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Abstract. We introduce Gentzen calculi for intuitionistic logic extended with an exis-

tence predicate. Such a logic was first introduced by Dana Scott, who provided a proof

system for it in Hilbert style. We prove that the Gentzen calculus has cut elimination

in so far that all cuts can be restricted to very simple ones. Applications of this logic to

Skolemization, truth value logics and linear frames are also discussed.
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1. Introduction

In this paper we introduce Gentzen calculi for so-called existence logics.
These logics are extensions of intuitionistic predicate logic IQC with an ex-
istence predicate E, where the intuitive meaning of Et is that t exists. The
motivation behind these logics is that in the context of intuitionistic logic it
is natural to be able to denote whether a term exists or not.

Existence logic IQCE was first introduced by D. Scott in [13], where he
presented a Hilbert style proof system for the logic. In this system both
variables and terms range over arbitrary objects while the quantifiers are
assumed to range over existing objects only. Existence logic in which terms
range over all object while quantifiers as well as variables only range over
existing objects is denoted by IQCE+ and has e.g. been used by M. Beeson
in [3]. M. Unterhalt thoroughly studied the Kripke semantics of these logics
and proved respectively completeness and strong completeness for the sys-
tems IQCE and IQCE+ in [18]. Completeness results for the Gentzen calculi
presented in this paper can be found in [1].

The Gentzen calculi that we introduce in this paper are called LJE and
LJE(ΣL), which is LJE extended by axioms ΣL, to be defined below. LJE

corresponds to Scott’s IQCE, and for a specific ΣL the calculus LJE(ΣL)
corresponds to IQCE+. This paper is devoted to the proof that both these
systems have cut elimination in so far that cuts in proofs can be restricted
to very simple ones (Theorem 4.6).
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1.1. Applications

Existence logic has numerous applications, and sometimes leads to surprising
solutions of problems that do not seem solvable in pure intuitionistic logic.
We do not describe these applications in full detail here, but we try to explain
the general idea and give pointers to the literature.

1.1.1. Skolemization

The foremost use of the existence predicate is in the setting of Skolemization.
As is well-known, the classical Skolemization method of replacing strong
quantifiers in a formula by fresh function symbols and thus obtaining a
equiconsistent formula, is not complete with respect to IQC. That is, there
are formulas that are underivable, but for which their Skolemized version is
derivable in IQC. For example,

IQC �� ∀x(Ax ∨B) → (∀xAx ∨B) IQC � ∀x(Ax ∨B) → (Ac ∨B).

In [1] an alternative Skolemization method called eSkolemization is intro-
duced and is shown to be sound and complete with respect to IQC for a
large class of formulas, including all formulas in which every strong quan-
tifier is existential or of the form ∀x¬¬Ax. This class is much larger than
the class of formulas for which the standard Skolemization is sound and
complete. This eSkolemization method makes use of the existence pred-
icate. It replaces negative occurrences of existential quantifiers ∃xBx by
(Ef(ȳ) ∧Bf(ȳ)), and positive occurrences of universal quantifiers ∀xBx by
(Ef(ȳ) → Bf(ȳ)). The eSkolemization of a formula A is denoted by As.
For example, the eSkolemization of the displayed formula above is

∀x(Ax ∨B) → ((Ec → Ac) ∨B),

which is not derivable in IQCE. Then it is shown in [1] that

Theorem 1.1. For each formula A in which all strong universal quantifiers
QxBx are of the form ∀x¬¬Bx: �LJE(ΣL)⇒ A if and only if �LJE(ΣL)⇒ As.

The definition of ΣL and LJE will be given below. We will not present
the topic of eSkolemization here but refer the interested reader to [1] instead.

1.1.2. Truth-value logics and linear frames

Another application of the existence predicate is in the context of truth-value
logics. These are logics based on truth-value sets V , i.e. closed subsets of the
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unit interval [0, 1], also called Gödel sets. One can, for a given Gödel set V ,
interpret formulas by mapping them to elements of V . The logical symbols
receive a meaning via restrictions on these interpretations, e.g. by stipulating
that the interpretation of ∧ is the infimum of the interpretations of the
respective conjuncts, or that the interpretation of ∃xAx is the supremum of
the values of Aa for all elements a in the domain. Given these interpretations,
one can associate a logic with such a Gödel set V : the logic of all sentences
that are mapped to 1 under any interpretation on V .

