YAROSLAV SHRAMKO Dual Intuitionistic Logic and
a Variety of Negations:
The Logic of Scientific
Research

Abstract. We consider a logic which is semantically dual (in some precise sense of the
term) to intuitionistic. This logic can be labeled as “falsification logic”: it embodies the
Popperian methodology of scientific discovery. Whereas intuitionistic logic deals with con-
structive truth and non-constructive falsity, and Nelson’s logic takes both truth and falsity
as constructive notions, in the falsification logic truth is essentially non-constructive as op-
posed to falsity that is conceived constructively. We also briefly clarify the relationships
of our falsification logic to some other logical systems.
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1. Introduction

There is a (not so long) tradition in the literature of considering logics which
are in one sense or another dual to intuitionistic. Thus, Goodman [10] uses
algebraic methods to construct “logic of contradiction” which he also calls
“anti-intuitionistic logic” that rests on Brouwerian algebra dual to Heyting
algebra. He presents a sequent calculus with a “singleton on the left” re-
striction dually to a “singleton on the right” restriction characteristic to a
Gentzen-type intuitionistic sequent calculus. A calculus with an analogues
restriction has been introduced by Czermak [1]. Smirnov [26] analyses Good-
man’s logic as well as some of its possible modifications. In [27] Urbas pro-
vides an extended analysis of such sort of calculi and proves cut-elimination
for some of them. Kamide [13] points out a correspondence between Good-
man’s logic and Nelson’s constructive logic. Rauszer [20]-[22] investigates
several extensions of intuitionistic logics by means of “dual operators” using
algebraic and model-theoretic methods. The issue of “dual intuitionistic
logics” has been addressed and generalized recently by Goré [11] within a
natural framework of display calculus.

In the present paper we also arrive at the logic which appears to be dual
to intuitionistic by starting with a philosophical motivation that relates log-
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ical systems to certain conceptions in methodology of science. We present
an appropriate semantic construction that formally grasps the basic philo-
sophical intuitions. This semantic structure is axiomatized by a suitable
(first-degree) consequence system. In the last section we briefly clarify the
relationships of our falsification logic to some other logical systems and show
the place of dual intuitionistic negation within a variety of constructive and
non-constructive negation operators.

2. A. Grzegorczyk and K. Popper: verification and
falsification in scientific research

In his seminal paper of 1964 [12] Grzegorczyk proposed an interesting philo-
sophical interpretation of intuitionistic logic. According to this interpreta-
tion
“intuitionistic logic can be understood as the logic of scientific
research (rather positivistically conceived) ... Scientific research
(e.g. an experimental investigation) consists of the successive en-
richment of the set of data by new established facts obtained
by means of our method of inquiry. When making inquiries we
question Nature and offer her a set of possible answers. Nature
chooses one of them” [12, p. 596].

Such an understanding can easily be adopted to usual Kripke-style se-
mantics for intuitionistic logic (see [14]). Consider a standard Kripke-model
which is a triple (S, <,lFr), where S is a set of states, < is a reflexive and
transitive relation on S, and IFp — a specific forcing relation between ele-
ments of S and sentences of our language, satisfying the following hereditary
condition (for every a, # € S and for every atomic sentence p):

CoNDITION 2.1 (Heredity of constructive truth).
alFrpand o < 8= Gl p.

Relation -7 stands for the intuitionistic notion of truth, i.e. expression
“alFp A” means “state « forces (constructive) truth of proposition A”, or
simply “A is constructively true in the state a”. We have the following
standard definitions for compound formulas:

DEFINITION 2.2 (Intuitionistic connectives: truth).
allFr ANB & albp A and o b B;
allFr AVB S albp Aor alkr B;
albr ~A & Vﬁ > Oé(ﬁ W A),
allFr ADB&VYE>alflFr A= (lFr B).
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A simple proof by induction expands the hereditary condition to any
formula of our language.

Taking into account the “positivistic methodological attitude” by Grze-
gorczyk [12, p. 598] one can informally treat S as a set of “experimental
data”! or a set of “physical facts” (cf. [9, p. 220]). Then “a Iy A” (where
a € S) would mean “the collection of facts a confirms sentence A”, or “ex-
perimental data « wverify sentence A”. As usual, relation < stands for a
possible time-relation between collections of experimental data, i.e. between
stages of scientific research. In accordance with such an understanding the
notion of truth employed in intuitionistic logic is often explicated as verifica-
tion (or verifiability) (see, e.g. [19]). Condition 2.1 reflects the constructive
character of this notion (constructive truth must be preserved forward).

