homomor-
phisms from G(F2) to G(F1) and the RS frame morphisms from F1 to F2.

While the intuitive meaning of this definition is not so clear, the com-
plexity is not too terrible. We believe that what is needed in order to be able
to work efficiently with these structures is some kind of calculus that isolates
and identifies the main manipulations corresponding to the toggling between
the two functions in a residuated pair. The underlying RS frame has the
(upper,lower) Galois connection (residuated pair with an order flip) at its
heart. A morphism then consists of two relations each of which corresponds
to a residuated pair. As we shall see, the logical implication and fusion then
introduces another (binary this time) residuated map. Working with these
structures then requires us to be able to manipulate first order statements
involving various combinations of these. This might seem like a hard task,
but the point is that, guided by the Sahlqvist correspondence ideas, we see
a version of this calculus emerging in this setting as well. Working this out
in detail is the subject of ongoing research with Palmigiano and Priestley.
However, we already see the embryonic form in the two reductions right
before Definition 3.36. The statement

∀u2 ∈ G(F2) hR(u2) ≤ hS(u2)
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is really of the form 3 ≤ 2, which is the simplest type of Sahlqvist inequality.
We also see that the reduction is straightforward as it corresponds to a join
less than a meet and thus only requires the individual parts to satisfy the
corresponding inequality.

The statement

∀u2 ∈ G(F2) hS(u2) ≤ hR(u2)

on the other hand, is of the form 2 ≤ 3, the simplest form of the more
complex type of Sahlqvist inequality. Here indeed we see that a little more
care is required, but that the essential content is that we have to translate
the statement to one about the residual of 2 and the dual residual of 3 in
order to be able to eliminate the second order quantifier.

4. Modeling implication and fusion

We now turn to the actual purpose of this paper, namely to spell out, in
relational terms, the complete semantics given in [9] for the implication-
fusion fragment of various substructural logics. Part of this material has
been worked out in discussions with Manisha de Montgomery Nørg̊ard. Her
work can be found in her Master’s Thesis [15].

We fix a set P of propositional variables and let F(P ) be the set of
all formulas in the binary connectives ◦,→,←. We will describe complete
relational semantics based on RS frames for various logics of this connective
type.

The basic logic we consider corresponds to requiring only that the im-
plications → and ← are the residuals of the fusion, ◦. To be specific, we
consider the logic given by:

φ ⊢ φ
and

Γ ⊢ φ ∆; φ; Σ ⊢ ψ

∆; Γ; Σ ⊢ ψ
,

φ; φ → ψ ⊢ ψ
and

φ; Γ ⊢ ψ

Γ ⊢ φ → ψ
,

and

ψ ← φ; φ ⊢ ψ
and

Γ; φ ⊢ ψ

Γ ⊢ ψ ← φ
.

In order to capture this logic over RS frames we need, for an RS frame
(X, Y,≤), to add structure that will capture the behavior of the logical
connectives. For this purpose we will need a ternary relation R ⊆ X×X×Y
that is compatible with the frame. In order to keep the exposition simple, but
at the expense of not differentiating our notion of frame from the plethora
of others, we will just call the obtained relational structures frames.
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Definition 4.38. A frame is a structure F = (X, Y,≤, R) such that:

1. (X, Y,≤) is an RS frame;

2. R ⊆ X × X × Y is a compatible relation.

Associated with the relation R, we have another compatible relation R↓ ⊆
X × X × X defined by:

(x1, x2, x3) ∈ R↓ ⇐⇒ ∀y ((x1, x2, y) ∈ R ⇒ y ≥ x3)

⇐⇒ x3 ∈ R[x1, x2, ]l.

For x1, x2, x3 ∈ X and y ∈ Y , if (x1, x2, y) ∈ R then we say that y is part
of the fusion of x1 and x2, and if (x1, x2, x3) ∈ R↓ then we say that from x3

the fusion of x1 and x2 is accessible. Note that there is no fusion operation
defined on F or X but just an accessibility and/or part of relation describing
fusion.