Gödel logics GV are an example of truth value logics. Without going
into the precise definition of these logics here, we only want to mention
that these logics naturally correspond to the logics of linear frames. As has
been shown by A. Beckmann and N. Preining this correspondence takes the
following form.

Theorem 1.2. (A. Beckmann and N. Preining [2]) For every countable lin-
ear frame F there exists a Gödel set V such that

GV |= A ⇔ A holds in all Kripke models on F with constant domains, (i)

and vice versa: for every Gödel set V there exists a countable linear frame
F such that (i).

In [10] so-called Scott logics, structures SV are introduced which corre-
spond to linear frames, but now for possibly non constant domains. That
is, we have

Theorem 1.3. [10] For every countable linear frame F there exists a Gödel
set V such that

SV |= A ⇔ A holds in all Kripke models based on F , (ii)

and vice versa: for every countable Gödel set V there exists a countable
linear frame F such that (ii).

In the same paper it is shown that there is a natural and faithful transla-
tion from Scott logics into Gödel logics. This translation (·)e, that makes use
of the existence predicate, allows to transfer properties about Gödel logics
to Scott logics. (·)e is defined as follows.

(
P (t̄)

)e
= P (t̄) for atomic P and terms t̄,

(·)e commutes with the connectives,

(∃xA(x))e = ∃x
(
Ex ∧ (A(x))e

)
,
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(∀xA(x))e = ∀x
(
Ex → (A(x))e

)
.

Given this translation we then have the following theorem.

Lemma 1.4. [10] For any Gödel set V , (·)e is a faithful translation of SV

into GV , i.e. for all L-sentences A

SV |= A ⇔ G
e
V |= A

e
.

Note the similarity between the different applications of the existence
predicate: the translation (·)e does a similar thing to quantifiers as eSkolem-
ization does. Essentially, it all has to do with the fact that an existence
predicate allows us in a Kripke model to name objects that do not exist in
the root but come into existence only at a later stage in the model. Both [1]
and [10] describe this intuition in more detail.

2. Preliminaries

We consider languages L ⊆ L
′ for intuitionistic predicate logic plus the

existence predicate E, without equality. For convenience we assume that
L contains at least one constant and no variables, and that L

′ contains
infinitely many variables. The reason for this has to do with the semantics
for the Gentzen calculi introduced below; a topic we will not proceed here,
but which is discussed in [1].

The languages contain ⊥, and ¬A is defined as A → ⊥. A, B, C, D, E, ..

range over formulas in L
′, s, t, .. over terms in L

′. Γ, Δ, Π range over multisets
of formulas in L

′. Sequents are expressions of the form Γ ⇒ C, where Γ is a
finite multiset. A sequent is in L if all its formulas are in L. And similarly
for L

′. A formula is closed when it does not contain free variables. A sequent
Γ ⇒ C is closed if C and all formulas in Γ are closed.

In the final proof system (⇒ Et ) will hold for the terms in L, but not
necessarily for the terms in L

′\L. TL denotes the set of terms in L, FL

denotes the set of formulas in L, SL denotes the set of sequents in L, and
similarly for L

′.

In order not to drown in brackets we often write Ax for A(x).

3. The proof system

In this section we define the system LJE, a conservative extension of LJ for
L
′ that covers the intuition that Et means t exists. Such a system was first
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introduced by Dana Scott in [13], but then in a Hilbert style axiomatization,
and called IQCE. The Gentzen calculus for this system given below is new.

Given an existence predicate, terms, including variables, typically range
over existing as well as non-existing elements, while the quantifiers range
over existing objects only. Proofs are assumed to be trees.