Grzegorczyk considered his interpretation “philosophically plausible”.
But is a verificationistic interpretation of intuitionistic logic as a logic of
experimental science really plausible? Such an interpretation is apparently
at odds with a traditional understanding of intuitionistic logic (in the “ortho-
dox intuitionism” by Brouwer and Heyting) as “the logic of mathematics”.
It seems also not to fit well the treatment of intuitionistic truth as construc-
tive provability (known also as Brouwer-Heyting-Kolmogorov interpretation,
see [28, p. 10]). Condition 2.1 means that constructive knowledge is devel-
oping cumulatively: a sentence once true, remains true and can never be
false. That is, knowledge (true information) is always growing. This view
perfectly suits the conception of mathematical knowledge, which deals with
a certain kind of abstract objects and treats “verifications” as mathematical
proofs.

However in natural science, e.g. in physics, chemistry etc. the situation
seems to be quite different. Physical reality (the “real world”) is subject to
constant change and new experimental data often may lead us to modify
our beliefs obtained on the base of previously conducted experiments. New
physical facts not always just confirm earlier observations; facts that verify
this or that sentence today, tomorrow may well become out-of-date or even
cease. Generally speaking, for empirical science verification as constructive
provability seems to be too strong notion and it is philosophically doubtful
whether intuitionistic truth can represent “positivistic” conception of veri-
fication. That is, intuitionistic logic with constructive truth and hereditary
condition can hardly play the role of a logic of scientific (experimental) re-
search.

! Grzegorczyk uses here symbol J, calling it “the information set, i.e. the set of all
possible experimental data” [12, p. 596].
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We recall here the criticism on positivistic methodology by Karl Pop-
per [17], [18], who questioned verificationism as the basis of empirical sci-
ence. According to Popper the belief that we can start our scientific research
with pure observations alone “is absurd” (see [18, p. 46]). The Popperian
methodology of critical rationalism emphasizes the priority of falsification
(or refutation) over verification in a scientific inquiry: “observations and ex-
periments function in science as tests of our conjectures or hypotheses, i.e.
as attempted refutations” [18, p. 53]. In a course of research we do not just
“collect” experimental data, but rather make various conjectures (as merely
temporary acceptable) and try to falsify them. If we succeed, we exclude the
conjecture from the set of acceptable sentences (mark it as unacceptable). If
we cannot refute our conjecture, we accept it and preserve it in our theory
until refutation is found. Thus, a real examination of a conjecture consists
not in its verification but in its falsification. The set of acceptable sentences
(conjectures) is shrinking, whereas the set of refuted sentences is growing.

3. Truth and falsity in constructive logic

For Popper the notion of falsity (falsification, refutation) is more important
in scientific research than the notion of truth (verification, proof).?2 This
view is scarcely reflected in intuitionistic semantics. On the contrary, in
intuitionistic logic the notion of falsity has a “subordinate” status, i.e. intu-
itionistic logic essentially rests upon a certain disparity between verification
and falsification in favor of verification. Unlike intuitionistic truth, intuition-
istic falsity is a non-constructive notion representing simply a non-truth of
a sentence (where “truth” is of course the intuitionistic truth).®> One can
make this explicit by defining a new forcing relation (I-¢) as follows:

DEFINITION 3.1 (Non-constructive falsity).
« H—f As (aH‘T A)

Expression “a Iy A” means “o forces (intuitionistic) falsity of A”, or
simply “A is intuitionistically false in the state o”. Informal meaning of this
expression is then: “A is not proved at the state o”. Another possible reading
of this expression is “A is rejectable at the state «”. That is, experimental
data « allow us to reject A so far, although it is still possible that A can

2 As Wansing put it: “according to [Popper’s philosophy of science] falsification is even
the more important epistemological principle as compared to verification” [28, p. 14].

3Kripke involves this understanding of intuitionistic falsity by defining his intuitionistic
models in [14, p. 94].
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be proved later. Obviously IF; does not satisfy the hereditary condition.
Instead one can easily prove the following lemma expressing the fact that
intuitionistic falsity is preserved in a “backward” direction:

LEMMA 3.2 (Backward heredity of nonconstructive falsity).
Bltypand a < B = al-;p.