Remark 4.39. Notice that we might as well take the accessibility relation
R↓ as basic to the frame and then define the relation R from it. It is not
hard to verify that compatibility of one is equivalent to compatibility of the
other. Taking R↓ as basic would correspond more closely to what is usually
done in Kripke frames, both in modal logic and substructural logic, see, e.g.
[3]. However, with this choice the relation is not as natural for defining the
interpretation of arbitrary formulas on frames as R is.

We are now ready to define models.

Definition 4.40. A model is a pair M = (F, V ) where:

1. F is a frame;

2. V is an interpretation, that is, V : P → G(X, Y,≤) is a map.

Given a model M = (F, V ), we define relations ° ⊆ X × F(P ) and
≻ ⊆ Y ×F(P ) inductively as follows:

1. For x ∈ X and p ∈ P , x ° p if and only if x ≤ V (p), and for y ∈ Y and
p ∈ P , y ≻ p if and only if y ≥ V (p).

2. For φ, ψ ∈ F(P ) such that whether or not x ° φ, x ° ψ, y ≻ φ, and
y ≻ ψ have already been determined for each x ∈ X and each y ∈ Y ,
and for x ∈ X and y ∈ Y :
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y ≻ φ ◦ ψ ⇐⇒ ∀x1, x2 [(x1 ° φ and x2 ° ψ) ⇒ R(x1, x2, y)],
x ° φ ◦ ψ ⇐⇒ ∀y (y ≻ φ ◦ ψ ⇒ x ≤ y),

x ° φ → ψ ⇐⇒ ∀x′ ∀y [(x′
° φ and y ≻ ψ) ⇒ R(x′, x, y)],

y ≻ φ → ψ ⇐⇒ ∀x (x ° φ → ψ ⇒ x ≤ y),

x ° ψ ← φ ⇐⇒ ∀x′ ∀y [(x′
° φ and y ≻ ψ) ⇒ R(x, x′, y)],

y ≻ ψ ← φ ⇐⇒ ∀x (x ° ψ ← φ ⇒ x ≤ y).

Remark 4.41. The conditions given in the above inductive definition may
look a little unfamiliar. For fusion, which is a 3-like operation as it is join
preserving in each coordinate, we’d expect a condition like:

x ° φ ◦ ψ ⇐⇒ ∃x1, x2 (x1 ° φ, x2 ° ψ and R↓(x1, x2, x)) (∗)

We sketch the proof of the fact that this condition is indeed equivalent to the
one given if we happen to be in a Boolean frame (something similar works
in a distributive frame).

If the frame is Boolean, we know that there is a one-to-one correspon-
dence between X and Y , say x corresponds to yx, and

x ≤ y′ ⇐⇒ y′ 6= yx.

In this case notice that

R↓(x1, x2, x) ⇐⇒ ∀y′ (R(x1, x2, y
′) ⇒ x ≤ y′)

⇐⇒ ∀y′ (R(x1, x2, y
′) ⇒ y′ 6= yx)

⇐⇒ NOT R(x1, x2, yx),

where NOT R(x1, x2, yx) means that it is not the case that R(x1, x2, yx).
Using these facts we get:

x ° φ ◦ ψ ⇐⇒ ∀y′ (y′ ≻ φ ◦ ψ ⇒ x ≤ y′)

⇐⇒ ∀y′ (y′ ≻ φ ◦ ψ ⇒ y′ 6= yx)

⇐⇒ yx ⊁ φ ◦ ψ

⇐⇒ ∃x1, x2 (x1 ° φ, x2 ° ψ and NOT R(x1, x2, yx))

⇐⇒ ∃x1, x2 (x1 ° φ, x2 ° ψ and R↓(x1, x2, x)).

This equivalence does not hold in general, but one can still describe these
semantics entirely on the basis of R↓ and °. However, it becomes very messy
and impossible to understand. This can be done simply because

R(x1, x2, y) ⇐⇒ ∀x (R↓(x1, x2, x) ⇒ x ≤ y).

Thus one can substitute ∀x (R↓(x1, x2, x) ⇒ x ≤ y) in the place of
R(x1, x2, y) in the inductive condition defining y ≻ φ ◦ ψ, and then one
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can substitute the resulting condition into the antecedent of the condition
defining x ° φ◦ψ in the above inductive definition. The resulting very com-
plicated condition does not simplify significantly in the general setting. Put
in lattice theoretic terms, this is because join irreducibles in non-distributive
(perfect) lattices aren’t necessarily join prime.