3.1. The system LJE

Ax Γ, P ⇒ P P atomic L⊥ Γ,⊥ ⇒ C

Γ, A, B ⇒ C
L∧

Γ, A ∧B ⇒ C

Γ ⇒ A Γ ⇒ B
R∧

Γ ⇒ A ∧B

Γ, A ⇒ C Γ, B ⇒ C
L∨

Γ, A ∨B ⇒ C

Γ ⇒ Ai
R∨ i = 0, 1

Γ ⇒ A0 ∨A1

Γ, A → B ⇒ A Γ, B ⇒ C
L→

Γ, A → B ⇒ C

Γ, A ⇒ B
R→

Γ ⇒ A → B

Γ,∀xAx, At ⇒ C Γ,∀xAx ⇒ Et
L∀

Γ,∀xAx ⇒ C

Γ, Ey ⇒ Ay
R∀ ∗

Γ ⇒ ∀xA[x/y]

Γ, Ey, Ay ⇒ C
L∃ ∗

Γ,∃xA[x/y] ⇒ C

Γ ⇒ At Γ ⇒ Et
R∃

Γ ⇒ ∃xAx

Γ ⇒ A Γ′, A ⇒ C
Cut

Γ, Γ′ ⇒ C

Where (∗) denotes the condition that y does not occur free in Γ and C.
Principal formulas and auxiliary formulas are defined as usual. In the Cut

rule the formula A is called the cutformula, and it is the auxiliary formula
of the cut. The formulas Et and Ey are not principal in respectively L∀, R∃
and R∀, L∃.

We write LJE � S if the sequent S is derivable in LJE. For a set of
sequents X and a sequent S, we say that S is derivable from X in LJE, and
write X �LJE S, if S is derivable in the system LJE to which the sequents in
X are added as initial sequents. We also denote this system by LJE(X).

In the system LJE no existence of any term that is not a variable is
assumed This implies e.g. that we cannot derive ∀xPx ⇒ Pt, but only
∀xPx, Et ⇒ Pt. Note however that the former is derivable in LJE from
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(⇒ Et). This is the reason why we consider derivations from extra axioms,
especially axioms of the form (⇒ Et). Therefore, we define the following
sets of sequents

ΣL ≡def {Γ ⇒ Et | t ∈ TL, Γ a multiset}.

Note that because of the assumptions on L, ΣL contains at least one sequent
and for all sequents Γ ⇒ Et in ΣL, t is a closed term. Given two languages
L ⊆ L′, we write

LJE(ΣL) ≡def {S ∈ SL′ | ΣL �LJE⇒ S}.

L
′ is not denoted in LJE(ΣL), but most of the time it is clear what is the

“larger” language L
′ of which L is a subset.

We often write �L for �LJE(ΣL).

Example 3.1.
��LJE⇒ ∃xEx �LJE⇒ ∀xEx.

�LJE(ΣL)⇒ ∃xEx ∧ ∀xEx.

Lemma 3.2. For all sequents S in L that do not contain E:

LJ � S implies LJE(ΣL) � S.

Proof. Since S is a sequent in L, we may assume w.l.o.g. that when S

is provable in LJ it has a cut-free proof in which all terms that are not
eigenvariables are terms in L. Call this set of terms X. Clearly, Xs = {Γ ⇒
Et | t ∈ X} is a subset of ΣL. At every application of R∃ or L∀, add the
appropriate Γ ⇒ Et as the right hypothesis. At every application of R∀ or
L∃ add the appropriate Ey to the antecedent. This gives a proof of Γ ⇒ A

in LJE.

Later on, in Proposition 4.10, we will see that the converse of the above
lemma holds too.

3.2. Uniqueness

Observe that given another predicate E′ that satisfies the same rules of LJE

as E′, it follows that

LJE(ΣL) � Et ⇒ E
′
t ∧ LJE(ΣL) � E

′
t ⇒ Et.

Namely, LJE(ΣL) � (⇒ (∀xEx∧∀xE′x)), and LJE(ΣL) � (∀xEx, E′t ⇒ Et)
and LJE(ΣL) � (∀xE′x, Et ⇒ E′t). Finally, two cuts do the trick. This
shows that the existence predicate E is unique up to provable equivalence.
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3.3. IQCE and IQCE+

As remarked above, given an existence predicate, terms typically range over
existing as well as non-existing elements, while quantifiers range over existing
objects only. As to the choice of the domain for the variables, there have
been different approaches. Scott in [13] introduces a system IQCE for the
predicate language with the distinguished predicate E, in which variables
range over all objects, like in LJE and LJE(ΣL). On the other hand, Beeson
in [3] discusses a system in which variables range over existing objects only.