If a sentence is not proved now, then it has been never proved before
(which does not exclude a possibility of proving it sometime in the future).

By definitions 2.2 and 3.1 we easily get the falsity conditions for intu-
itionistic connectives:

DEFINITION 3.3 (Intuitionistic connectives: falsity).
albfy ANB << alkby Aor alky B;
alFy AVB < alFy Aand alk; B;
Q H—f ~A s 38> a(ﬁH‘f A);
alb; A>Be 38> a(Blr Aand BIF; B).

Clearly, intuitionistic falsity (IF¢) is not a quite good candidate for se-
mantic representation of falsification. To really falsify a sentence we have
to refute it, but refutation means of course something more than a simple
absence of a proof.*

There is the logic, where the notion of falsity is used in a strong (con-
structive) sense — the logic of “constructible falsity” introduced by Nelson
( [16], cf. also [30]). A Nelson-model is a quadruple (S, <,IFp,|Fr), where
S, <, and I are the same as in Kripke-models. But in a Nelson-model
one introduces (side by side with IF7) another primitive forcing relation kg
which stands for constructive falsity. Being a constructive notion I+ should
be persistent forwards (into the future), and the corresponding hereditary
condition is:

CoNDITION 3.4 (Heredity of constructive falsity).
alFppand a < = BlFpp.

Moreover, the following condition must hold for IF7 and IF g, forbidding
so-called “over-determined valuations” (although the “under-determined val-
uations” are allowed):

CoNDITION 3.5 (Consistency).
Va € S Vp(alWr por alrp).

4Cf. the following remark by Wansing: “A propositional variable p is verified at a € I,
i.e. a € v(p), iff there is enough information at a to prove p. Thus, a ¢ v (p) does not
mean that p is falsified at a, it merely says p is not verified at a” [28, p. 5].
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For compound formulas we have the following definitions:

DEFINITION 3.6 (Nelson’s connectives).
allFr ANB & albp A and o b7 B;
allp ANB S alkp Aor alkp B;

allFr AVBS albp Aor alkr B;

allFp AVB S albp Aand albp B;

allbr ~A s albp A;

allbp ~A s albr A;

altr ADBeVE>a(flFp Aor BlFr B);
allFrpr ADB& albr Aand olFp B.

Nelson’s constructive falsity reflects Popperian idea of falsification very
well. “a IFp A” — “a forces (constructive) falsity of A” — represents a
presence of a disproof (or refutation) for A rather than a simple absence of
its proof. Informally this means that A is (constructively) refuted at the
state «, or “experimental data « refute sentence A”.

However, Nelson’s logic is not “purely” falsificationistic, as it still pos-
sesses a strong — constructive — notion of truth which is entirely equal (“sym-
metric”) to the notion of falsity.> But the Popperian methodology “is based
upon an asymmetry between verifiability and falsifiability” [17, p. 41] (in
favor of the latter). Thus, Nelson’s logic as such is not suitable to serve as
the “logic of scientific research” conceived by Popper.

4. Falsification logic: a semantic approach

Let us take the above mentioned asymmetry seriously and proceed further
along the Popperian idea that falsification has priority over verification in a
scientific research. To incorporate this idea we have to exclude constructive
truth from our semantic models and consider the notion of constructive
falsity (as refutation) as the only starting point of a falsification logic (FL)S.

Thus, a falsificationistic model is a triple (S, <,IFg), where S, <, and IFp
are as above (subject to the suitable conditions). That is, a falsificationistic
model is just a dual Kripke-model for intuitionistic logic. S can again be
interpreted as a set of experimental data or physical facts that we have at
our disposal in a certain moment. In the course of scientific research we

50One can find more detailed considerations on the truth values in various constructive
logics (as well as on the notion of non-constructive truth introduced below) in [23].

SWe will freely use the expressions “falsification logic” and “falsificationistic logic”
interchangeably.
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are making various conjectures or hypotheses and try to falsify them by the
way of comparison with the present experimental data or facts. A falsified
conjecture, e.g. a conjecture that does not correspond (“contradicts”) to
facts is considered refuted and has to be rejected for ever (condition 3.4).
The set of refuted statements can only be accumulated in the course of time,
i.e. it is constantly growing.”

