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Abstract. Constructive logic with Nelson negation is an extension of the intuitionistic

logic with a special type of negation expressing some features of constructive falsity and

refutation by counterexample. In this paper we generalize this logic weakening maximally

the underlying intuitionistic negation. The resulting system, called subminimal logic with

Nelson negation, is studied by means of a kind of algebras called generalized N-lattices.

We show that generalized N-lattices admit representation formalizing the intuitive idea of

refutation by means of counterexamples giving in this way a counterexample semantics

of the logic in question and some of its natural extensions. Among the extensions which

are near to the intuitionistic logic are the minimal logic with Nelson negation which is

an extension of the Johansson’s minimal logic with Nelson negation and its in a sense

dual version — the co-minimal logic with Nelson negation. Among the extensions near to

the classical logic are the well known 3-valued logic of  Lukasiewicz, two 12-valued logics

and one 48-valued logic. Standard questions for all these logics — decidability, Kripke-

style semantics, complete axiomatizability, conservativeness are studied. At the end of the

paper extensions based on a new connective of self-dual conjunction and an analog of the

 Lukasiewicz middle value 1/2 have also been considered.

Keywords: Nelson negation, subminimal logic, counterexample semantics, many-valued
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Introduction

The aim of this paper is to study some generalizations of the constructive
logic with strong negation. This logic was suggested by Nelson [13] and
independently by Markov [12] and formalized by Vorob’ev [30, 31, 32]. The
Vorob’ev’s axiomatization is an extension of the intuitionistic propositional
logic by a new connective ∼, called strong negation or Nelson negation,
satisfying the following axioms:

(∗) ∼ A⇒ (A⇒ B),

(∼⇒) ∼ (A⇒ B)⇔ A∧ ∼ B,

(∼ ∧) ∼ (A ∧B)⇔∼ A∨ ∼ B,
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(∼ ∨) ∼ (A ∨B)⇔∼ A∧ ∼ B,

(∼ ¬) ∼ ¬A⇔ A,

(∼∼) ∼∼ A⇔ A.

Following some tradition in the literature, constructive logic with strong
negation will be called in this paper Nelson logic, or simply N-logic.

The name “strong negation” comes from the fact that the formula (S)
∼ A ⇒ ¬A is a theorem of the N-logic. The adjective “constructive” has
more deep reasons contained in Nelson’s and Markov’s criticism of some
non-constructive features of the intuitionistic negation. Namely for the in-
tuitionistic negation ¬ the derivability of ¬(A∧B) in intuitionistic logic does
not imply that at least one of the formulas ¬A, ¬B is derivable, while for
the constructive negation this is true.

Since in this paper we will consider generalizations of the N-logic in
which the formula ∼ A ⇒ ¬A need not be a theorem, the name “strong
negation” is not suitable. The name “constructive negation” also is not
suitable, because, as it was pointed out by Kracht [8], the above mentioned
feature of constructivity of ∼ A need not be true for some extensions of the
N-logic. So we prefer to use for ∼ the more neutral name of Nelson negation.

In this paper we will concentrate our attention on another feature of
the Nelson negation, pointed out by Markov that we have in general two
different ways to refute a sentence A. One way is by reductio ad absurdum,
namely refuting A is replaced by proving that A implies absurdum. This role
of negation is played both by the intuitionistic negation and by the classical
negation. Another way to refute A is to construct a counterexample of A.
Obviously one sentence A may have many counterexamples and each of them
have to contradict A. For instance, a counterexample of the sentence “This
apple is red” is for instance “This apple is green”, or, “This apple is yellow”,
etc. It is quite strange that neither in the intuitionistic logic, nor in the
classical logic there is a formal means for a refutation by a counter-example.
Namely the Nelson negation in the N-logic may play such a role. A similar
role for an extension of the classical logic can play a negation, satisfying
the Vorob’ev’s axioms, added to the axioms of the classical logic. Strangely
enough, the obtained in this way logic is equivalent to the well known three-
valued logic of  Lukasiewicz [9]( see for this fact [27, 28]). This new view
on the Nelson negation leads to a reading of ∼ A as a counterexample of
A. Having in mind this reading, then the Vorob’ev’s axioms have a quite
clear meaning: the axiom (∗) describes a relation between a given sentence
and its counterexample. Namely it says in some sense that ∼ A together
with A imply everything. This means that the counterexample ∼ A of
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A contradicts A. The other axioms can be treated as constructive ways
(algorithms) of how to construct a counterexample of a compound sentence
if we have already constructed counterexamples of its components. That is
why we call them algorithmic axioms. For instance the axiom (∼⇒) says that
a counterexample of the implication A ⇒ B is just a conjunction of A and
a counterexample ∼ B of B. The axiom (∼ ∨) says that a counterexample
∼ (A ∨ B) of A ∨ B can be constructed by a conjunction ∼ A∧ ∼ B of
counterexamples of A and B. (∼∼) says that if we want to construct a
counterexample of ∼ A then simply we have to go back to A. And similarly
for the other axioms.

All this leads to consider a formal treating of the above idea as a coun-
terexample semantics for the N-logic. This was done in [24, 26, 27]. The
counterexample semantics is more stable and can be preserved in one way or
another trough some extensions or generalizations of the N-logic. Example
of such an extension is for instance the three-valued logic of  Lukasiewicz.
Another example is an extension of the minimal logic of Johansson with
Nelson negation given in [25] and presenting a counterexample semantics
for it. A generalization of the counterexample semantics to the so called
paraconsistent Nelson’s logic has been given by Odintsov [14, 15].

The first formal semantics for the N-logic is algebraic one and has been
given by Rasiowa [19] and Bialinicki-Birula and Rasiowa [2] by means of N-
lattices (N-lattices are studied also in [20] under the name of quasi-pseudo-
Boolean algebras; other authors [21, 22, 8] called them simply Nelson alge-
bras). Let us note that the semantics of the N-logic by means of N-lattices is
not intuitive one, even after the topological representation theorem given in
[2]. In [24, 27] the author was able to find a construction of a special kind of
N-lattices, formalizing the intuitive idea of counterexample. I will call this
construction a counter-example construction. The completeness theorem for
the N-logic with respect to the counterexample semantics was proved in [27]
by a representation theorem, stating that every N-lattice can be isomorphi-
cally embedded into an N-lattice obtained by the counterexample construc-
tion. The counterexample construction had been independently invented
also by Fidel [4]. It then has been successfully used as a tool for studying N-
logic and its extensions by several authors: Goranko [7], Sendlewski [21, 22],
Kraht [8]. Applications to logic programming have been given by Pearce
and Wagner [16, 17].

In this paper we will present a maximally possible generalization of the N-
logic, for which the counterexample semantics is possible. The generalization
will try to satisfy the following requirements:
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(I) To preserve the language of the N-logic and to weaker maximally the
intuitionistic negation.

(II) To preserve all algorithmic axioms of the Nelson negation, relaxing
only the axiom (∗).

(III) I and II to be chosen in such a way as to be possible to make a
reasonable generalization of the counterexample semantics.

For (I) we decide to drop all axioms of the intuitionistic negation and to
add only the (provable in intuitionistic logic) rule of extensionality: A⇔B

¬A⇔¬B
.

For (II) we preserve all axioms for the Nelson negation replacing the
axiom (∗) with a new equivalent one. First note that the axiom (∗) ∼ A⇒
(A ⇒ B), is equivalent on the base of the intuitionistic logic to each of the
following two formulas:

(S) ∼ A⇒ ¬A,

(]) ∼ A⇒ (¬B ⇒ ¬A).

However the equivalence of the above three formulas is no longer true if
the requirement (I) is made. Obviously (S) implies (]) on the base of positive
logic. Axiom (∗) is too strong, because it identify the Nelson contradiction
A∧ ∼ A with the intuitionistic (and classical) contradiction, while we want
to relax this. So to realize (II) we decide to replace the axiom (∗) with the
axiom (]) and to preserve all algorithmic axioms for the Nelson negation.

Fixing in this way (I) and (II) we obtain an axiomatic system, contain-
ing two negations: the Nelson negation ∼ and the weaker version ¬ of the
intuitionistic negation. We call this new negation subminimal negation. We
chose this name because adding only one very simple axiom for ¬, ¬¬>,
we obtain the minimal negation of Johansson, and so the name “submini-
mal”. Making the above assumption the intuitionistic negation is lost and
in order to have it at hand and to make the things more simple, we will
assume that the axiomatic system contains the sign ⊥ of absurdity with the
axiom ⊥ ⇒ A. For symmetry we also assume that we have the sign > for
the logical truth with the axiom A ⇒ > . Having ⊥ we may define the
intuitionistic negation (using the sign − for it) with the standard definition:
−A =def A ⇒ ⊥. Preserving in this way ⊥ and > in the language, a ques-
tion arises how to treat in this weaker logic ∼ ⊥ and ∼ >? There are many
choices: any sentence is a counterexample of ⊥ and also many sentences
can be counterexamples of >, for instance ⊥. In the Nelson’s logic we have
∼ > ≡ ⊥ and ¬⊥ ≡ >. So in order not to make the things complicate we
also assume the following two axioms for ⊥ and >:

(∼ >) ∼ > ⇒ ⊥ and (∼ ⊥) ∼ ⊥.
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The above two axioms are in a sense algorithmic, because they fix some
counterexamples of ⊥ and >, do not concern the negation ¬, so their choice
is in accordance with the assumptions (I) and (II).

We call the new logic subminimal logic with Nelson negation and denote
it by SUBMINN. Note that now (S) is no more a theorem and hence ∼ A
is no more a “strong negation”.