The formulation of the system IQCE in [13], where logic with an existence
predicate was first introduced, was in Hilbert style, where the axioms and
rules for the quantifiers are the following:

∀xAx ∧ Et → At

...
B ∧ Ey → Ay

*
B → ∀xAx

...
Ay ∧Ey → B

*
∃xAx → B

At ∧ Et → ∃xAx

Here ∗ are the usual side conditions on the eigenvariable y.
The following formulation of IQCE in natural deduction style was given

in [16]. We call the system NDE (Natural Deduction Existence). It consists
of the axioms and quantifier rules of the standard natural deduction formu-
lation of IQC (as e.g. given in [16]), where the quantifier rules are replaced
by the following rules:

[Ey]

...
Ay

∀I *
∀xAx

...
∀xAx

...
Et

∀E
At

...
At

...
Et

∃I
∃xAx

...
∃xAx

[Ay][Ey]

...
C

∃E *
C

Again, the ∗ are the usual side conditions on the eigenvariable y. It is easy
to see that the following holds.

Fact 3.3. ∀A ∈ FL′ : �IQCE A if and only if �NDE A if and only if �LJE⇒ A.
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Existence logic in which terms range over all objects while quantifiers and
variables only range over existing objects is denoted by IQCE+ and has e.g.
been used by M. Beeson in [3]. The logic is the result of leaving out Ey in the
two rules for the quantifiers in IQCE given above and adding Ex as axioms
for all variables x. A formulation in natural deduction style is obtained from
NDE by replacing the ∀I and ∃E by their standard formulations for IQC and
adding Ex as axioms for all variables x. We call the system NDE+. In this
case we have the following correspondence.

Fact 3.4. ∀A ∈ FL′ :
�IQCE+ A iff �NDE+ A iff {Γ ⇒ Ex | x a variable, Γ a multiset} �LJE(ΣL)

⇒ A.

M. Unterhalt in [18] thoroughly studied the Kripke semantics of these
logics and proved respectively completeness and strong completeness for the
systems IQCE and IQCE+. Similar results for the Gentzen calculi presented
here can be found in [1].

4. Cut elimination

We assume eigenvariables, free and bound variables to be three distinct sets
of variables. The variable y in L∃ and R∀ is called an eigenvariable. The
size of a proof P , sz(P), is inductively defined as the sum of the sizes of
the subproofs in P of its upper sequents plus 1. Thus proofs consisting of
one axiom have size 1. The complexity |C| of a formula is the number of
occurrences of connectives and quantifiers in C. The rank of a cut is 1 +
the complexity of the cut formula. The cutrank cr(P) of a proof P is the
maximal rank of cuts in P . We write LJE �d S when S has a proof of size
≤ d in LJE, We write LJE �c S when S has a proof of cutrank ≤ c. Similarly
for LJE(ΣL). For a proof P , P [t/y] denotes the result of substituting t for y

everywhere in P .

Definition 4.1. We call a (sub)proof (of a proof) strict if its endsequent is
a cut, which has higher rank than all other cuts occurring in the (sub)proof.
Note that whence the rank of a strict proof is the rank of the cutformula of
the lowermost cut.

4.1. Substitution, Weakening and Contraction

We start with the substitution lemma.
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Lemma 4.2. For L ∈ {LJE(ΣL), LJE}:
If P is a proof in L of a sequent S in L′ containing the free variable y, and if
t is a term in L

′ that does not contain eigenvariables or bound variables of
P , then P [t/y] is a proof of S[t/y] in L. Moreover, cr(P [t/y ]) ≤ cr(P) and
sz (P [t/y ]) ≤ sz (P).

Proof. We treat the case L = LJE(ΣL). We use induction on the size d of
P . Let P ′ = P [t/y], S′ = S[t/y]. First d = 1, the case that P is an instance
of an axiom. The axioms Ax, L⊥ in P are replaced by instances of the same
axioms in P ′, so these will not be violated under the transformation. For
axioms Π ⇒ Es in ΣL it follows that s is a closed term in L. Hence the
sequent that results from the substitution, (Π[t/y] ⇒ Es), belongs to ΣL

too. This completes the case d = 1.