Within a falsificationistic model a counterpart notion of non-constructive
truth can be defined as follows:

DEFINITION 4.1 (Non-constructive truth).
alk As alFp A

Again, it is not difficult to show that I, being not always persistent into
the future, satisfies backward heredity:

LEMMA 4.2 (Backward heredity of non-constructive truth).
BlFip and a < 8= alk:p.

Expression “a IF; A” means informally “A is not refuted (falsified) at
the state «”, or “experimental data « do not refute sentence A”. Taking
into account that expression “a lFp A”, in its turn, may be interpreted as
“A is unacceptable within data «”, we might consider IF; in a positive mode
saying that a sentence can be accepted on a basis of the present experimental
data (physical facts). Expression “a Iy A” means then “data « allow us to
accept sentence A7, or “A is acceptable in o”.

It seems that not only constructive falsity (IFr) appears a natural se-
mantic counterpart for falsification, but also the non-constructive truth (I-)
expresses the idea of empirical verification much better than I does. In-
deed, within empirical science the requirement for constructive provability
of all the statements is much too strong. In some minimal sense a hypothesis
(conjecture) can be considered verified if our attempts to refute it do not
succeed, i.e. if we could not find any empirical (factual) counterexample for
this hypothesis. In this case we have sufficient reasons for accepting it, at
least until convincing evidence against the hypothesis are found.

"It is interesting to compare our falsificationistic models with a claim by Goodman that
his anti-intuitionistic logic has a semantics “based on the proper Kripke structures. ... In
the intuitionistic case, the Kripke structures have the property that any formula, once true
remains true. The anti-intuitionistic Kripke structures, on the other hand, are Popperian.
That is, they have the property that any formula, once false, remains false. Instead of
proving new theorems as we go along, we refuting new conjectures” [10, p. 124]. However,
except this short remark Goodman gives no details about his anti-intuitionistic semantics,
and as Goré points out, “annoyingly fails to give the crucial clause for satisfiability for his
‘pseudo-difference’ connective”[11, p. 252].
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By defining truth and falsity conditions for compound formulas we have
to secure the corresponding hereditary conditions to any sentence of our lan-
guage. Conjunction and disjunction can be defined as usual. As to the nega-
tion operator that can be introduced within a “pure” falsificationistic model
defined above, we observe that FL cannot just maintain Nelson-negation, as
we do not have at our disposal the notion of constructive truth any more.
A “pure falsificationistic” negation, being defined (explicitly or implicitly)
through a non-constructive truth, is not as “straight” as Nelson-negation.
For example, we cannot directly say (on the level of a semantic definition)
that not-A is refuted iff A is proved - in a genuine falsificationistic (Pop-
perian) logic we do not have proofs, but only conjectures (hypotheses).

This situation is perfectly dual to the one we have in intuitionistic logic.
Intuitionistic negation cannot be defined semantically by a direct clause:
“not-A is proved iff A is refuted”, as the notion of refutation is simply absent
in a standard intuitionistic semantics. It is instructive to employ this duality
between FL and intuitionistic logic by defining the (non-constructive) truth
and (constructive) falsity conditions for our falsificationistic negation.® For
the sake of “visuality” we give here parallel clauses for both IF; and IFg:

DEFINITION 4.3 (Falsificationistic connectives).
allki ANB S alk A and o b B;
allp ANB S alkp Aor alkp B;

allkt AVB S alk Aor alby B;
allFrp AVB < alkp Aand albp B;

alli~Ae 38> a(flFp A);
albp ~Ae VB> a(BlF A).2

The last two clauses characterize the acceptability (and non-acceptabili-
ty) conditions for falsificationist negation which is semantically dual to in-
tuitionistic. “~A” is to be understood as “A is unacceptable”. Thus we can
accept non-acceptability of A iff we can show that A can be refuted some-
times in the future. And vice versa — unacceptability of A is refuted as soon

8 Although we continue to use in definition 4.3 the same symbol for negation (~), it
is obviously neither intuitionistic negation (definitions 2.2 and 3.3) nor Nelson-negation
(definition 3.6). This should not cause any confusion as in what follows, it will always be
clear from a context, which negation we deal with in each case.

9Note that definition 4.3 says nothing about implication. It is not by chance. As we
will see, it is impossible to define in FL any implicative connective such that both modus
ponens and heredity (backward for IFr and forward for IF¢) hold for it (cf. theorem 4.7
below).
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we succeed to demonstrate that from now on A will always be acceptable.'?