The main aim of the paper is to show that on the base of the assump-
tions we have just made for (I) and (II) the requirement (III) can be realized.
We study also some extensions of the subminimal logic with Nelson nega-
tion: the minimal logic with Nelson negation — MINN, the co-minimal
logic with Nelson negation — CO−MINN, the join of these two, which is
just the Nelson’s logic — INTN, and also the classical versions of all these
logics, having classical implication — Class.SUBMINN, Class.MINN,
Class.INTN = ClassN. It is notable that all these classical versions of the
logics with Nelson negation are finitely valued logics: the classical version of
the Nelson’s logic, ClassN, is the well known 3-valued logic of  Lukasiewicz,
Class.MINN and Class.CO−MINN are 12-valued logics, and the logic
Class.SUBMINN is a 48-valued logic. For all introduced logical systems
an algebraic semantics is given, based on generalized N-lattices and a gen-
eralization of counterexample construction for these lattices is given. It is
shown also how this construction can be rephrased to obtain Kripke style
semantics for the logics in consideration. The main result of the paper is
a class of completeness theorems with respect to all of the introduced se-
mantics and an application of these theorems to obtain the decidability of
the introduced logics. In order to realize this program a special attention
is given to the sublogics of the introduced systems in a language without
the sign of the Nelson negation. In the final section we show that the coun-
terexample semantics is also meaningful for some extensions of the language
with some new connectives, which are interesting only in the presence of
the Nelson negation. One of them is the self-dual conjunction A •B which
satisfies the axioms A •B ⇔ A∧B and ∼ (A •B)⇔∼ A∧ ∼ B from which
self-duality with respect to ∼ easily follows. The first axiom says that with
respect to the equivalence⇔ A•B is just the ordinary conjunction while the
second axiom can be understand as a new way of forming a counterexample
of conjunction.

Acknowledgements. The cooperation for this work was partially sup-
ported by EU COST action 274 “Theory and Applications of Relational
Structures as Knowledge Instruments” (TARSKI). The author was also sup-
ported by the RILA project sponsored by the Bulgarian Ministry of Science
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1. Nelson logic, N-lattices and counterexample

construction

In this section we remind some definitions and facts concerning Nelson logic.
We will denote this logic by INTN. The upper index N in INT indicates
that the intuitionistic logic is extended with the Nelson negation.

The Nelson logic.

As we have already mentioned, the language of Nelson logic is an exten-
sion of the language L(¬,∧,∨,⇒,⇔) of the intuitionistic propositional logic
with the sign of Nelson negation ∼. The axiomatization of this logic can
be obtained from an axiomatization of the intuitionistic logic by adding the
Vorob’ev’s axioms (∗), (∼ ∨), (∼ ∧), (∼⇒), (∼ ¬), (∼∼).

Note that for the N-logic the rule of replacement of equivalents is not
true just because the rule A⇔B

∼A⇔∼B
is not true. The failure of this rule can be

expected if we interpret ∼ A as a counterexample of A: one sentence may
have in general many non-equivalent counterexamples.

Now we will introduce an algebraic semantics for the N-logic.

N-lattices.

Definition 1.1. [19] An algebraic system N = (N,≤, 0, 1,∧,∨,⇒,¬, ∼), is
said to be an N-lattice if the following conditions are satisfied:

R1 Let a ` b iff a ⇒ b = 1 and a ≡ b iff a ` b and b ` a. Then ` is a
quasi-ordering in N and consequently ≡ is an equivalence relation in
N .

R2 a ≤ b iff a ` b and ∼ b `∼ a,

R3 x ∧ a ` b iff x ` a⇒ b,

R4 a ` c and b ` c iff a ∨ b ` c,

R5 c ` a and c ` b iff c ` a ∧ b,

R6 ¬a = a⇒ 0,

R7 (N,≤, 0, 1,∨,∧, ∼) is a quasi-Boolean algebra, i.e.:

∼ (a ∨ b) =∼ a∧ ∼ b,
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∼ (a ∧ b) =∼ a∧ ∼ b,

∼∼ a = a,

R8 ∼ (a⇒ b) ≡ a∧ ∼ b,

R9 ∼ ¬a ≡ a,

R10 ∼ a ` ¬a.

Definition 1.2 (“Counterexample” construction [24, 27]).

Let (B, 0, 1,≤,∧,∨,⇒) be a Heyting algebra. Let N(B) = {(a, b) ∈ B2 :
a ∧ b = 0} = {(a, b) ∈ B2 : ¬(a ∧ b) = 1}. Define the following operations in
N(B):

0 = (0, 1), 1 = (1, 0),

(a1, a2) ∧ (b1, b2) = (a1 ∧ b1, a2 ∨ b2),

(a1, a2) ∨ (b1, b2) = (a1 ∨ b1, a2 ∧ b2),

(a1, a2)⇒ (b1, b2) = (a1 ⇒ b1, a1 ∧ b2),

¬(a1, a2) = (¬a1, a1), ∼ (a1, a2) = (a2, a1).

The “counterexample construction” has the following intuitive explana-
tion. The elements of the pseudo-Boolean algebra can be considered as
sentences and their operations as logical operations on sentences. The con-
dition a∧b = 0, or equivalently ¬(a∧b) = 1, is interpreted as the counterex-
ample relation: “b is a counterexample of a”. Since one sentence may have
many (in general non-equivalent) counterexamples, then each pair (a, b) with
a ∧ b = 0 carries both the sentence a with a given counterexample b. Then
the operations on the pairs can be considered as algorithms for constructing
counterexamples for complex sentences by means of given counterexamples
of the arguments.

Theorem 1.3 ([27] Representation theorem for N-lattices).

(i) The set N(B) with the above defined operations is an N-lattice,
called special N-lattice.

(ii) Each N-lattice can be isomorphically embedded into a special N-
lattice.

Theorem 1.4 ([27] Completeness theorem for the Nelson logic).

The following conditions are equivalent for very formula A of INTN:
(i) A is a theorem of INTN,

(ii) A is true in all N-lattices,

(iii) A is true in all special N-lattices.
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2. Subminimal logic with Nelson negation

The logic SUBMINN.

In this section we will introduce with details the subminimal logic with
Nelson negation, discussed briefly in the introduction. We denote it by
SUBMINN.

The language of the subminimal logic with Nelson negation is an exten-
sion of the language of the Nelson logic with the symbols ⊥ and >.

We adopt the following axiomatics for SUBMINN.

(I) Axioms for positive logic + ⊥, >:

P1 A⇒ (B ⇒ A),

P2 (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C)),

P3 A ∧B ⇒ A,

P4 A ∧B ⇒ B,

P5 (C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ A ∧B)),

P6 A⇒ A ∨B,

P7 B ⇒ A ∨B,

P8 (A⇒ C)⇒ ((B ⇒ C)⇒ (A ∨B ⇒ C)),

P9 A⇒ >,

P10 ⊥ ⇒ A.

(II) Axioms for the Nelson negation.

(]) ∼ A⇒ (¬B ⇒ ¬A),

(∼⇒) ∼ (A⇒ B)⇔ A∧ ∼ B,

(∼ ∧) ∼ (A ∧B)⇔∼ A∨ ∼ B,

(∼ ∨) ∼ (A ∨B)⇔∼ A∧ ∼ B,

(∼ ¬) ∼ ¬A⇔ A,

(∼∼) ∼∼ A⇔ A,

(∼ >) ∼ > ⇒ ⊥,

(∼ ⊥) ∼ ⊥.

(III) Rules of inference.

Modus Ponens: A,A⇒B
B

,

The rule of extensionality for the subminimal negation: (Ext-¬) A⇔B
¬A⇔¬B

.
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The above axiomatic system is identified with the logic SUBMINN.
Note that the rule A⇔B

∼A⇔∼B
is not true for this logic and consequently the

rule of replacement of equivalents does not hold in general. It however holds
if the replacements of equivalents is not in the scope of the sign ∼.

The presented axiom system for SUBMINN is not very suitable, be-
cause the axiomatization is not separated in a sense that we have no special
group of axioms for the subminimal negation from which one can derive all
theorems for it not containing the Nelson negation. Moreover it contains
one more rule (Ext-¬), which for the Nelson logic is derivable. The pur-
pose of the given axiomatization is just to show that all information about
the subminimal negation is contained in the group of axioms of the Nelson
negation. We will give separated axiomatization of SUBMINN in which
the rule (Ext-¬) is replaced by some axioms. For that purpose we will derive
some theorems for SUBMINN. In order to simplify the proofs we will use
the notations:

• A ` B iff A⇒ B is a theorem of SUBMINN.
• A ≡ B iff A ` B and B ` A.

Obviously ` is a reflexive and transitive relation between formulas and ≡
is an equivalence relation. Later on we will use these notations for different
logics. Also in the proofs we will use some obvious intuitionistic calculations
and replacement of equivalents if the replacement is not in the scope of the
Nelson negation.

Proposition 2.1. The following conditions are provable in SUBMINN:

(i) A ∧ ¬B ` ¬(A⇒ B),

(ii) A ∧ ¬A ` ¬>, and ¬A ` A⇒ ¬>,

(iii) ¬B ∧A ` ¬ ∼ A,

(iv) ¬ ∼ (A⇒ ¬B) ≡ ¬(A ∧B),

(v) ¬C ∧ (A⇒ ¬B) ` ¬(A ∧B),

(vi) ¬A ` ¬¬>,

(vii) ¬¬> ∧ (A⇒ ¬>) ` ¬A,

(viii) ¬A ≡ (A⇒ ¬>) ∧ ¬¬>,

(ix) ¬⊥ ≡ ¬¬>,

(x) ¬A ≡ (A⇒ ¬>) ∧ ¬⊥,

(xi) A⇒ B ` ¬B ⇒ ¬A,

(xii) ¬C ` ¬(A∧ ∼ A).
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Proof. (i) A ∧ ¬B ≡ by (∼∼) ¬B ∧ (A∧ ∼∼ ¬B) ≡ by (∼⇒) ¬B∧ ∼

(A⇒∼ ¬B) `(by (])) ¬(A⇒∼ ¬B) ≡ by (∼ ¬) ¬(A⇒ B).

(ii) By (i): A ∧ ¬A ` ¬(A⇒ A) ≡ ¬>. From here: ¬A ` A⇒ ¬>.

(iii) By (∼∼) and (]) : ¬B ∧A ≡ ¬B∧ ∼∼ A ` ¬ ∼ A.

(iv) By (∼⇒) and (∼ ¬): ∼ (A ⇒∼ ¬B) ≡ A∧ ∼ ¬B ≡ A ∧ B. Then by
the rule of extensionality for ¬ we obtain: ¬ ∼ (A⇒ ¬B) ≡ ¬(A∧B).

(v) By (iii) and (iv): ¬C ∧ (A⇒ ¬B) ` ¬ ∼ (A⇒ ¬B) ≡ ¬(A ∧B).