Suppose d > 1. First note that because eigenvariables are distinct from
free variables in a proof, y cannot be an eigenvariable in P . We distinguish
by cases according to the last rule in P . The connective rules and cuts in
P are replaced by instances of the same rules in P ′, so these will not be
violated under the transformation. Thus the quantifier rules remain.

Suppose the last inference in P is a quantifier rule. In the case of L∀
and R∃ there are no side conditions, whence these rules will not be violated
in going from P to P ′. We treat R∀, the case L∃ is similar. Consider an
application of R∀ in P :

P1

Π, Ez ⇒ Bz

Π ⇒ ∀uBu

Thus z is not free in Π, and z �= y and u �= y, since y is no eigenvariable
or bound variable. By assumption on t, u does not occur in t. Under the
transformation this will become

P1[t/y]

Π[t/y], Ez ⇒ Bz[t/y]

Π[t/y] ⇒ ∀uBu[t/y]

To see that this a valid application of R∀, it suffices to see that z is not free
in Π[t/y], which is clear from the assumption on t.

To check that cr(P ′) ≤ cr(P ) and sz(P ′) ≤ sz(P ) is left to the reader.

Lemma 4.3. For L ∈ {LJE(ΣL), LJE}: L �c
d Γ ⇒ C implies L �c

d Γ, A ⇒ C.

Proof. Left to the reader. For the quantifier rules, use Lemma 4.2 to repair
variable clashes.
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Lemma 4.4. For L ∈ {LJE(ΣL), LJE}: L has contraction. In fact:

L �c
d Γ, A, A ⇒ C implies L �c

d Γ, A ⇒ C (iii)

Proof. To show that the system has contraction we need the following
claim.

Claim 4.5. For d > 0, it holds that

L �c
d Γ, A ∧B ⇒ C implies L �c

d Γ, A, B ⇒ C

L �c
d Γ, A ∨B ⇒ C implies L �c

d Γ, A ⇒ C and L �d Γ, B ⇒ C

L �c
d Γ ⇒ A → B implies L �c

d Γ, A ⇒ B

L �c
d Γ,∃xAx ⇒ C implies L �c

d Γ, Ey, Ay ⇒ C, for all y.

Proof. The only detail here is the possibility of variable clashes. We only
treat the case of the existential quantifier, with induction on d. If Γ,∃xAx ⇒
C is an axiom, then so is Γ, Ey, Ay ⇒ C. Suppose it it not an axiom. If
in the last inference in the proof of Γ,∃xAx ⇒ C, ∃xAx is not principal,
then the induction hypothesis applies: for the rules without eigenvariables
this is immediate. For the rules with eigenvariables, if the eigenvariable is
y, we just replace it by a fresh eigenvariable not occurring in the proof, and
then using the induction hypothesis we obtain a proof of Γ, Ey, Ay ⇒ C of
same rank and size. If ∃xAx is principal in the last rule, the result follows
immediately. This proofs the claim.

Using this claim we prove (iii) with induction on the size d of the proof
of Γ, A, A ⇒ C in L. If d = 1, the sequent is an axiom, and so Γ, A ⇒ C

clearly is an axiom too (also in the case of ΣL). Consider the case d + 1. If
the last rule in the proof is a right rule or the principal formula is in Γ, then
the induction hypothesis applies. Therefore, suppose it is a left rule and the
principal formula is not in Γ. We distinguish by cases. We treat L∧ and
leave the other cases to the reader. In this case the last part of the proof
then looks as follows. ...