Notice that the equivalence of our semantics with those defined by (∗)
for distributive frames (and in particular Boolean ones), implies that if these
special frames are enough to identify the given logic, then our more general
structures are not needed. In algebraic terms, this is the case when the
distributive members of the class have as general a theory (in the speci-
fied connectives) as the full class. Even when this is the case though, the
approach may not be as uniform as with the broader class of structures.

It is straight forward to prove that ° and ≻ define one and the same
extension of the interpretation V to the set of all formulas. In fact, it is the
unique homomorphic extension of V once we put the appropriate residuated
structure on the dual of the frame:

Definition 4.42. Let F = (X, Y,≤, R) be a frame, then the complex algebra
of F is the residuated algebra F+ = (G(X, Y,≤),≤, ◦R,→R,←R) where

◦ : G(X, Y,≤) × G(X, Y,≤) → G(X, Y,≤)

(u, v) 7→
∧

{y : ∀x1, x2 [(x1 ≤ u and x2 ≤ v) ⇒ R(x1, x2, y)]}

→: G(X, Y,≤) × G(X, Y,≤) → G(X, Y,≤)

(u, v) 7→
∨

{x : ∀x′ ∀y [(x′ ≤ u and y ≥ v) ⇒ R(x′, x, y)]}

←: G(X, Y,≤) × G(X, Y,≤) → G(X, Y,≤)

(u, v) 7→
∨

{x : ∀x′ ∀y [(x′ ≤ v and y ≥ u) ⇒ R(x, x′, y)]}.

The fact that F+ is a residuated algebra whenever F is a frame and that
this establishes a one-to-one correspondence (up to natural isomorphism)
between frames and perfect residuated lattices was proved in [9]. In [9] this
is stated as Proposition 6.6, and the pertinent proofs can be found in sections
4 and 5 (section 5 deals with the additional operations).

Proposition 4.43. Let M = (F, V ) be a model. Then

V : F(P ) → F+

φ 7→
∨

{x : x ° φ} =
∧

{y : y ≻ φ}

is the unique homomorphic extension of the map V .
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We leave the details to the reader.

Definition 4.44. Let M = (X, Y,≤, R, V ) be a model and φ and ψ formulas
in F(P ). We say the sequent φ ⊢ ψ holds in M provided the following
equivalent conditions hold:

1. ∀x (x ° φ ⇒ x ° ψ) ;
2. ∀y (y ≻ ψ ⇒ y ≻ φ);
3. V (φ) ≤ V (ψ).

Let F = (X, Y,≤, R) be a frame and φ and ψ formulas in F(P ). We
say the sequent φ ⊢ ψ is valid in F provided φ ⊢ ψ holds in every model
M = (F, V ) over F .

Let K be a class of frames and φ and ψ formulas in F(P ). We say the
sequent φ ⊢ ψ is valid over K provided φ ⊢ ψ is valid in each frame F in K.

The following theorem was given an algebraic proof in [9]. Here we sketch
the corresponding relational proof based on the canonical model.

Theorem 4.45. Let φ and ψ be formulas in F(P ). The sequent φ ⊢ ψ is
valid over the class of all frames if and only if it can be deduced in the basic
substructural logic.

The main part of this proof consists of a standard construction of the
canonical frame for the logic. We split the work up to make it more acces-
sible.

Lemma 4.46. (Soundness) Let φ and ψ be formulas in F(P ). If the sequent
φ ⊢ ψ can be deduced in the basic substructural logic then it is valid over the
class of all frames.

Proof. The soundness of the rules and axioms of the basic logic with re-
spect to the class of frames is straight forward to check. For illustration, we
show the rule:

φ ◦ ψ ⊢ θ

ψ ⊢ φ → θ

is sound. For this purpose, let F = (X, Y,≤, R) be any frame and M =
(F, V ) any model over F , and suppose φ ◦ ψ ⊢ θ holds in M . Then

∀y (y ≻ θ ⇒ y ≻ φ ◦ ψ).