(vi) By (v) we have: ¬A ∧ (¬> ⇒ ¬>) ` ¬(¬> ∧ >). After simplification
we get ¬A ` ¬¬>.

(vii) By (v): ¬¬> ∧ (A⇒ ¬>) ` ¬(A ∧>) ≡ ¬A.

(viii) By (ii) and (vi) we get ¬A ` (A ⇒ ¬>) ∧ ¬¬>. Then by (vii) we
obtain (viii).

(ix) By (viii) ¬⊥ ≡ (⊥ ⇒ ¬>) ∧ ¬¬>. After simplification we obtain (ix)

(x) By direct application of (viii) and (ix).

(xi) By the positive logic and (ii) we obtain:

(A⇒ B) ∧A ∧ ¬B ` B ∧ ¬B ` ¬>. From here we get

(1) (A⇒ B) ∧ ¬B ` A⇒ ¬>.

By (vi) we obtain

(2) (A⇒ B) ∧ ¬B ` ¬¬>. Then from (1) and (2) we get

(3) (A⇒ B) ∧ ¬B ` (A⇒ ¬>) ∧ ¬¬>. Then (3) and (viii) imply

(4) (A⇒ B) ∧ ¬B ` ¬A. From (4) we obtain (xi).

(xii) By (]) and (ii): ¬C∧ ∼ A ` ¬A ` A⇒ ¬>. From here we have:

¬C `∼ A⇒ (A⇒ ¬>) ≡∼ A ∧A⇒ ¬> and by (vi) we obtain

¬C ` (∼ A ∧A⇒ ¬>) ∧ ¬¬>. Then applying (viii) we obtain (xii).

Separated axiomatization for SUBMINN.

Now we can simplify the axiomatization of SUBMINN replacing the
rule of extensionality for the subminimal negation: (Ext-¬) A⇔B

¬A⇔¬B
by the

following two axioms ((xi) and (vi) from proposition 2.1):

P11 (A⇒ B)⇒ (¬B ⇒ ¬A),

P12 ¬A⇒ ¬¬>,
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Axiom P11 is the well known law of contraposition. It implies the rule of
contraposition A⇒B

¬B⇒¬A
, which in turn implies the rule of extensionality for ¬.

Axiom P12 is superfluous, because it follows from the axioms for the Nelson
negation, but it is added in order to obtain a separated set of axioms for
the subminimal negation in a sense that all theorems for ¬ not containing
∼ can be proved without using the axioms for ∼. This fact will be proved
later on. It is possible to make P12 independent if we replace the axiom (])
by the following formula:

(♥) A∧ ∼ A⇒ (¬¬> ⇒ ¬>)

Then (♥) is still deductively equivalent to (]) but now P12 is indepen-
dent.

Extensions of SUBMINN.

We will consider extensions of SUBMINN with some of the following
formulas as candidates for additional axioms:

(Nor) ¬¬> (or ¬⊥ ) — normality axiom,

(Nor∗) ¬> ⇒ A, — co-normality axiom,

(Class) (A⇒ B) ∨A — classical implication.

We will use notations for the introduced extensions in the form LN where
L is a logic in the language of intuitionistic logic (in the form of positive logic
+ the signs of and > and ⊥) and the superscript N will denote that L is
extended with the axioms of Nelson negation. Names for the different L will
be given in the next section.

• MINN = SUBMINN + Nor,

• Class.SUBMINN = SUBMINN + Class,

• Class.MINN = MINN + Class,

• Class.CO−MINN = SUBMINN + Class,

In order to obtain a semantics for the logic SUBMINN and some of its
natural extensions we have to study in more details the sublogics L of the
introduced above logics,

3. Intuitionistic logic with subminimal negation and its

extensions

The logic SUBMIN.

In this section we will study the subsystem of SUBMINN which does
not contain the sign of Nelson negation. The new system is based on the
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axioms P1-P12 and Modus Ponens. It will be called intuitionistic logic with
subminimal negation, and will be denoted by SUBMIN.

We consider the following extensions of SUBMIN:

• Intuitionistic logic with minimal negation: MIN = SUBMIN + Nor.

• The co-minimal logic: CO−MIN = SUBMIN + Nor∗.

It can be shown that we have the following equality:

INT = SUBMIN + Nor + Nor∗.

When we add the axiom Class to some logic we always have that the
underlying logic is the classical logic with definable classical negation
−A =def A⇒ ⊥.

• The classical logic with subminimal negation:

Class.SUBMIN = SUBMIN + Class.

• The classical logic with minimal negation:

Class.MIN = MIN + Class.

• The classical logic with co-minimal negation:

Class.CO−MIN = CO−MIN + Class.

Remarks 3.1. (i) The logic SUBMIN and some of its important exten-
sions was introduced by the author for the first time in [26] (see also
[29]). Let us note, as one of the referees pointed out, that the name
“subminimal logic” was used also in [3] for a similar system.

(ii) Most of the results of this section, sometimes in a modified form or based
on a different terminology, were obtained by the author in [26, 29]. So
proofs will be given only for the new things.

(iii) If we drop the sign of ⊥ from the logic MIN we obtain exactly the
minimal logic of Johansson.

Algebraic semantics for the logic SUBMIN and some of its exten-
sions.

Now we will introduce an algebraic semantics for the logic SUBMIN.

Definition 3.2. A system (A,≤, 0, 1,∧,∨,⇒,¬) is called a subminimal al-
gebra if it satisfies the following axioms:

(Int) The system (A,≤, 0, 1,∧,∨,⇒) is a Heyting algebra.

(Submin1) (a⇒ b) ∧ ¬b ≤ ¬a,
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(Submin2) ¬0 = ¬¬1.

A subminimal algebra is called:

• a minimal algebra if it satisfies the axiom (Min) ¬0 = 1,

• a co-minimal algebra if it satisfies the axiom (Co-min) ¬1 = 0.

• a classical subminimal algebra if it satisfies the axiom (Class)
a ∨ (a⇒ b).

Proposition 3.3 (Characterization theorem for subminimal, minimal and
co-minimal algebras).

Let (A,≤, 1,∧,∨,⇒) be a positive algebra, and ¬ be an unary operation
in A. Then:

(i) A is a subminimal algebra iff there exist two fixed elements p,q in A
with the properties:

(i1) p ≤ q,

(i2) ¬a = (a⇒ p) ∧ q, ¬1 = p, ¬0 = q.

(ii) A is a minimal algebra iff for the element q from (i) we have q = 1,

(iii) A is a co-minimal algebra iff for the element p from (i) we have p = 0,

(iv) A is both minimal and co-minimal algebra iff A is a Heyting algebra
(in a sense that ¬a = a⇒ 0).

Proof. (i) (←) — by a straightforward verification.
(→) Put p = ¬1 and q = ¬0. Then by the axiom (Submin1) we have:

(a ⇒ ¬1) ∧ ¬¬1 ≤ ¬a and hence (a ⇒ ¬1) ∧ ¬0 ≤ ¬a. For the converse
inclusion we have: a ∧ ¬a = (1 ⇒ a) ∧ ¬a ≤ ¬1. Then from here we get
¬a ≤ (a ⇒ ¬1) and by axiom (Submin1) we obtain ¬a ≤ (a ⇒ ¬1) ∧ ¬0.
Thus we have ¬a = (a ⇒ ¬1) ∧ ¬0. From this equality we obtain that
¬1 ≤ ¬¬1.

The proofs for (ii) and (iii) are similar to the proof of (i).
For (iv) suppose that A is both a minimal and a co-minimal algebra.

Then it satisfies q = 1 and p = 0 and consequently ¬a = a ⇒ 0 which
shows that A is a Heyting algebra. The converse is obvious.

Kripke semantics for the logic SUBMIN and some of its exten-
sions.

Definition 3.4. By a subminimal frame we will consider any relational
structure W = (W,≤, N,N∗) where W is a non-empty set of possible worlds,
and the subsets N,N∗ ⊆ W , with the following names: N — the set of
normal worlds, and N∗ — the set of co-normal worlds, or “bad normal
worlds”. We assume that W satisfies the following conditions:
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(S1) ≤ is a reflexive and transitive relation (quasi-order) in W ,

(S2) N∗ ⊆ N ,

(S3) N and N∗ are upwards monotone with respect to ≤ (a subset A ⊆W
is upwards monotone iff (∀x, y ∈W )(x ∈ A and x ≤ y → y ∈ A)).

The frame (W,≤, N,N∗) is called:

• a minimal frame if N = W ,

• a co-minimal frame if N∗ = ∅,

• a classical subminimal frame if “≤” is the identity relation “=”.

It is easy to see that if we take N = W and N∗ = ∅ then we obtain just
the frames for the intuitionistic logic.

The Kripke semantics of the language of SUBMIN in the class of
subminimal frames is like the semantics of intuitionistic logic in frames
of the form (W,≤), i.e. we consider all upwards monotone valuations v
((∀x, y ∈ W )(x ∈ v(p), x ≤ y → y ∈ v(p))) and define the satisfaction
relation x v A inductively for all formulas in the standard way:

• x v p iff x ∈ v(p) if p is a propositional letter,

• x 6v ⊥, x  >,

• x v A ∧B iff x v A and x v B,

• x v A ∨B iff x v A or x v B,

• x v A⇒ B iff (∀y ∈W )(x ≤ y and y v A→ y v B),

• x v ¬A iff (∀y ∈W )(x ≤ y → y ∈ N∗) and x ∈ N .

As we have seen above, the subsets N and N∗ are used just for the
semantics of the subminimal negation. The worlds from N are called normal
by the analogy with the semantics of non-normal modal logics. It is easy to
see that:

x v ¬> iff x ∈ N∗, x  ¬⊥ iff x ∈ N .

From here we can see that the co-normal worlds, i.e. the worlds from
the set N∗, are just the worlds in which ¬> is true, something which is not
desirable. That is why we call these worlds “bad normal worlds”.

Obtaining subminimal algebras from subminimal Kripke frames.