Γ, A ∧B, A, B ⇒ C

Γ, A ∧B, A ∧B ⇒ C

Assume the cutrank of the proof is n. Let P be the proof of Γ, A∧B, A, B ⇒
C. Note that P has size d. Thus we can apply the claim and obtain a
proof of Γ, A, B, A, B ⇒ C of size ≤ d and cutrank ≤ n. Then we apply
the induction hypothesis, first to A and then to B, and obtain a proof of
Γ, A, B ⇒ C of size ≤ d and cutrank ≤ n. An application of L∧ provides a
proof of Γ, A ∧B ⇒ C of size ≤ d + 1 and cutrank ≤ n, as desired.
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4.2. Restriction to Ecuts

Theorem 4.6. For L ∈ {LJE(ΣL), LJE}:
Every sequent in L′ provable in L has a proof in L in which the only cuts are
instances of the ECut rule:

Γ ⇒ Et ∈ ΣL Γ′, Et ⇒ C
ECut:

Γ, Γ′ ⇒ C

In particular, LJE has cut-elimination.

Proof. We call a proof ecutfree if all applications of Cut are instances of
ECut, and we call it cutfree when it contains no cuts at all. Recall that the
cutrank cr(P) of a proof P is 1 + the maximal complexity of cutformulas in
P .

The proof consists of two claims. The first shows how to remove cuts of
rank > 1 from a proof, and the second shows how cuts of rank 1 that are not
instances of ECut can be removed from a proof. These two claims together
imply the theorem.

Claim 4.7. For L ∈ {LJE(ΣL), LJE}: Every sequent in L′ provable in L has
a proof in L in which all cuts have rank 1.

Proof. We treat the case LJE(ΣL), the case LJE is similar. We prove the
claim by showing how we can transform a proof of cutrank > 1 into a proof
of the same endsequent in which the maximal rank of its strict parts is lower
than the maximal rank of the strict parts in the original proof. For this it
suffices to show that a strict proof P

P1

Γ ⇒ A

P2

Γ′, A ⇒ C

Γ, Γ′ ⇒ C

with |A| > 0, i.e. with cr(P ) > 1, can be transformed into a proof of the
same endsequent in which all strict subproofs have a smaller rank than the
rank of A. We use induction to the rank of P with a subinduction to the
size of the proof. We call Γ ⇒ A and Γ′, A ⇒ C the hypotheses of the cut
and Γ, Γ′ ⇒ C the conclusion. Since |A| > 0, A cannot be principal in an
axiom, including ΣL. Note also that A cannot be of the form Et. Therefore,
we only have to distinguish the following two cases:
(a) the cutformula is not principal in one of the hypotheses,
(b) the cutformula is principal in both hypotheses, which are not axioms.
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(a) Suppose the cut formula is not principal in one of the hypotheses. If
this hypothesis is an instance of axioms Ax or L⊥, then so is the conclusion
of the cut, and whence we have a cutfree proof of it. If this hypothesis is an
instance of an axiom Γ ⇒ Et in ΣL, then since |A| > 0 it has to be the right
hypothesis. Observe that (Γ ⇒ Et) ∈ ΣL, implies that (Π ⇒ Et) ∈ ΣL for
all Π. Hence the conclusion of the cut is a sequent in ΣL, in which case we
have a cutfree proof of it.

Next suppose that the hypothesis in which A is not principal is the lower
sequent of an application of one of the rules. In this case we can cut higher
up. That is, suppose the cutformula is not principal in the left hypothesis,
and assume this is a two hypotheses rule R, say L∨. Then P looks as follows.

P1

Γ1 ⇒ A

P2

Γ2 ⇒ A
L∨

Γ ⇒ A

P3

Γ′, A ⇒ C

Γ, Γ′ ⇒ C

Note that by assumption cr(Pi ) < cr(P) for i = 1, 2, 3. Then we transform
the proof into a proof P ′ as follows.

P1

Γ1 ⇒ A

P3

Γ′, A ⇒ C

Γ1, Γ
′ ⇒ C

P2

Γ2 ⇒ A

P3

Γ′, A ⇒ C

Γ2, Γ
′ ⇒ C

L∨
Γ, Γ′ ⇒ C

Now we have two cuts on A, but the sizes of the proofs of these cuts in
P ′ are smaller than the size of P . Therefore, we can apply the induction
hypothesis and are done. The other cases are similar. Note that in the case
that R is a cut, it is by assumption a cut of rank < |A|+ 1 = cr(P ). Hence
also in this case the induction hypothesis applies to P ′.