Furthermore, y ≻ φ ◦ ψ means

∀x1, x2 [(x1 ° φ and x2 ° ψ) ⇒ R(x1, x2, y)].
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Now assume in addition that x is such that x ° ψ. We want to show that
x ° φ → θ. That is, we have to show

∀x′ ∀y′ [(x′
° φ and y′ ≻ θ) ⇒ R(x′, x, y′)].

So let x′ be such that x′ ° φ and let y′ be such that y′ ≻ θ. Then, as y′ ≻ θ,
it follows that y′ ≻ φ ◦ψ. That is, for all x1, x2 such that x1 ° φ and x2 ° ψ
we have R(x1, x2, y

′). Accordingly, since x′ ° φ and x ° ψ, it follows that
R(x′, x, y′) as desired.

For the completeness, we have to show that any sequent φ ⊢ ψ that is
not deducible in the basic logic does not hold in some model. We construct
the canonical model and show that any sequent not deducible in the logic
does not hold in this model.

Definition 4.47. Let P be the set of propositional variables, F(P ) the set
of formulas in the given connective type over P , and L the given logic. We
call a non-empty subset D of F(P ) a filter for L provided D is upward closed
and down-directed. That is, if φ ∈ D and φ ⊢ ψ is deducible then ψ ∈ D,
and anytime φ1 and φ2 are in D, there is ψ in D with ψ ⊢ φi deducible
for both i = 1 and i = 2. Dually, we call a subset U of F(P ) an ideal for
L provided it has the dual properties, that is, it is downward closed and
up-directed. A pair (D, U) consisting of a filter and an ideal is a maximally
disjoint pair (mdp) (for L) provided D ∩ U = ∅ and for all pairs (D′, U ′)
consisting of a filter and an ideal that are disjoint from each other, if D ⊆ D′

and U ⊆ U ′, then D = D′ and U = U ′.
We are now ready to define the canonical frame F (= F (L)):

1. Let X = {D : ∃U (D, U) is a mdp};
2. Let Y = {U : ∃D (D, U) is a mdp};
3. For D ∈ X and U ∈ Y , define D ≤ U if and only if D ∩ U 6= ∅;
4. For D1, D2 ∈ X and U ∈ Y , define (D1, D2, U) ∈ R if and only if there

are φ ∈ D1 and ψ ∈ D2 so that φ ◦ ψ ∈ U , that is, the complex product
D1 ◦ D2 = {φ ◦ ψ : φ ∈ D1 and ψ ∈ D2} intersects U .

We of course need to know that this is a frame.

Lemma 4.48. Let P be the set of propositional variables, F(P ) the set of
formulas in the given connective type over P , and L the given logic. Then
the polarity (X, Y,≤) underlying the canonical model F (L) is an RS frame.

Proof. Let p ∈ P , then it is easy to show that, e.g., there are models in
which p is not implied by p → p (in a Boolean frame for example), so by
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soundness, it follows that p → p ⊢ p is not deducible. Thus D =↑ (p → p) =
{φ : p → p ⊢ φ} and U =↓ p = {ψ : ψ ⊢ p} form a disjoint pair. Because
filters and ideals are closed under directed unions, it follows that any disjoint
pair can be extended to a mdp by Zorn’s Lemma. Thus X and Y are both
non-empty. Now let D1, D2 ∈ X with D1 6= D2. Then there is a φ which
is in one but not the other. Suppose WLOG φ 6∈ D1. Then (D1, ↑ φ) is a
disjoint pair and it can be extended to a mdp (D, U). Then φ ∈ U ∩D2 and
thus D2 ≤ U , but D1 ∩ U ⊆ D ∩ U = ∅, so D1 ≤ and D2 ≤ are not equal.
The fact that U1 6= U2 implies ≤ U1 6=≤ U2 is proved dually. Thus the frame
(X, Y,≤) is separated.

We show that F is reduced. It is easy to see that for D′ ∈ X, D′ ≤ D
is equivalent to D ⊆ D′. Thus D′ < D is equivalent to D Ã D′. Now let
D ∈ X, and let U be any ideal such that (D, U) is a mdp. Then for each
D′ with D Ã D′ we must have D′ ∩ U 6= ∅. Otherwise D is not maximal
with respect to being disjoint from U . Of course the statement for ideals is
proved dually, and we conclude that F is an RS frame.