Definition 3.5. Let W = (W,≤, N,N∗) be a subminimal Kripke frame.
Let A(W ) be the set of all upwards monotone subsets of W . Define a lattice
in A(W ) taking the set theoretical operations of intersection and union as
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lattice operations, 1 = W , 0 = ∅ and define implication and negation as in
the semantics: A ⇒ B = {x ∈ W : (∀y ∈ W )(x ≤ y and y ∈ A → y ∈ B)},
¬A = {x ∈ N : (∀y ∈W )(x ≤ y → y ∈ N∗)}.

The following lemma can easily be proved.

Lemma 3.6. (i) The algebra A(W ) with the operations defined in Definition
3.5 is a subminimal algebra, called subminimal set-algebra over the
frame W .

(ii) If the frame is minimal (N = W ) then A(W ) is a minimal algebra.

(iii) If the frame is co-minimal (N∗ = ∅) then A(W ) is a co-minimal alge-
bra.

(iv) If the frame is classical (≤ is “=”) then the algebra A(W ) is a classical
algebra.

As in the case of Heyting algebras one can prove the following theorem.

Theorem 3.7 (Representation theorem for subminimal, minimal and clas-
sical algebras). Each subminimal algebra A can be isomorphically embedded
into a subminimal set-algebra over a subminimal frame W (A). If A is a
minimal (co-minimal, classical) then the frame W (A) can be chosen to be
minimal (co-minimal, classical) and hence the algebra A(W (A)) to be min-
imal (co-minimal, classical).

Proof. (Idea) Define W (A) to be the set of all prime filters of A with
Γ ≤ ∆ iff Γ ⊆ ∆. Define N(A) = {Γ ∈ W (A) : ¬0 ∈ Γ} and N∗(A) = {Γ ∈
W (A) : ¬1 ∈ Γ}. Then proceed as in the well known representation theorem
for Heyting algebras over quasi-ordered sets.

Theorem 3.8 (Completeness Theorem for the logics SUBMIN, MIN,
CO−MIN and their classical extensions). The logics SUBMIN, MIN,
CO−MIN and their classical extensions are sound and strongly complete
in the corresponding algebraic and Kripke semantics.

Proof. Soundness and the completeness with respect to the algebraic se-
mantics is easy. The completeness with respect to Kripke semantics in a
slightly different language is given in [29] via the canonical construction,
which is an adaptation of the corresponding construction for the intuition-
istic logic. Strong completeness can be obtained by the same method. Al-
ternatively, the representation theorem 3.7 can also be used for the Kripke
completeness.
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A more strong completeness theorem for the logics Class.SUBMIN,
Class.MIN, Class.CO−MIN with respect to single finite matrices will
be given at the end of this section.

The following proposition can be proved either directly using the ax-
iomatics or just by using the completeness theorem.

Proposition 3.9. The subminimal negation has the following properties:

(i) ¬A ≡ (A⇒ ¬>) ∧ ¬¬>,

(ii) ¬⊥ ≡ ¬¬>, ¬¬¬A ≡ ¬A, ¬¬⊥ ≡ ¬>,

(iii) ¬A ≡ (A⇒ ¬>) ∧ ¬⊥,

(iv) ¬C ` A⇒ ¬¬A,

(v) ¬C ` ¬(A ∧ ¬A),

(vi) A ∧ ¬(A ∧B) ` ¬B,

(vii) ¬(A ∨B) ≡ ¬A ∧ ¬B,

(viii) ⊥ ` ¬> ` ¬¬> ` >,

(ix) A ∧ ¬A⇒ ¬B.

Now we will establish a special property of the logic SUBMIN. Let
us look at the chain ⊥ ` ¬> ` ¬¬> ` > from Proposition 3.9. It is easy
to see by using the completeness theorem for SUBMIN that the formulas
⊥,¬>,¬¬>,> are not equivalent. So we may assume that they represent
in the syntax some truth-value constants for which we will use the following
names:

• ⊥ — logical falsity (absurdity).

• ¬> — weak logical falsity,

• ¬⊥ — strong logical truth,

• > — logical truth.

Adopting this terminology we may say that:

• A is logically false if A ≡ ⊥,

• A is weakly logically false if A ≡ ¬>,

• A is strongly logically true if A≡ ¬¬> ≡ ¬⊥,

• A is logically true if A ≡ >.
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According to this terminology the following simple lemma for SUBMIN
can be stated.

Lemma 3.10. There is no formula A in SUBMIN such that ¬A is logically
true.

Proof. Suppose that such a formula exists. Then ¬A is a theorem of
SUBMIN. Then by Modus Ponens and axiom P11 we obtain that ¬¬> is
a theorem for SUBMIN, which by the completeness theorem is not true —
just take a subminimal frame in which N 6= W .

Decidability of the logics SUBMIN, MIN and CO−MIN.

The decidability of the logics SUBMIN, MIN and CO−MIN can be
obtained by proving that they have finite model property by adapting the
filtration of the intuitionistic case. Another way for proving decidability is
by interpetting them in INT. For SUBMIN the idea is the following. It
follows by proposition 3.9 that each formula of SUBMIN is equivalent to
a formula in which the negation ¬ appears only in subformulas of the form
¬> and ¬⊥ called a negation normal form. Then define a translation of the
formulas from the language of SUBMIN into the language of the intuition-
istic logic in the following way. Let p, q be two propositional variables not
contained in the formula A. Then replace all occurrences of ¬> by p∧ q and
all occurrences of ¬⊥ by p and denote the obtained formula by τ(A).

The following theorem is true:

Theorem 3.11 (Translation theorem for SUBMIN). For any formula A
of SUBMIN: A is a theorem of SUBMIN iff τ(A) is a theorem in the
intuitionistic logic.

Proof. (←). Suppose τ(A) is a theorem of the intuitionistic logic. Since
it is a part of SUBMIN then τ(A) is a theorem of SUBMIN. Then sub-
stituting p with ¬> and q with ¬⊥ and using the fact that ¬> ∧ ¬⊥ is
equivalent in SUBMIN to ¬> we obtain that the obtained after this sub-
stitution formula is equivalent to A and hence A is a theorem of SUBMIN.

(→). We will reason by contraposition. Suppose that τ(A) is not a theo-
rem of intuitionistic logic. Then by the Kripke semantics of the intuitionistic
logic there is a a model (W,≤, v) falsifying A. Let N = {x ∈ W : x v p}
and N∗ = {x ∈ W : x v p ∧ q}. Then obviously (W,≤, N,N∗, v) is a
subminimal model which falsifies the negation normal form of A and hence
A is not a theorem of SUBMIN.

Corollary 3.12. The logic SUBMIN is decidable.
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Similar translations can be defined for the logics MIN and CO−MIN.
Since ¬¬> (or equivalently ¬⊥) is a theorem for MIN the negation normal
form for MIN will contain only subformulas of the form ¬>. Then τ(A)
is obtained from the negational normal form of A by replacing in it all
subformulas of the form ¬> by a fresh variable p. For CO−MIN the
negation normal form contains only subformulas of the form ¬⊥ and we
replace such subformulas by a fresh variable p. Then for both logics an
analog of the translation theorem holds, which implies the decidability of
the both logics. Similar decidability result, based on the algebraic semantics
for the minimal logic of Johansson is contained in [20], which inspired the
above translations.

Let us note that the described translations can be used to obtain the
decidability of the classical extensions of the above logics: Class.SUBMIN,
Class.MIN and Class.COMIN. Then the translation is in the classical
logic.

Another way to obtain decidability of Class.SUBMIN, Class.MIN
and Class.CO−MIN is to show that all these logics have finite charac-
teristic matrices. This fact will be used later to obtain finite characteristic
matrices for the extensions of these logics with Nelson negation.

Existence of finite characteristic matrices for the logics Class.SUBMIN,
Class.MIN and Class.COMIN and the corresponding completeness the-
orem for them follow from the following result from [23].

Let L be a logic based on an extension of the language of classical logic
with some n-place logical connective F . L is called strongly extensional if
the following formula is a theorem of L:

(SExt) (A1 ⇔ B1) ∧ . . . ∧ (An ⇔ Bn)⇒ (F (A1, . . . , An)⇔ F (B1, . . . , Bn)).

It is proved in [23] that every strongly extensional logic L has a finite
Boolean logical matrix with distinguished element 1 in which L is sound and
weakly complete. Obviously the logics in question are strongly extensional.
Here we shall give another completeness proof, giving strong completeness.
This proof then will be extended for completeness proofs for some logics
with Nelson negation. First let us identify the logical matrices of the corre-
sponding logics.

Finite matrix for the logic Class.SUBMIN.

Let (B, 0, 1,∧,∨,⇒,¬) be a classical subminimal algebra in which 0 <
¬1 < ¬0 < 1 and let p = ¬1 and q = ¬0. Note that (B, 0, 1,∧,∨,−)
with −a = a ⇒ 0 is a Boolean algebra. It is clear that the set {p,q}
generates an 8-element Boolean subalgebra of B, denoted by B8, which is
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closed under the operation ¬ and consequently is a subminimal subalgebra
of B. Note that B8 is a subalgebra of every classical subminimal algebra
with 0 < ¬1 < ¬0 < 1. Namely the subminimal algebra B8 is the required
characteristic logical matrix for the logic Class.SUBMIN. In order to give
an explicit description of this matrix let r = −p ∧ q. Then −r = p ∨ −q.
We code and identify these elements and their complements by binary 3-
dimensional vectors as follows:

0 = (000),p = (001),−q = (010),−r = (011),−p = (100),q = (101),
r = (110),1 = (111).

Now the logical matrix B8 in this coding can be obtained as follows.
Boolean operations on codes are just coordinatewise. For the negation ¬
we obtain the following formula: ¬(xyz) = (x01). The proof is as follows:
¬(xyz) = ((xyz)⇒ p) ∧ q = ((xyz)⇒ (001)) ∧ (101) = (x01).

This semantics determines the following universal 3-point Kripke frame
K3 for Class.SUBMIN: W = {x1, x2, x3}, N = {x1, x3} and N∗ = {x3}.
Then the semantics for ¬A is the following: x1 v ¬A iff x1 6v A, x2 6v ¬A,
x3 v ¬A. For the Boolean connectives the semantics is the standard one.