(b) In this case the cut is principal in both hypotheses, and both hy-
potheses are not axioms. We distinguish by cases according to the outermost
logical symbol in A: the cases ∧, ∨, → are treated in the same way as in the
case of LJ, see e.g. [17]. We treat the quantifiers.

∀: then P looks as follows:

P1

Γ, Ey ⇒ Ay
d1Γ ⇒ ∀xAx

P2

Γ′,∀xAx, At ⇒ C

P3

Γ′,∀xAx ⇒ Et
d2

Γ′,∀xAx ⇒ C

Γ, Γ′ ⇒ C
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Note that y is not free in Γ because of the conditions on R∀, and y is not
free in Γ′, C and t because of the conditions on eigenvariables in a proof.
By assumptions on variables, t does not contain eigenvariables or bound
variables in P .

We can transform the above proof into the following proof P ′:

P1

Γ, Ey ⇒ Ay

Γ ⇒ ∀xAx

P3

Γ′,∀xAx ⇒ Et

Γ, Γ′ ⇒ Et

P1[t/y]

Γ, Et ⇒ At

Γ, Γ, Γ′ ⇒ At P ∗

Γ, Γ, Γ, Γ′, Γ′ ⇒ C

where P ∗ is the proof

P1

Γ, Ey ⇒ Ay

Γ ⇒ ∀xAx

P2

Γ′,∀xAx, At ⇒ C

Γ, Γ′, At ⇒ C

Note that the endsequent of P1[t/y] indeed is Γ, Et ⇒ At as y is not free
Γ. By Lemma 4.2, P1[t/y] is a proof of (Γ, Et ⇒ At) in LJE(ΣL) such that
cr(P1 [t/y ]) ≤ cr(P1 ) < cr(P). Observe that the sizes of the proofs of the
cuts on ∀xAx in P ′ are smaller than the size of P . Therefore, we can apply
the induction hypothesis and obtain proofs of their conclusions of cutrank
< cr(P). Whence there is a proof of Γ, ΓΓ, Γ′, Γ′ ⇒ C of cutrank < cr(P).
Application of some contractions, Lemma 4.4, gives a proof of Γ, Γ′ ⇒ C of
cutrank < cr(P). This proves the case ∀.

∃: Similar. Here P looks as follows:

P1

Γ ⇒ At

P2

Γ ⇒ Et

Γ ⇒ ∃xAx

P3

Γ′, Ey, Ay ⇒ C

Γ′,∃xAx ⇒ C

Γ, Γ′ ⇒ C

Because of the side condition that y is not free in Γ′ and C we can transform
this proof into the following proof P ′:

P1

Γ ⇒ At

P2

Γ ⇒ Et

P3[t/y]

Γ′, Et, At ⇒ C

Γ, Γ′, At ⇒ C

Γ, Γ, Γ′ ⇒ C
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By Lemma 4.2, cr(P3 [t/y ]) ≤ cr(P3 ). Thus cr(P ′) < cr(P). This com-
pletes (b) and thereby the proof of the claim.

Claim 4.8. For L ∈ {LJE(ΣL), LJE}: Every sequent in L
′ that has a proof

in L of cutrank 1, has a proof in L in which all cuts are instances of ECut.

Proof. We treat the case LJE(ΣL). We use induction on the size d of a
proof P of cutrank ≤ 1 of a sequent S. The case d = 1 is trivial, as then P

consists of an axiom only. Suppose d > 1. If the last inference in P is not a
cut or it is an application of ECut, we can apply the induction hypothesis
and are done. Therefore, suppose P ends in a cut that is not an instance of
ECut:

P1

Γ ⇒ A

P2

Γ′, A ⇒ C
d

Γ, Γ′ ⇒ C

Thus by the induction hypothesis P1 and P2 are ecutfree, i.e. all cuts they
contain are instances of ECut. And as P has cutrank ≤ 1, A is atomic or
⊥ or of the form Et. Denote Γ, Γ′ ⇒ C by S. We distinguish the following
cases:
(c) the cutformula is principal in the right hypothesis,
(d) the cutformula is not principal in the right hypothesis.