Falsificationistic validity (f-validity, for short) of a sentence can be natu-
rally defined in terms of acceptability: a sentence A is f-valid iff it is always
acceptable, i.e. for every model (S, <,IFp)!! and for every a € S we have
a Ik, A. Dually let us call a sentence falsificationally refuted (f-refuted) iff it
is refuted (i.e. false) in any state from any falsificationistic model.

Now we consider in more detail some characteristic features of FL.
As Goodman [10, p. 122] and Urbas [27, p. 440] pointed out the dual-
intuitionistic logic should validate exactly the set of theorems of classical
logic. This holds also for our falsificationistic models.

THEOREM 4.4 (Consistency and completeness).
The set of f~valid formulas is exactly the set of theorems of classical logic.

PRrROOF. In what follows A D B is an abbreviation for ~A V B. Consistency
can be easily established by direct examination of the fact that all the ax-
ioms of some standard propositional calculus of classical logic are f-valid and
modus ponens preserves f-validity.

As to completeness, it can be proved by constructing a suitable canonical
model. As usual a theory is a set of sentences x closed under provable
implication (if A € z and F A D B, then B € z) and conjunction (if A € x
and B € z, then AA B € ). Note that the set of theorems of classical logic
is a theory. A theory x is prime iff the following holds: if AV B € z, then
A € x or B € x. A theory is trivial iff it contains all the sentences of our
language.

By Lindenbaum lemma (cf. the proof of lemma 5.2 below) for any sen-
tence A and for every theory z such that A ¢ x, there is a prime theory z’
such that A ¢ 2/,

Let the canonical model be a triple (T¢, <¢ IF{), where T¢ is the set of
all non-trivial prime theories, z <° y is defined as y C z, and I-{ (canonical

00ur definition of falsificationist negation differs in some important respect from the
definition for “Brouwerian negation” proposed by Rauszer [22, p. 36]. Rauszer conceived
her negation (as well as the connective of “Brouwerian implication” or “pseudo-difference”)
on a basis of an extension of intuitionistic logic and she extends correspondingly the usual
Kripke-models. That is, definitions in [22] employ standard intuitionistic truth values and
the truth of negated sentences is preserved forward as by usual intuitionistic connectives.
Therefore Rauszer reverses the accessibility relation in definition for Brouwerian negation.

1 Clearly, one can equivalently define a falsificationistic model with IF; as primitive, i.e.
as a triple (S, <,IF¢). In this case one postulate for I+ the hereditary condition (lemma
4.2). IFr can be then defined as ¥, and condition 3.4 becomes provable. In what follows
we will have in mind just this formulation of falsificationistic models.
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valuation) is defined as follows: x IF{ p < p € .12 Tt is not difficult to show
by induction that the canonical valuation is extended to any sentence of our
language. We consider here only the case with sentences of the form ~A.

Let ~A € z. Then A ¢ z (otherwise x would be trivial). By reflexivity
of C we have: Jy(y Cx and A ¢ y). By definition of <¢ and inductive
hypothesis: Jy (z <¢y and y ¥{ A). Hence, = IF{ ~A.

Let ~A ¢ x. Then for any y C z, ~A ¢ y. As ~AV A is a theorem
of classical logic, we get ~AV A € y. Hence (because y is prime), ~A € y
or A € y. Thus, A € y, i.e. Vy(y Cx = A €y). By definition of <¢ and
inductive hypothesis we get Vy (x <°y = A € y) and so z IF§ ~A.

Thus, (7°¢, <) is a falsificationistic model indeed.

Consider now an arbitrary sentence A such that A ¢ xl (where z% is
the set of theorems of classical logic). As was noted above x” is a theory.
By Lindenbaum lemma z% can be extended to a prime theory z’ such that
A ¢ 2!, 2 is non-trivial, hence 2/ € T°. By definition of canonical valuation
we have 2/ ¢ A, that is A is not f-valid. |

COROLLARY 4.5 (Dual Glivenko).
A sentence A is f-valid iff it is classically valid.

Although falsificationistic logic and classical logic are coincident in the
sets of their valid formulas, they nevertheless differ in the sets of refuted
propositions. Namely, not every classical contradiction appears f-refuted.
For example, it is easy to check that there may well be S and « € S such
that o Ik AA ~A. (At the same time formula ~ (A A ~A) remains f-valid!)
This allows one to consider FL a kind of paraconsistent logic (cf. [26], [27,
p. 441]).