Another equivalent form of the B8 semantics is to use an ordered triple
(v1, v2, v3) of two-valued Boolean valuations, extended to arbitrary formulas
as follows: for i = 1, 2, 3, vi(−A) = 1 iff vi(A) = 0, vi(A ∧ B) = 1 iff
vi(A) = 1 and vi(B) = 1, v1(¬A) = 1 iff v1(A) = 0, v2(¬A) = 0 and
v3(¬A) = 1. A formula A is a Class.SUBMIN-tautology iff for all triples
of valuations (v1, v2, v3) and for all i = 1, 2, 3 we have vi(A) = 1. A formula
A is satisfiable if there is a triple of valuations (v1, v2, v3) such that vi(A) = 1
for some i = 1, 2, 3. A set of formulas Σ is jointly satisfiable in B8 if there is
a triple of valuations (v1, v2, v3) and there is i = 1, 2, 3 such that vi(A) = 1
for all A ∈ Σ. We will use this last version of the semantics to formulate
the strong completeness theorem for Class.SUBMIN. We say that a set of
formulas Σ is classically consistent if Σ 6` ⊥. A different notion of consistency
can be defined by the negation ¬, that is why we use the adjective “classical”.

The following lemma can easily be proved.

Lemma 3.13. If a set of formulas Σ in Class.SUBMIN is jointly satisfiable
in B8 then it is classically consistent.

Now we shall prove the converse.

Theorem 3.14 (Strong completeness theorem for Class.SUBMIN with
respect to B8 semantics).

If Σ is a classically consistent set of formulas in Class.SUBMIN then
Σ is jointly satisfiable in B8.
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Proof. First we need the following lemma.

Lemma 3.15 (Truth lemma for the canonical valuations).
Let γ = (Γ1, Γ2, Γ3), be a triple of maximal consistent sets in
Class.SUBMIN satisfying the following conditions:

(1) ¬> 6∈ Γ1 and ¬⊥ ∈ Γ1,

(2) ¬⊥ 6∈ Γ2 and

(3) ¬> ∈ Γ3.

Let for each variable p define a triple (v1, v2, v3) of canonical valuation
as follows:

• vi(p) = 1 iff p ∈ Γi, i = 1, 2, 3.

Then for every formula A we have the following:

• vi(A) = 1 iff A ∈ Γi, i = 1, 2, 3.

Proof. The proof is by induction on the construction of A. When A = p
is a variable the assertion is by the definition of the canonical valuations.
The case of Boolean combinations of the formulas uses the fact that Γi,
i = 1, 2, 3 are maximal consistent sets. Consider the case of ¬A and suppose
that for A the statement is true (induction hypothesis (i.h.)). We shall use
the following facts:

i = 1. v1(¬A) = 1 iff (by the semantics)v1(A) = 0 iff (by the i.h.) A 6∈ Γ1 iff
(by (1)) (A⇒ ¬>) ∧ ¬⊥ ∈ Γ1 iff ¬A ∈ Γ1.

i = 2. By the semantics we have for every A: v2(¬A) = 0. So we have to
show that for every A, ¬A 6∈ Γ2. Suppose that for some A we have that
¬A ∈ Γ2. Then ¬⊥ ∈ Γ2 which contradicts (2).

i = 3. By the semantics we have for every A that v2(¬A) = 1. So we have to
show that for every A, ¬A ∈ Γ3. By (3) ¬> ∈ Γ3 so (A ⇒ ¬>) ∈ Γ3. Also
¬> ` ¬⊥, so again by (3) we have that ¬⊥ ∈ Γ3. Hence (A⇒ ¬>)∧¬⊥ ∈ Γ3

and consequently ¬A ∈ Γ3.

Now we turn to the proof of the theorem 3.14. Suppose that Σ is a
consistent set of formulas. Define the following three sets of formulas.

(4) Σ1 = Σ ∪ {−¬> ∧ ¬0},

(5) Σ2 = Σ ∪ {−¬0},

(6) Σ3 = Σ ∪ {¬>}.

We claim that at least one of this sets is consistent. Suppose that all
are inconsistent. This implies the following
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(7) Σ ` −(−¬> ∧ ¬0) (by (1)),

(8) Σ ` ¬¬> by (2),

(9) Σ ` −¬> by (3),

(10) By Boolean calculations we see that −(−¬>∧¬0)∧ ¬0 ∧−¬> ≡ ⊥.

So from (7), (8), (9) and (10) we get Σ ` ⊥ which shows that Σ is
not consistent — a contradiction. So there exists i = 1, 2, 3 such that Σi is
consistent. Extend Σi into a maximal consistent set Γi. Define Γj, j = 1, 2, 3,
for j 6= i as to satisfy the corresponding condition (j) from lemma 3.15. This
is possible because the formulas mentioned in (j) are consistent (this follows
by the semantics). Now we may define the canonical valuations (v1, v2, v3)
from the just defined triple γ = (Γ1, Γ2, Γ3) as in lemma 3.15. Since Σ ⊆ Γi

then by the lemma we have for every formula A ∈ Σ that vi(A) = 1, which
has to be proved.

Finite matrices for the logics Class.MIN and Class.CO−MIN.

We may define finite logical matrices for the logics Class.MIN and
Class.CO−MIM in a similar way as for the logic Class.SUBMIN.

Let B = (B, 0, 1,∧,∨,−,¬) be a classical minimal algebra such that
there exist an element p ∈ B such that 0 < p < 1 and ¬a = a ⇒ p.
Then the element p determines a 4-element Boolean subalgbra of B which
is also a classical minimal subalgebra of B. We denote this algebra by
MinB4. It is a subalgebra of every classical minimal algebra having an
element p with 0 < p < 1. This namely is the characteristic matrix for
the logic Class.MIN. The elements of MinB4 can be coded by binary
two-dimensional vectors as follows: 0 = (00), p = (01), −p = (10), 1 =
(11). Boolean operations between the vectors are defined coordinatewise
and for ¬ we have the formula: ¬(xy) = (x1). The same semantics can be
reformulated also by pairs (v1, v2) of two-valued valuations as in the case
of B8. Characteristic two-element Kripke structure for Class.SUB is the
following: W = {x1, x2} and N = {x1}. As in the completeness theorem for
Class.SUBMIN we may prove the following theorem.

Theorem 3.16 (Strong completeness theorem for Class.MIN with respect
to MinB4). Every consistent set of formulas of the logic Class.MIN is
jointly satisfiable in the semantics with MinB4.

In an analogous way we define a finite 4-valued matrix for the logic
Class.CO−MIN.
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Let (B, 0, 1,∧,∨,−,¬) be a classical co-minimal algebra, such that there
exists an element q such that 0 < q < 1 and ¬a = (a ⇒ ⊥) ∧ ¬0. Then q
generates a 4-element classical subalgebra Comin.B4. The binary coding
of this matrix is similar to that of MinB4 the difference is only for the ¬:
¬(xy) = (0y). Also we have:

Theorem 3.17 (Strong completeness theorem for Class.CO−MIN with
respect to CominB4). Every consistent set of formulas of the logic CO−
−MIN is jointly satisfiable in the semantics by CominB4.

Remark 3.18. The logics Class.MIN and Class.CO−MIN are equiva-
lent to some modal systems introduced by  Lukasiewicz in [10, 11] with se-
mantics given by two-valued binary vectors. Matrix similar to B8 was also
mentioned in [11]. A general study of logics with matrices of similar kinds
is given by the author in [23].

4. Generalized N-lattices

In this section we will give generalizations of N-lattices in order to obtain
an algebraic semantics for subminimal logic with Nelson negation and the
introduced so far extensions.

Definition 4.1. An algebraic system N = (N,≤,D, 0, 1,∧,∨,⇒,¬, ∼) is
called a generalized N-lattice if it satisfies the following axioms:

(N1) The reduct (N,≤,D,∧,∨) is a distributive lattice and D is a filter
in N ,

(N2) Define for every a, b ∈ N the relations: a ` b iff a⇒ b ∈ D and a ≡ b
iff a ` b and b ` a. Then ` is a quasi-ordering in N and consequently
≡ is an equivalence relation in N ,

(N3) 0 ` a, a ` 1,

(N4) a ≤ b iff a ` b and ∼ b `∼ a,

(N5) If a ∈ D, and a⇒ b ∈ D then b ∈ D,

(N6) a ∈ D iff (∀b ∈ N)(b ` a),

(N7) x ∧ a ` b iff x ` a⇒ b,

(N8) c ` a and c ` b iff c ` a ∧ b,

(N9) a ` c and b ` c iff a ∨ b ` c,

(N10) If (a ≡ b) then ¬a ≡ ¬b,
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(N11) ∼∼ a = a,

(N12) ∼ (a ∨ b) =∼ a∧ ∼ b,

(N13) ∼ (a ∧ b) =∼ a∨ ∼ b,

(N14) ∼ (a⇒ b) ≡ a∧ ∼ b,

(N15) ∼ ¬a ≡ a,

(N16) ¬b∧ ∼ a ` ¬a,

(N17) ∼ 0 ≡ 1,

(N18) ∼ 1 ≡ 0.

Remarks 4.2. Note that by N11, N12 and N13 the reduct (N,≤,∧,∨, ∼) is
a De Morgan lattice. Calculations with the axioms of generalized N-lattice
are similar with these in the subminimal logic with Nelson negation. Here
the elements of the filter D can be considered as “theorems”. Note also that
the element 1 is not in general an unit element of the lattice — it can be
considered just as an analog of >, i.e. as a fixed element of D. Also 0 is not
a zero element of the lattice — it is just an analog of ⊥. Having in mind
these analogies one may copy the proofs of the propositions 2.1 and 3.9 and
to obtain the following statement for generalized N-lattices.