(c) Assume the cutformula is principal in the right hypothesis. The form
of A implies that whence the right hypothesis Γ′, A ⇒ C has to be an axiom.
Since A is principal in it, C = A or A = ⊥. In the former case we can obtain
a ecutfree proof of S by weakening the sequent Γ ⇒ A. If A = ⊥, then it
follows that either ⊥ ∈ Γ or A is not principal in the left hypothesis. In the
former case S is an instance of L⊥ and we are done. In the latter case, since
A is not principal in it, either ⊥ ∈ Γ or Γ ⇒ ⊥ is the conclusion of a rule R

in which ⊥ is not principal. In the former case S is an axiom. In the latter
case one can cut higher up, like in case (b) in the proof of the first claim:
we treat the case that R is an ECut, and leave the other cases to the reader.
In this case P looks as follows.

Γ ⇒ Et ∈ ΣL

P1

Γ′, Et ⇒ ⊥

Γ, Γ′ ⇒ ⊥ Γ′′,⊥ ⇒ C

Γ, Γ′, Γ′′ ⇒ C

We transform this proof into the proof P ′:
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Γ ⇒ Et ∈ ΣL

P1

Γ′, Et ⇒ ⊥ Γ′′,⊥ ⇒ C

Γ′, Γ′′, Et ⇒ ⊥

Γ, Γ′, Γ′′ ⇒ ⊥

We apply the induction hypothesis to P ′ and are done.
(d) Assume the cutformula is not principal in the right hypothesis. If

Γ′, A ⇒ C is an axiom, then ⊥ ∈ Γ′, C ∈ Γ′ or C = Et for some t ∈ TL. In
all cases S is an instance of the same axiom. If the right hypothesis is an
application of a rule R we proceed as follows. We treat the cases that R is a
two hypothesis rule that is not a cut, and the case that it is a cut, and leave
the other cases to the reader. First, suppose R is not a cut. Then P looks
as follows.

P1

Γ ⇒ A

P2

Γ1, A ⇒ C1

P3

Γ2, A ⇒ C2
R

Γ′, A ⇒ C

Γ, Γ′ ⇒ C

Note that by the induction hypothesis the Pi are ecutfree. Then we trans-
form the proof into a proof P ′ as follows.

P1

Γ ⇒ A

P2

Γ1, A ⇒ C1

Γ, Γ1 ⇒ C1

P1

Γ ⇒ A

P3

Γ2, A ⇒ C2

Γ, Γ2 ⇒ C2
R

Γ, Γ′ ⇒ C

Since R is not a cut we can apply the induction hypothesis to P ′ and are
done.

Finally, we treat the case that R is a cut. By the induction hypothesis
it is an instance of ECut. Hence P looks like this:

P1

Γ ⇒ A

Γ′, A ⇒ Et ∈ ΣL

P2

Γ′′, Et, A ⇒ C

Γ′, Γ′′, A ⇒ C

Γ, Γ′, Γ′′ ⇒ C

Then we transform the proof into a proof P ′ as follows:

Γ′ ⇒ Et ∈ ΣL

P1

Γ ⇒ A

P2

Γ′′, Et, A ⇒ C

Γ, Γ′′, Et ⇒ C

Γ, Γ′, Γ′′ ⇒ C
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To see that this is indeed a proof, note that (Γ′, A ⇒ Et) ∈ ΣL implies
t ∈ TL, which implies (Γ′ ⇒ Et) ∈ ΣL. Now the induction hypothesis
applies to P ′, and we are done. This proves the second claim.

As explained above, the two claims imply the theorem.

Corollary 4.9. LJE(ΣL) is consistent.

The cut elimination theorem allows us to proof the following correspon-
dence between LJ and LJE(ΣL), one direction of which has already been
proved above.

Proposition 4.10. For every sequent S in L not containing E:

LJ � S if and only if LJE(ΣL) � S.

Proof. For the direction from left to right see Proposition 3.2. The direc-
tion from right to left: show with induction to the size of the proof that for
Γ and A not containing E, if Et1, . . . , Etn, Γ ⇒ A is derivable in LJE(ΣL)
by a proof in which all cuts are instances of ECut, then Γ ⇒ A is derivable
in LJ.
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