However the most important aspect in which FL differs from classical
logic lays in consequence relation. Let us define this relation for falsifica-
tionistic models in a standard way:

DEFINITION 4.6 (Falsificationistic consequence).
AEB & VSVae S(alk A= alk B).

If we have A = B, then we say that A = B is a valid falsificationistic
consequence (f-consequence). Now it is not difficult to see that, e.g. the
following statements are not valid: A = ~~A; AN (~AVB) = B; AN
~A | B; ~NAN~B |= ~(AV B). An interesting effect of this is that one
cannot define within FL anything like “falsificationist implication” which

120bviously IS is defined then as follows: z IF% p < p & =.
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would satisfy both deduction theorem and backward heredity. This fact is
established in the following theorem:

THEOREM 4.7 (Indefinability of implication).
It is impossible to define in FL any connective * such that = Ax B <
A E B.

PrRoOOF. We modify as appropriate an algebraic proof from [10] and a syn-
tactic proof from [27]. Assume one could define within FL such a connective
. Then it would be definable in classical logic as well. As A = A is a valid
f-consequence, A x A would be f-valid and hence classically valid. But then
Ax~r~A would also be classically valid and so f-valid. As aresult A = ~~A
would appear valid f-consequence what is impossible. [ |

Some authors (see, e.g. [10], [20]-[22]) formulate dual (or anti-) intu-
itionistic logic with so-called “anti-implication” or “pseudo-difference” as a
primitive connective (let us mark it with +) which is dual to intuitionistic
implication (Wolter [29] calls it coimplication). Negation can be defined then
via anti-implication and constant T!3: ~A & T =+ A. Goodman [10, p. 121]
proposes to read + as “but not”, i.e. A + B would mean then “A but not
B”. Urbas [27, p. 451] remarks that such an interpretation is not quite sat-
isfactory as it suggests an equivalence with A A ~B which generally does not
hold. Instead, Urbas suggests the A + B be interpreted as “A excludes B”.

In the present paper we explicitly content our consideration with a “first-
degree level”, thus concentrating on a set of binary consequence statements
of the form (A, B) where both A and B may contain only V, A and ~. That is,
neither A nor B include any implications or co-implications. As we believe,
it allows us to focus our attention on various kinds of constructive negations
and their duals. We leave the issue of extending FL to richer languages
(possibly containing implication-like connectives) for a future work.

5. Falsification logic: an axiomatization

It is quite remarkable that FL and classical logic — being identical in the
set of their valid propositions — have different consequence relations. It can
be viewed as another argument in favor of understanding logic not as a set of
theorems, but a set of correct consequences. Thus, we construct falsification
logic as a (first degree) consequence system (L,l), where L is the set of
sentences of the language of FL (with A, V and ~), and F (consequence) is
a binary relation over L satisfying the following postulates and rules:

13Satisfying the condition A |= T, where A is any sentence of our language.
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al. AFA

a2. ANBFA

a3. ANB+FB

ad. A-AV B

ab. BFAV B

a6. AN(BVC)F(AANB)V(AAC)
al. ~~AF A

al. BFAV~A

rl. AF B, BFCJ/AFC

r2. AF B, AF C/A+ BAC
r3. AFC,B+CJ/AVB+C
rd. A B/~BtF ~A

r5. AF BV C/~CF ~AvV B

Note that if we replace a7, a8 and r5 by their duals:

(1) AF ~~A
(2) AN~AF B

and
(3) ANBFC/AAN~CF ~B

Y. Shramko

respectively, we get an (implication-free) intuitionistic consequence system.

For the sake of illustration we present here the proof in FL of the con-

sequence B F ~ (AN ~A):

1. AN~AF A (a2)

AN~AFE~A  (a3)
~AFE~(AN~A) (15 74)

~v AR~ (AN~A) (25 14)

~AV ~~ AR~ (AN~A) (345 73)
BF~AV~~A  (a8)
BEF~(AAN~A) (5, 6;r])

o Ot LN

It remains to prove the adequacy of the consequence system FL to pro-

posed semantics.

THEOREM 5.1 (Consistency).
If A+ B, then A = B.