Lemma 4.49. Let P be the set of propositional variables, F(P ) the set of
formulas in the given connective type over P , and L the given logic. Then
the ternary relation R underlying the canonical model F (L) is compatible.

Proof. Fix D1, D2 ∈ X, then R[D1, D2, ] = {U : ∃φ ∈ D1,∃ψ ∈ D2 with
φ ◦ ψ ∈ U}. We show that R[D1, D2, ]l = {D : D1 ◦ D2 ⊆ D}. Certainly
these are all common lower bounds. On the other hand suppose there are
φ ∈ D1 and ψ ∈ D2 with φ ◦ ψ 6∈ D. Then (D, ↑ φ ◦ ψ) is a disjoint
pair and can be extended to a mdp (D′, U). Then φ ◦ ψ ∈ U and thus
U ∈ R[D1, D2, ]. On the other hand D ∩ U ⊆ D′ ∩ U = ∅ so that D £ U
and thus D 6∈ R[D1, D2, ]l. Further we show that {D : D1 ◦ D2 ⊆ D}u =
{U : D1 ◦ D2 ∩ U 6= ∅} = R[D1, D2, ]. It is clear that the elements of
R[D1, D2, ] are common upper bounds of the set {D : D1 ◦D2 ⊆ D}. Now
suppose (D1 ◦ D2) ∩ U = ∅. Clearly then ↓ (D1 ◦ D2) ∩ U = ∅. We claim
that ↓ (D1 ◦ D2) is a filter. Let φ1, φ2 ∈ D1 and ψ1, ψ2 ∈ D2, then there
are φ ∈ D1 and ψ ∈ D2 with φ ⊢ φi and ψ ⊢ ψi deducible for i = 1, 2. But
then φ ◦ ψ ⊢ φi ◦ ψi for i = 1, 2 are also deducible. So ↓ (D1 ◦D2) is a filter.
Now suppose θ ∈ U with θ ⊢ φ ◦ ψ deducible where φ ∈ D1 and ψ ∈ D2.
Then φ ◦ ψ ∈ U since U is an ideal. But (D1 ◦ D2) ∩ U = ∅ by assumption,
so (↓ (D1 ◦D2), U) is a disjoint pair and can be extended to a mdp (D, U ′).
But then D ∈ {D : D1 ◦D2 ⊆ D} and D ∩U ⊆ D ∩U ′ = ∅ so that U is not
above D.

Now let D ∈ X and U ∈ Y and consider R[D, , U ] = {D′ : (D ◦ D′) ∩
U 6= ∅}. We claim that R[D, , U ]u = {U ′ : D → U ⊆ U ′}. Let U ′ be such
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that D → U ⊆ U ′. Now for D′ with (D ◦ D′) ∩ U 6= ∅ we have φ ∈ D and
ψ ∈ D′ with φ◦ψ ∈ U . Then φ → (φ◦ψ) ∈ D → U , and thus φ → (φ◦ψ) ∈
U ′. Finally, since ψ ⊢ φ → (φ ◦ ψ) is deducible and since U ′ is an ideal we
get ψ ∈ U ′ and D′ ∩ U ′ 6= ∅. That is, {U ′ : D → U ⊆ U ′} ⊆ R[D, , U ]u.
On the other hand, suppose U ′ ∈ Y and there is φ ∈ D and θ ∈ U with
φ → θ 6∈ U ′. Then (↓ (φ → ψ), U ′) is a disjoint pair and may be extended
to a mdp (D′, U ′′). Then D′ ∩U ′ ⊆ D′ ∩U ′′ = ∅ so D′ £ U ′. However, since
φ → θ ∈ D′ and φ ◦ (φ → θ) ⊢ θ is deducible in the logic, it follows that
φ◦ (φ → θ) ∈ U . But φ◦ (φ → θ) ∈ D ◦D′, so D′ ∈ R[D, , U ] and it follows
that U ′ is not in R[D, , U ]u. Finally, to complete this part on proves that
{U ′ : D → U ⊆ U ′}l = {D′ : (D ◦ D′) ∩ U 6= ∅}. The last coordinate is
handled identically. So R is compatible.