Proposition 4.3. The following conditions are true for every generalized
N-lattice:

(i) a ∧ ¬b ` ¬(a⇒ b),

(ii) a ∧ ¬a ` ¬1, and ¬a ` a⇒ ¬1,

(iii) ¬b ∧ a ` ¬ ∼ a,

(iv) ¬ ∼ (a⇒ ¬b) ≡ ¬(a ∧ b),

(v) ¬c ∧ (a⇒ ¬b) ` ¬(a ∧ b),

(vi) ¬a ` ¬¬1, ¬0 ≡ ¬¬1,

(vii) ¬¬1 ∧ (a⇒ ¬1) ` ¬a,

(viii) ¬a ≡ (a⇒ ¬>) ∧ ¬¬1 ≡ (a⇒ ¬>) ∧ ¬0,

(ix) a⇒ b ` ¬b⇒ ¬a,

(x) ¬c ` ¬(a∧ ∼ a),

(xi) ¬0 ≡ ¬(a∧ ∼ a),

(xii) If a ∈ D then ¬ ∼ a ≡ ¬0,

(xiii) ¬c ` a⇒ ¬¬a,
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(xiv) ¬c ` ¬(a ∧ ¬a),

(xv) a ∧ ¬(a ∧ b) ` ¬b,

(xvi) ¬(a ∨ b) ≡ ¬a ∧ ¬b,

(xvii) a∧ ∼ a ` (¬0⇔ ¬1).

Proof. As an example we shall prove (xii) and (xvii).
(xii) Suppose a ∈ D. By (iii) we have a ⇒ (¬0 ⇒ ¬ ∼ a) ∈ D and by
axiom (N5) we obtain ¬0 ⇒ ¬ ∼ a ∈ D, so ¬0 ` ¬ ∼ a. By (vi) we have
¬ ∼ a ` ¬0 and consequently — ¬ ∼ a ≡ ¬0.

(xvii) From axiom N6 we derive ¬0∧ ∼ a ` ¬a. Since ¬a ` (a ⇒ ¬1) we
obtain ¬0∧ ∼ a ` (a ⇒ ¬1). From here we get a∧ ∼ a ` (¬0 ⇒ ¬1).
Applying (vi) we may replace ⇒ by ⇔: a∧ ∼ a ` (¬0⇔ ¬1) which is what
we need.

We will consider generalized N-lattices satisfying some additional condi-
tions.

Definition 4.4. Let N = (N,≤,D, 0, 1,∧,∨,⇒,¬, ∼) be a generalized N-
lattice. Then we say that:

• N is a minimal N-lattice if it satisfies the condition

(N-min) ¬0 ≡ 1,

• N is a co-minimal N-lattice if it satisfies the condition

(N-co-min) ¬1 ≡ 0,

• N is a classical generalized N-lattice if it satisfies the condition

(N-class) a ∨ (a⇒ b) ∈ D.

Remarks 4.5. (i) Minimal N-lattices (without 0) under the name of “Gen-
eralized Nelson lattices” were introduced in [25].

(ii) It can be easily proved that a generalized N-lattice is an N-lattice iff
it is both a minimal and a co-minimal N-lattice. This shows that generalized
N-lattices indeed are generalizations of N-lattices.

Definition 4.6 (Counterexample relation). Let (A, 0, 1,≤,∧,∨,⇒,¬) be a
subminimal algebra and let a, b ∈ A. We say that “b is a counterexample of
a”, in symbols aCb, iff ¬(a ∧ b) = ¬0.

Lemma 4.7. The counterexample relation C satisfies the following condi-
tions:
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(i) The following are some equivalent definitions of C:

aCb iff ¬0 ≤ ¬(a ∧ b) iff a ∧ b ∧ ¬0 ≤ ¬1 iff a ∧ b ≤ (¬0 ⇒ ¬1) iff
a ∧ b ≤ (¬0⇔ ¬1),

(ii) If aCb then bCa,

(iii) aC¬a,

(iv) If a1Ca2 and b1Cb2 then:

(1) (a1 ∧ b1)C(a2 ∨ b2),

(2) (a1 ∨ b1)C(a2 ∧ b2),

(3) (a1 ⇒ b1)C(a1 ∧ b2).

Proof. — by a routine calculations with the axioms of subminimal algebra.
For the proof of (i) use the equality ¬a = (a⇒ ¬1) ∧ ¬0.

Remark 4.8. Formally the above definition of the counterexample relation C
differs from the corresponding definition in Heyting algebras (see Definition
1.2). In the former definition we have aCb iff a ∧ b = 0. Having in mind
that in Heyting algebras 0 = (1 ⇔ 0), 1 = ¬0 and 0 = ¬1, the C-relation
can be rewritten in an equivalent form as follows: aCb iff a ∧ b ≤ 0 = (1⇔
0) = (¬0⇔ ¬1), i.e. aCb iff a∧b ≤ (¬0⇔ ¬1). As can be seen from lemma
4.7 (i) the relation C in subminimal algebras is equivalent just to this form.
Intuitively this means the following: “a is a counterexample of b iff a and
b together imply the equivalence of “weak falsity” (¬1) with “strong truth”
(¬0). So we see again the role of these new logical constants.

Definition 4.9 (Counterexample construction). Let (A, 0, 1,≤,∧,∨,⇒,¬)
be a subminimal algebra and let N(A) = {(a, b) ∈ A2 : aCb}. Define the
following relations and operations in N(A):

• (a1, a2) ≤ (b1, b2) iff a1 ≤ b1 and b2 ≤ a2,

• 1 = (1, 0), 0 = (0, 1),

• D = {(1, a) : ¬a = ¬0},

• (a1, a2) ∧ (b1, b2) = (a1 ∧ b1, a2 ∨ b2),

• (a1, a2) ∨ (b1, b2) = (a1 ∨ b1, a2 ∧ b2),

• (a1, a2)⇒ (b1, b2) = (a1 ⇒ b1, a1 ∧ b2),

• ¬(a1, a2) = (¬a1, a1),

• ∼ (a1, a2) = (a2, a1).
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Obtaining generalized N-lattices from subminimal algebras by
counterexample construction.

Lemma 4.10. (i) The set N(A) with the relations and operations defined
above is a generalized N-lattice, called special generalized N-lattice over
the subminimal algebra A.

(ii) If A is a minimal algebra then N(A) is a minimal N-lattice.

(iii) If A is a co-minimal algebra then N(A) is a co-minimal N-lattice.

(iv) If A is a classical subminimal algebra then N(A) is a classical gener-
alized N-lattice.

(v) Let (a, b) ∈ N(A) and let h((a, b)) = a, then h is a homomorphism from
the N-lattice N(A) onto the lattice A, namely h preserves all operations
in N(A) which are from the signature of A.

Proof. (i) The proof that N(A) is closed under the introduced operations
follows from lemma 4.7. The verification of the axioms of generalized
N-lattice is a routine exercise.

(ii) Let A be minimal algebra. Then ¬0 = 1. In N(A) we have: ¬(01) =
(¬00) = (10).

(iii) The proof is similar to that of (ii).

(iv) Suppose A is classical. Then a ∨ (a ⇒ b) = 1. Now in N(A) we
have: (a1, a2) ∨ ((a1, a2)⇒ (b1, b2)) = (a1 ∨ (a1 ⇒ b1), a1 ∧ a2 ∧ b2) =
(1, a1∧a2∧b2). It follows from ¬0 = ¬(a1∧a2) that ¬(a1∧a2∧b2) = ¬0
which shows that (1, a1 ∧ a2 ∧ b2) ∈ D. This proves that N(A) is a
classical generalized N-lattice.

(v) The proof is obvious.

Obtaining set-theoretical generalized N-lattices from subminimal
Kripke frames.

Definition 4.11. Let W = (W,≤, N,N∗) be a subminimal Kripke frame
and let A(W) be the subminimal algebra over W . Then the N-lattice
N(A(W )) over the subminimal algebra A(W ) is called set-theoretical gen-
eralized N-lattice over the frame W .

Corollary 4.12. Let W be a subminimal frame. Then:

(i) If W is a minimal frame then N(A(W )) is a minimal N-lattice.

(ii) If W is a co-minimal frame then N(A(W )) is a co-minimal N-lattice.



Nelson’s Negation on the Base of Weaker Versions. . . 419

(iii) If W is both a minimal and a co-minimal frame then N(A(W )) is an
N-lattice.

(iv) If W is a classical subminimal frame then N(A(N)) is a classical gen-
eralized N-lattice.

Obtaining subminimal algebras from generalized N-lattices.

Definition 4.13. Let N = (N,≤,D, 1,∧,∨,⇒,¬, ∼) be a generalized N-
lattice. For each a ∈ N let | a |= {b ∈ N : a ≡ b} and let A(N) = {| a |: a ∈
N}. Define the following relations and operations in the set A(N):

1 = |1| = D, 0 = |0|, |a| ≤ |b| iff a ` b, |a| ∧ |b| = |a∧ b|, |a| ∨ |b| = |a∨ b|,
|a| ⇒ |b| = |a⇒ b|, ¬|a| = |¬a|.

Lemma 4.14. (i) The set A(N) with the above defined relations and opera-
tions is a subminimal algebra.

(ii) If N is a minimal N-lattice, then A(N) is a minimal algebra.

(iii) If N is a co-minimal N-lattice, then A(N) is a co-minimal algebra.

(iv) If N is a classical generalized N-lattice then A(N) is a classical sub-
minimal algebra.

Proof. (i) First note that the relation ≡ is a congruence with respect to
the operations ∧,∨,⇒,¬ which shows that the definitions of the oper-
ations are correct. Then the verifications of the axioms of subminimal
algebra is a routine check.

(ii) The proof is immediate: let ¬0 = 1. Them ¬|0| = |¬0| = |1|. The proof
of (iii) is similar.

Corollary 4.15. Let N be a generalized N-lattice. Let A(N) be the sub-
minimal algebra obtained from N by lemma 4.14 and let N(A(N)) be the
special generalized N-lattice obtained from A(N) by lemma 4.10. Then:

(i) If N is a minimal N-lattice then N(A(N)) is a minimal N-lattice too.

(ii) If N is a co-minimal N-lattice then N(A(N)) is a co-minimal N-lattice
too.

(iii) If N is both a minimal and a co-minimal N-lattice then N(A(N)) is
an N-lattice.

(iv) If N is classical generalized N-lattice then N(A(N)) is a classical gen-
eralized N-lattice too.
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Lemma 4.16. Let N = (N,≤,D, 1,∧,∨,⇒,¬, ∼) be a generalized N-lattice
and let N(A(N)) be the generalized N-lattice from corollary 4.15. Let for
a ∈ N h(a) =def (|a|, | ∼ a|). Then h is an isomorphic embedding of N into
N(A(N)).