Definition 4.50. Let P be the set of propositional variables, F(P ) the set
of formulas in the given connective type over P , and L the given logic. Let
F = F (L) be the canonical frame for L, then the canonical model for L is
M(L) = (F, V ) where V : P → G(X, Y, R) is given by by V (p) =

∨
{D : p ∈

D} =
∧
{U : p ∈ U}.

It is straight forward to show that {D : p ∈ D}u = {U : p ∈ U} and
{U : p ∈ U}l = {D : p ∈ D} and thus V is well-defined. In addition we
show:

Lemma 4.51. Let P be the set of propositional variables, F(P ) the set of
formulas in the given connective type over P , and L the given logic. Let
M = (F, V ) be the canonical model for L. For an arbitrary formula φ ∈
F(P ), D ° φ if and only if φ ∈ D and U ≻ φ if and only if φ ∈ U .

Proof. We proceed by induction on the complexity of formulas. It is clear
by the definition that it is true for p ∈ P . Now suppose that φ and ψ are
formulas for which the claim is true, and Let U ∈ Y with U ≻ φ ◦ ψ. That
is, ∀D1, D2[(D1 ° φ, D2 ° ψ) ⇒ R(D1, D2, U)]. But D1 ° φ means φ ∈ D1,
D2 ° ψ means ψ ∈ D2, and R(D1, D2, U) means (D1 ◦ D2) ∩ U 6= ∅. So we
have U ≻ φ ◦ ψ if and only if

∀D1, D2[(φ ∈ D1, ψ ∈ D2) ⇒ (D1 ◦ D2) ∩ U 6= ∅].

It is clear then that φ◦ψ ∈ U implies U ≻ φ◦ψ. We now prove the converse.
Let U ∈ Y with φ ◦ψ 6∈ U . Let U1 = {φ′ : φ′ ◦ψ ∈ U}. It is straight forward
to check that U1 is an ideal. Now since φ ◦ ψ 6∈ U , it follows that φ 6∈ U1.
Thus (↑ φ, U1) is a disjoint pair and it can be extended to a mdp (D1, U

′
1).

Further, we let U2 = {ψ′ : ∃φ′(φ′ ∈ D1 and φ′ ◦ ψ′ ∈ U}. We first show that
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U2 is an ideal. It is easy to see that U2 is closed below. If ψ′ and ψ′′ are in
U2, then there are φ′ and φ′′ in D1 with φ′ ◦ ψ′ ∈ U and φ′′ ◦ ψ′′ ∈ U . Since
D1 is a filter, there is φ′′′ ∈ D1 with φ′′′ ⊢ φ′ and φ′′′ ⊢ φ′′ both deducible.
But then φ′′′ ◦ ψ′ ⊢ φ′ ◦ ψ′ and φ′′′ ◦ ψ′′ ⊢ φ′′ ◦ ψ′′ are also deducible so that
φ′′′ ◦ ψ′ and φ′′′ ◦ ψ′′ are in U . Now since U is an ideal, there is θ ∈ U with
φ′′′ ◦ ψ′ ⊢ θ and φ′′′ ◦ ψ′′ ⊢ θ both deducible. Now it is straight forward to
show that φ′′′ → θ is in U2 and that both ψ′ ⊢ (φ′′′ → θ) and ψ′′ ⊢ (φ′′′ → θ)
are deducible. That is, U2 is an ideal. Furthermore, notice that ψ 6∈ U2, so
(↑ ψ, U2) is a disjoint pair and can be extended to a mdp (D2, U

′
2). Now we

see that φ ∈ D1, ψ ∈ D2, and if φ′ ∈ D1 and ψ′ is such that φ′ ◦ ψ′ ∈ U ,
then ψ′ ∈ U2, and thus ψ′ 6∈ D2. That is, U ⊁ φ ◦ ψ as desired.

Now for D ∈ X, we have by definition that D ° (φ ◦ ψ) if and only if

∀U ∈ Y (U ≻ φ ◦ ψ ⇒ D ≤ U.

That is, D ° (φ ◦ ψ) if and only if D is a common lower bound of the set
{U : U ≻ φ ◦ ψ} = {U : φ ◦ ψ ∈ U}. But {U : φ ◦ ψ ∈ U}l is clearly
{D : φ ◦ ψ ∈ D}. That is, D ° (φ ◦ ψ) if and only if φ ◦ ψ ∈ D.

The corresponding statements for the implications are proved similarly.

Lemma 4.52 (Completeness). Let φ and ψ be formulas in F(P ). If the
sequent φ ⊢ ψ is valid over the class of all frames then it can be deduced in
the basic substructural logic.

Proof. We show the contrapositive: If φ ⊢ ψ cannot be deduced in the
basic logic, then it is not valid over the class of all frames. In particular, we
show that it does not hold in the canonical model. Indeed, if φ ⊢ ψ is not
deducible in the logic, then there is a mdp (D, U) so that φ ∈ D and ψ ∈ U ,
and thus φ ⊢ ψ does not hold in the canonical model.

This completes the proof of the completeness theorem.

In the paper [9] this completeness result was proved algebraically, via
the composition of a canonicity result and a discrete duality result. Then it
was showed that various other rules/equations were canonical and had first
order correspondence. In this manner we derived completeness theorems
for the implication-fusion fragment of various substructural logics. These
completeness theorems could of course also be proved purely relationally
as we have done above with the completeness of the basic logic. However,
the methods are not significantly different, so we just state the results here,
referring the reader to the algebraic proofs in [9].
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We consider the following rules:

Γ ; ∆ ⊢ ψ

Γ ; φ ; ∆ ⊢ ψ
, (T)

Γ ; φ ; φ ; ∆ ⊢ ψ

Γ ; φ ; ∆ ⊢ ψ
, (C)

Γ ; φ ; ψ ; ∆ ⊢ θ

Γ ; ψ ; φ ; ∆ ⊢ θ
, (P)

(φ ; ψ) ; θ ⊢ ρ

φ ; (ψ ; θ) ⊢ ρ
and

φ ; (ψ ; θ) ⊢ ρ

(φ ; ψ) ; θ ⊢ ρ
(A)

In [9] it was shown that adding each single one of these rules to the basic
logic yields a logic complete with respect to the class of frames obtained by
imposing each single one of the following first order properties, respectively:

∀x1, x2∀y (x1 ≤ y =⇒ R(x1, x2, y)), (T’)

∀x ∀y (R(x, x, y) =⇒ x ≤ y), (C’)

∀x1, x2 ∀y (R(x1, x2, y) ⇐⇒ R(x2, x1, y)), (P’)

∀x1, x2, x3 ∀y

[∀x (R↓(x2, x3, x) ⇒ R(x1, x, y)) ⇐⇒ ∀x (R↓(x1, x2, x) ⇒ R(x, x3, y))]
(A’)

In fact, the corresponding correspondence results were also shown. That is,
e.g., the algebraic inequality α ≤ α ◦ α which corresponds to (T) holds in a
’complex algebra’, G(F ) if and only if (T’) holds in F , and so on.

This of course yields completeness results, in a modular way, for the
implication-fusion fragment of various substructural logics. In particular,
the Lambek calculus is obtained from the basic logic by adding associativity,
and thus it is complete with respect to the class of frames satisfying the
first order condition (A’). The implication-fusion fragment of linear logic is
obtained from the Lambek calculus by adding the permutation rule, and thus
it is complete with respect to the class of frames satisfying both (A’) and
(P’). The implication-fusion fragment of relevance logic is obtained from
linear logic by adding the contraction rule, and thus it is complete with
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respect to the class of frames satisfying (A’), (P’), and (C’). The implication-
fusion fragment of BCK logic is obtained from linear logic by adding the
thinning rule, and thus it is complete with respect to the class of frames
satisfying (A’), (P’), and (T’). Finally, the implication-fusion fragment of
intuitionistic propositional logic is obtained from linear logic by adding both
the contraction and the thinning rule, and thus it is complete with respect to
the class of frames satisfying (A’), (P’), (C’) and (T’). However, all these are
of course not needed as contraction and thinning already imply that fusion
is infimum and thus both commutative and associative. We just have to
have thinning both on the right and on the left. Call these (Tr) and (Tl),
respectively. As an example we show:

Proposition 4.53. The logic obtained by adding (Tl), (Tr) and (C) to the
basic logic is the implication-fusion fragment of intuitionistic propositional
logic. In particular, bot (A) and (P) hold for this logic.