Proof. First, let us show that h(a) ∈ N(A(N)). By lemma 4.3 we have
¬(a∧ ∼ a) ≡ ¬0 and hence ¬(|a| ∧ | ∼ a|) = ¬|0|, which shows that h(a) ∈
N(A(N)).

Second, we have to show that h is a strong homomorphism in a sense
that h preserves D biconditionally and that h is an ordinary homomorphism
with respect to the operations.

First we show that h preserves D biconditionally: a ∈ D iff h(a) ∈ D′

where D′ is the filter in N(A(N)).

(→) Let a ∈ D. Then by lemma 4.3 (xii) we have ¬0 ≡ ¬ ∼ a, so
¬|0| = ¬| ∼ a| which shows that (|1|, | ∼ a|) ∈ D′. Since a ∈ D then
|a| = |1| and f(a) = (|a|, | ∼ a|) = (|1|, | ∼ a|) ∈ D′.

(←) Now suppose that f(a) ∈ D′ i.e. (|a|, | ∼ a|) ∈ D′. Then |a| = |1|
and consequently a ∈ D.

This property shows that 1 ∈ D iff f(1) ∈ D′.

Second we have to show that h preserves the operations. For ∧ we have:

h(a ∧ b) = (|a ∧ b|, | ∼ (a ∧ b)|) = (|a| ∧ |b|, | ∼ a| ∨ | ∼ b|) = (|a|, | ∼

a|) ∧ (|b|, | ∼ b|) = h(a) ∧ h(b). Here we have used axiom (N13). The
verification for the remaining operations is analogous.

Finally we have to show that h is an injective mapping. Suppose that
h(a) = h(b) and proceed to show that a = b. From the assumption we have
that (|a|, | ∼ a|) = (|b|, | ∼ b|), and consequently |a| = |b| and | ∼ a| = | ∼ b|.
This implies a ≡ b and ∼ a ≡∼ b. Then by axiom (N4) we obtain a = b.

Corollary 4.17 (Representation theorem for generalized N-lattices). For
each generalized N-lattice N there exists a special N-lattice N ′ and an iso-
morphic embedding h from N into N ′, and if N satisfies some of the axioms
(Min), (Co-min) and (Class), then N ′ satisfies the same axioms.

Proof. Put N ′ = N(A(N)). By lemma 4.16 there exist an embedding h
from N into the special generalized N-lattice N ′. If N satisfies some of the
axioms (Min), (Co-min) and (Class) then by corollary 4.15 N ′ satisfies the
same axioms.

The above representation theorem contains as special cases the represen-
tation theorems from [25, 27].
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A representation of generalized N-lattices into set-theoretical generalized
N-lattices can be obtained by the construction in the next theorem.

Theorem 4.18 (Set-theoretical representatin theorem for generalized N-
lattices). Let N be a generalized N-lattice and let A(N) be the subminimal
algebra obtained from N by definition 4.13. By theorem 3.7 there exists a
subminimal frame W (A(N)) and an isomorphic embedding f from A(N) into
the subminimal algebra A(W (A(N)) over the frame W (A(N)). Let N ′ =
N(A(W (A(N))) be the generalized N-lattice over the subminimal algebra
A(W (A(N)). Define for any a ∈ N , h(a) = (f(|a|), f(| ∼ a|)). Then f is
an isomorphic embedding from N into N ′. If N satisfies some of the axioms
(Min), (Co-min) and (Class), then N ′ satisfies the same axioms.

Proof. — The proof is almost the same as the proof of theorem 4.17.

5. Semantics, completeness theorems and decidability for

logics with Nelson negation

In this section we will use generalized N-lattices as semantics for the consid-
ered in this paper logics with Nelson negation.

Algebraic semantics for Nelson negation.

Let N = (N,≤,D, 1,∧,∨,⇒,¬, ∼) be a generalized N-lattice and v be a
mapping from the sets of propositional variables into N . Then in a standard
way we extend v from the set of all formulas into N . We say that v is a
model for a formula A, or that A is true at the valuation v in N if v(A) ∈ D.
A formula A is true in N if it is true at every valuation v in N . If Σ is a
class of generalized N-lattices then A is true in Σ if A is true in every algebra
from Σ.

Let L be any logic from the list SUBMINN, MINN, CO−MINN,
Class.SUBMINN, Class.MINN, Class.CO−MINN, Class.INTN. A
lattice N is called L-lattice if N is the lattice from the corresponding class of:
generalized-, minimal-, co-minimal-, classical generalized-, classical minimal-
, classical co-minimal- N-lattices. We will use similar correspondence be-
tween the above list of logics and the corresponding classes of submminimal
frames, called shortly L-frames.

The following is one of the main theorems in this paper.

Theorem 5.1 (Completeness theorem for logics with Nelson negation).
Let L be any logic from the list SUBMINN, MINN, CO−MINN,

Class.SUBMINN, Class.MINN, Class.CO−MINN and Class.INTN.
Then the following conditions are equivalent for any formula A of L:
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(i) A is a theorem of L,

(ii) A is true in the class of all L-lattices,

(iii) A is true in all special L-lattices,

(iv) A is true in all set-theoretical L-lattices.

Proof. The implications (i) → (ii) → (iii) → (iv), forming the soundness
part of the theorem, are straightforward.

(ii) → (i). This is a standard proof using the construction of the Lin-
denbaum algebra of SUBMINN (see for a similar proof [20]). Note that
the equivalence ≡ determined by ⇔ is not a congruence with respect to the
Nelson negation and as in [20] one have to use the “strong” equivalence:
A ∼= B iff A ≡ B and ∼ A ≡∼ B.

The implication (iii)→ (ii) follows from the representation theorem 4.17
for Generalized N-lattices.

The implication (iv) → (ii) follows from the set-theoretical representa-
tion theorem 4.18 for generalized N-lattices .

For the logics L with classical implication a more strong completeness
theorem with respect to finite L-matrix will be proved.

Kripke semantics for Nelson negation.

The semantics of the logics L with respect to the set-theoretical L-lattices
can be rephrased in an equivalent way as a Kripke semantics over the class of
L-frames (see Kracht [8] for a similar reformulation for the case of Nelson’s
logic).

Let W = (W,≤, N,N∗) be a subminimal frame. Let v = (v+, v−) of
upwards monotone valuations in (W ) satisfying the following condition: for
any variable p, N∩v+(p)∩v−(p) ⊆ N∗. Define a pair of satisfaction relations


+ and 
− inductively as follows:

• x 
+
v p iff x ∈ v+(p),

• x 
−

v (p) iff x ∈ v−(p),

• x 
+
v A ∧B iff x 

+
v A and x 

+
v B,

• x 
−

v A ∧B iff x 
−

v A or x 
−

v B,

• x 
+
v A ∨B iff x 

+
v A or x 

+
v B,

• x 
−

v A ∨B iff x 
−

v A and x 
−

v B,

• x 
+
v A⇒ B iff (∀y ∈W )(x ≤ y and y 

+
v A→ y 

+
v B),

• x 
−

v A⇒ B iff x 
+
v A and x 

−

v B,
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• x 
+
v ¬A iff (∀y ∈W )(x ≤ y → y ∈ N∗) and x ∈ N ,

• x 
−

v ¬A iff x 
+
v A,

• x 
+
v ∼ A iff x 

−

v A,

• x 
−

v ∼ A iff x 
+
v A,

The intuitive readings: x 
+
v A: “A is accepted at x”, x 

−

v A: “A is
rejected at x”. The following theorem is another version of the completeness
theorem with respect to set-theoretical generalized N-lattices.

Theorem 5.2. Kripke completeness for logics with Nelson nega-
tion. Let L be any logic from the list SUBMINN, MINN, CO−MINN,
Class.SUBMINN, Class.MINN, Class.CO−MINN and Class.INTN.
Then the following conditions are equivalent for any formula A of L:

(i) A is a theorem of L,

(i) A is true in all L-frames.

Corollary 5.3. The following are true:

(i) SUBMINN is a conservative extension of SUBMIN,

(ii) MINN is a conservative extension of MIN,

(i) CO−MINN is a conservative extension of CO−MIN.

Proof. Use the completeness theorem 5.2 for the above logics with respect
to their Kripke semantics.

Finite matrix semantics for classical logics with Nelson negation.

Finite matrix for Class.SUBMINN.
First we will introduce a finite matrix for Class.SUBMINN. This is

just N(B8). Applying the counterexample construction to the subminimal
algebra B8 coded by 3-dimensional binary vectors we obtain the following
finite classical generalized N-lattice which we will denote by N48, because it
has exactly 48 different elements, which we will represent by 6-dimensional
binary vectors.

(N48) N48 = {(x1x2x3; y1y2y3) ∈ {0, 1}6 : x1∧y1 = 0}. It follows from this
representation of the set N48 that it indeed has exactly 48 elements.

(D) D = {(111; 0yz)}, 1 = (111; 000), 0 = (000; 111),

(∼) ∼ (x1x2x3; y1y2y3) = (y1y2y3; x1x2x3),
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(¬) ¬(x1x2x3; y1y2y3) = (x101; x1x2x3),

(∧) (x1x2x3; y1y2y3) ∧ (u1u2u3; v1v2v3) =

((x1 ∧ u1)(x2 ∧ u2)(x3 ∧ u3); (y1 ∨ v1)(y2 ∨ v2)(y3 ∨ v3)),

(∨) (x1x2x3; y1y2y3) ∨ (u1u2u3; v1v2v3) =

((x1 ∨ u1)(x2 ∨ u2)(x3 ∨ u3); (y1 ∧ v1)(y2 ∧ v2)(y3 ∧ v3)),

(⇒) (x1x2x3; y1y2y3) ⇒ (u1u2u3; v1v2v3) = ((x1 ⇒ u1)(x2 ⇒ u2)(x3 ⇒
u3); (x1 ∧ v1)(x2 ∧ v2)(x3 ∧ v3)).

A valuation v in N48 in the above binary representation can be repre-
sented by ordered 6-tuple v = (v1v2v3; v′1v

′

2v
′

3) of binary valuations satisfying
the condition that for every propositional variable p we have v1(p)∧v′1(p) = 0.
So the above semantics can be rephrased in terms of these binary valuations.
We say that a set of formulas Σ in Class.SUBMINN is jointly satisfiable
if there exist a valuation v = (v1v2v3; v′1v

′

2v
′

3) and i=1,2,3 such that for any
formula A ∈ Σ we have vi(A) = 1. Σ is said to be classically consistent in
Class.SUBMINN if Σ 6` ⊥. The following lemma is straightforward.

Lemma 5.4. If Class.SUBMINN is jointly satisfiable then Σ is classically
consistent.

Theorem 5.5 (Strong completeness of Class.SUBMINN in N48).

If Σ is classically consistent set of formulas in Class.SUBMINN then
it is jointly satisfiable.

Proof. First we need the following lemma.

Lemma 5.6 (Truth lemma for the canonical valuations).

Let γ = (Γ1, Γ2, Γ3), be a triple of maximal consistent sets in the logic
Class.SUBMINN satisfying the following conditions:

(1) ¬> 6∈ Γ1 and ¬⊥ ∈ Γ1,

(2) ¬⊥ 6∈ Γ2 and

(3) ¬> ∈ Γ3.

Let for each variable p define a 6-tuple v = (v1, v2, v3; v′1, v
′

2, v
′

3) of
canonical valuation as follows:

• vi(p) = 1 iff p ∈ Γi v′i(p) = 1 iff ∼ p ∈ Γi, i = 1, 2, 3.

Then for every formula A we have the following:

• vi(A) = 1 iff A ∈ Γi, v′i(A) = 1 iff ∼ A ∈ Γi i = 1, 2, 3.
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Proof of the lemma. The lemma is similar to lemma 3.15 and we will
make a use of it. The proof goes by induction on the complexity of the
formula A. For a propositional variable p the assertion is true by the defi-
nition of the canonical valuations. Induction hypothesis (i.h.): let for A,B
the assertion is true.

• Case for A = >,⊥. By the semantics we have v(>) = 1 = (111; 000), so
for all i = 1, 2, 3 we have vi(>) = 1 and v′i(>) = 0. The first requires
> ∈ Γi, which is always true. The second requires ∼ > 6∈ Γi. By axiom
(∼ >) we have that ∼ > ≡ ⊥ and since we have always ⊥ 6∈ Γi — the
requirement is also fulfilled. The case for ⊥ is similar.

• Case for A = B ∧ C. We have: vi(B ∧ C) = 1 iff (by the semantics)
vi(A) = 1 and vi(B) = 1 iff (by i.h.) B ∈ Γi and C ∈ Γi iff (by
maximality of Γi) A ∧B ∈ Γi.

For the valuations v′i we have: v′i(B ∧ C) = 1 iff (by the semantics)
v′i(B) = 1 or v′i(C) = 1 iff (by the i.h.) ∼ A ∈ Γi or ∼ B ∈ Γi iff (by
maximality) ∼ A∨ ∼ B ∈ Γi iff (by axiom (∼ ∧) ) ∼ (A ∧B) ∈ Γi.

The cases for A = (B ∨ C) and A = (B ⇒ C) are similar and make
use of the axioms (∼ ∨) and (∼⇒).

• Case for A =∼ B. We calculate: vi(∼ B) = 1 iff (by the semantics)
v′i(B) = 1 iff (by the i.h.) ∼ B ∈ Γi.

For the valuations v′ we have: v′(∼ B) = 1 iff (by the semantics)
vi(B) = 1 iff (by the i.h.) B ∈ Γi iff (by the axiom (∼∼) ∼∼ B ∈ Γi.

• Case A = ¬B. For the valuations vi, i = 1, 2, 3 the proof is the same as
in lemma 3.15. For the valuations v′i we have: v′i(¬B) = 1 iff (by the
semantics) vi(B) = 1 iff (by the i.h.) B ∈ Γi iff (by the axiom (∼ ¬)
∼ ¬B ∈ Γi.

Now the proof of theorem 5.5 is exactly the same as the proof of theorem
3.14. Instead of lemma 3.15, used in the proof of theorem 3.14 now we use
the just proved lemma 5.6.

Finite matrices for Class.MINN and Class.CO−MINN.

The finite matrix for the logic Class.MINN is N(MIN−B4) and for
the logic Class.CO−MINN is N(Co−min−B4). Both matrices have 12
elements, so the corresponding logics can be considered as 12-valued logics.
We left to the reader to represent these matrices in a binary coding. In the
same way as theorem 5.5 one can prove the strong completeness theorem for
these logics with respect to their matrix semantics.
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Decidability of SUBMINN, MINN and CO−MINN.

The decidability of the logics SUBMINN, MINN and CO−MINN

can be obtained via proving finite model property similar for the case for
Nelson logic in [27] or [20]. We will use the translation method, similar to
those of [31, 20].

Let A be a formula of SUBMINN. The axioms for Nelson negation
make possible to move all occurrences of the Nelson negation inside the
formula and to obtain a negation normal form Neg(A) equivalent to A, in
which the Nelson negation occurs only in subformulas of the form ∼ p, where
p is a propositional variable. Then Neg(A) ≡ B(p1, . . . , pn; ∼ p1, . . . , ∼ pn),
where p1, . . . pn is the list of all variables of B. We define a translation τ(B)
only for formulas in a negation normal form as follows. Let q1, . . . , qn be a
list of different propositional variables not occurring in B. Then τ(B) =def

((p1∧q1∧¬⊥ ⇒ ¬>)∧ . . .∧(¬(pn∧qn)⇒ ¬⊥))⇒ B(p1, . . . , pn; q1, . . . , qn)).
Then τ(B) does not contain ∼ and is a formula of SUBMIN. The following
theorem holds for this translation.

Theorem 5.7 (Translation theorem for the logics SUBMINN, MINN,
CO−MINN). The following is true for every formula B in negational
normal form:

B is a theorem of SUBMINN ( MINN, CO−MINN) iff τ(B) is a
theorem of SUBMIN ( MINN, CO−MINN).

Proof. We will consider only the case of SUBMINN. The other cases can
be proved in a similar way.

• (←). Let τ(B) be a theorem of SUBMIN. Replacing every qi with ∼ pi

the prefix of τ(B) becomes a theorem and the rest is just the formula B.
So, by Modus Ponens B is a theorem of SUBMINN.

• (→). For this case we will reason by contraposition. Suppose τ(B) is not
a theorem of SUBMIN. Then by the Kripke completeness theorem 5.2 for
SUBMIN there exists a subminimal model M = (W,≤, N,N∗, v) and an
element x0 ∈W such that

(1) x0 v (pi ∧ qi ∧ ¬⊥ ⇒ ¬>), i = 1, . . . , n, and

(2) x0 6v B(p1, . . . , pn; q1, . . . , qn).

Let M0 = (W0,≤, N0, N
∗

0 , v0) be the submodel of M generated by x0.
Then by the well known lemma for generated submodels we obtain
from (1) and (2) the following:

(3) x0 v0
(pi ∧ qi ∧ ¬⊥ ⇒ ¬>), i = 1, . . . , n, and
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(4) x0 6v0
B(p1, . . . , pn; q1, . . . , qn).

It is easy to see that from (3) we obtain

(5) v0(pi) ∩ v0(qi) ∩N0 ⊆ N∗

0 .

Now we will define a pair of valuations v+ and v− on W0 as follows:

(6) v+(pi) = v0(pi) and v−(pi) = v0(qi).

By (5) the model M ′ = (W0,≤, N0, N
∗

0 , v+, v−) is an SUBMINN-
model. Obviously by (4) we have:

(7) x0 6v+ B(p1, . . . , pn; ∼ p1, . . . , ∼ pn).

which shows that B is not a theorem of SUBMINN.

Corollary 5.8. The logics SUBMINN, MINN, CO−MINNare decid-
able.

6. Extensions of Nelson logic with new connectives

In this concluding section we will discus informally some connections between
logics with Nelson negation based on the intuitionistic logic and logics with
Nelson negation based on the classical logic.

The fact that adding the characteristic axiom for the classical implication
to the Nelson’s logic INTN turns it to be equivalent to the 3-valued logic L3
of  Lukasiewicz, makes possible to consider the INTN as an intuitionistic
version of L3. It is a well known fact, however, that L3 is not functionally
complete. In order to obtain an intuitionistic version of the functionally
complete 3-valued logic P3 of Post we consider the following new connective
• with the name auto-dual conjunction. We consider the following axioms
for •:

(•1) (A •B)⇔ (A ∧B), (•2) ∼ (A •B)⇔ (∼ A∧ ∼ B).

In the definition of the generalised N-lattice with • we add analogs of
the above axioms:

(•1) (A •B) ≡ (A ∧B), (•2) ∼ (A •B) ≡ (∼ A∧ ∼ B).

The above axioms easily imply the auto-duality of the new conjunction:
a • b =∼ (∼ A• ∼ B).

By the new conjunction we may define a new logical constant analogous
to the  Lukasiewicz middle value 1/2 1/2 =def ⊥ • >.

For the counterexample construction we add the definitions: (a1, a2) •
(b1, b2) = (a1 ∧ b1, a2 ∧ b2), 1/2 = (0, 0).
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If we add the axiom (Class) for the classical implication to the extension
of Nelson’s logic with • we obtain the functionally complete 3-valued logic
P3 of Post (see for this fact [28]). This shows that the new conjunction is
not definable by means of the remaining operations and that the new system
is indeed an intuitionistic version of the 3-valued logic of Post.

We may axiomatize separately the “midle value” 1/2 by the following
axioms:

(1/2, 1) 1/2⇔ ⊥, and (1/2, 2) ∼ (1/2)⇔ ⊥,

From these axioms we see that ∼ (1/2) ≡ ⊥, a feature which is char-
acteristic for the 3-valued tables of  Lukasiewicz. This fact shows that the
roots of the Nelson negation go back to the old  Lukasiewicz negation in L3.

We may add the self-dual conjunction • or the constant 1/2 with the
corresponding axioms to the logics Class.SUBMINN, Class.MINN and
Class.CO−MINN. Obviously the obtained new logics are more express-
ible but probably not functionally complete.

Note that the logical connective A •B was introduced for the first time
in [28] on the base of the 3-valued logic of  Lukasiewicz. After that similar
connectives in the context of bilattice logics have also been considered (see
for instance [1, 5, 6, 18]).
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