Proof. We show that if (Tl’), (Tr’) and (C’) hold in a frame F = (X, Y,≤,
R), then R(x1, x2, y) if and only if x1 ∧ x2 ≤ y, where the meet is taken in
G(F ).

For this purpose, suppose R(x1, x2, y) holds and let x ≤ x1 and x ≤ x2,
then from the compatibility of R, we get that R(x, x, y) holds and thus by
(C) x ≤ y. That is,

∀x [(x ≤ x1, x ≤ x2) ⇒ x ≤ y].

But this is exactly the meaning of x1 ∧ x2 ≤ y. For the converse, suppose
x1 ∧ x2 ≤ y, and consider R[x1, x2, ]. By (Tl’) and (Tr’) we have:

∀y′ (x1 ≤ y′ ⇒ y′ ∈ R[x1, x2, ])

∀y′ (x2 ≤ y′ ⇒ y′ ∈ R[x1, x2, ])

Now let x′ ∈ R[x1, x2, ]l, then we have

∀y′ (x1 ≤ y′ ⇒ x′ ≤ y′)

∀y′ (x2 ≤ y′ ⇒ x′ ≤ y′).

That is, x′ ≤ x1 and x′ ≤ x2. But then x′ ≤ x1 ∧ x2 and thus x′ ≤ y. But
then y ∈ R[x1, x2, ]lu = R[x1, x2, ] as desired.
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5. Other connectives

So far we have not treated any other connectives than fusion and its two
associated implications. However, the methods do not restrict to these. In
algebraic terms, a connective can be captured on RS frames if (once the
order is dualized in any number of coordinates and/or in the codomain) its
canonical extension is residuated.

One way this can happen is if the connective is already residuated in
the logic. This is for example the case with ◦,→, and ←. In [16], Mortgatt
discussed adding other residuated binary families obtained by dualizing the
order either in the domain or in the codomain thus getting four possible
families. For example, the family ⊕,⊘, · is given by the requirement:

θ ⊘ ψ ⊢ φ ⇐⇒ θ ⊢ φ ⊕ ψ ⇐⇒ φ · θ ⊢ ψ.

The canonical extension of a connective lives on a perfect lattice, that
is in particular, a complete lattice. Thus being residuated (modulo some
dualization in the domain) is equivalent to, in any one coordinate, either
preserving arbitrary joins or turning arbitrary meets to joins, and being du-
ally residuated (modulo some dualization in the domain) is equivalent to,
in any one coordinate, either preserving arbitrary meets or turning arbi-
trary joins to meets. For unary operations this yields 4 different types of
operations, and for binary operations it yields 8 different types.

If meet and join are part of the connective type and one of the 8 types
of join/meet preservation/reversal is stipulated for finite joins/meets in the
logic, then the infinitary versions hold in the canonical extensions. Thus this
is another way that capturable connectives come about. This is for example
the case with ¤ and 3. These are not generally stipulated to be residuated
but are rather given to be (finite) meet and join preserving, respectively.
The point is though that in the canonical extension they become residuated/
dually residuated.

Finally there is a third entrance to the realm of connectives that can be
captured on RS frames, and that is operations for which the corresponding
variety of algebras is finitely generated. This has not been explored beyond
the distributive setting yet though. We will not discuss this here.

The real problem of course with additional connectives is capturing their
interactions. This is of course a much harder problem and already in the
classical modal case, where we have only unary non-order determined con-
nectives and the order is Boolean, there are axioms which do not behave
well with respect to relational semantics. However, as was seen in [9] some
Sahlqvist-like analysis is still available. Nevertheless, in substructural logic,
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with binary connectives and lots of order reversing connectives things can
go wrong very quickly.
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