“The rule r5 was absent in an earlier version of this paper (see [25]), although it is
needed for completeness. I am grateful to Chunlai Zhou and Michael Dunn for pointing

this out to me.
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PrROOF. We leave to an “interested reader” a direct check that all the
schemes al-a8 represent valid consequences, and that the rules r1-r5 pre-
serve such validity. [

Completeness can be proved by a canonical model construction. We
define a theory as a set of sentences closed under - (i.e. for every theory z, if
Aczand AF B, then B € x)and A (if A€ z and B € z, then AAB € z).
A prime and trivial theory are defined as in proof of theorem 4.4.

LEMMA 5.2 (Lindenbaum).
For any A and B, if A¥ B, then there exists a prime theory x such that

Acxand B ¢ x.

PRrROOF. The proof is quite standard. We reproduce here a variant of an ana-
logues proof from [6, p. 13] adopting it to FL. Define 29 = {C': A+ C}. It is
not difficult to see that xg is a theory, A € z¢ and B ¢ xy. We enumerate all
the sentences of our language: Ai, As, As, ... and then construct a sequence
of theories starting from xy and defining x,, 11 = zp,+ Apy1 if B ¢ zp+ Apy,
otherwise z,+1 = x, (y+ C is the smallest theory we get by closing y U {C'}
by - and A). We can now define a theory x we are seeking for as the union of
all the x,, belonging to the sequence of theories so constructed. It is easy to
see that z is a theory. Moreover, it is maximal theory such that B ¢ z. One
can show that it is also prime. Namely, assume DV E € x and yet D ¢ x
and E ¢ z. Consider theories x + D and x + E. Since both these theories
are proper extensions of x we have B € x + D and B € x 4+ E. Hence, there
exist C1,...,C; € z such that CyA..ANC;ADFBand C1A...ANC;ANE - B.
Applying r3 and a6 we get C1 A... NC; A (D V E) = B. But this would mean
that B € x. A contradiction. [

Lemma 5.2 states in effect that any theory of a certain kind can be
extended to a prime theory of the same kind. We formulate now a lemma
which is in a sense dual, saying that any prime theory of a certain kind can
be in a certain way contracted while preserving primeness.

LEMMA 5.3 (Contraction).
Let x be a non-trivial prime theory such that A € x and ~A € x. Then
there exists a prime theory y such that y C x and A ¢ y.

PRrROOF. We make use of “Dual-to-Lindenbaum” lemma by Lukowski (see
[15, pp. 66-67]). First, notice that ~A ¥ A. Otherwise it would be not
difficult to show (using al, a7 and a8) that ~A + B for any B which would
contradict the assumption of non-triviality of x. Note also that a1l —a8, r1—
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r5 determine a Tarski-style operation of deductive closure C' on L. Following
Lukowski, we can uniquely define a counterpart elimination operation F (see
[15, p. 60]) that allows us to eliminate sentences from a given theory. Define
an E-theory as a set of sentences closed under . The notion of a relatively
minimal E-theory see in [15, p. 66]. Consider a theory yo = {B € z : B ¥ A}.
Clearly, A ¢ yo and ~A € yo. Moreover, by Lukowski’s lemma [15, pp. 66-
67] there exists an F-theory y minimal relative to ~A such that y C yo.
Since y is a relatively minimal E-theory, it is also a maximal theory. Taking
into account that any maximal theory is prime, we get our lemma.'® [ |

Let the canonical model (7', <,IF;) and canonical valuation be defined as
in the proof of theorem 4.4 mutatis mutandis. Then we have

LEMMA 5.4 (Canonical model).
(T¢, < IFY) is a falsificationistic model.

PRrROOF. It is easy to see that <¢is a partial order and that backward hered-
ity holds for IFf. We have to show that definition of I-{ holds for any sentence
of our language. This can be done by induction of formula construction. The
cases with V and A are straightforward. For negation consider any sentence
~A and let the definition of canonical valuation holds for A (inductive hy-
pothesis).

Let ~A € z. As to A, either A ¢ x, or A € z. In the first case,
by reflexivity of C, Jy(y Cxz and A ¢ y). In the second case the same
holds by lemma 5.3. By definition of <¢ and inductive hypothesis we get
Jy (z <®y and y ¥{ A). Hence, = IF{ ~A.

Let ~A ¢ z. Then for any y C = we have ~A ¢ y. Note that ~AV A
belongs to any theory, i.e. ~AV A € y, and by the primeness of y, ~A € y
or A €y. Hence A € y. That is, Vy (y Cx = A € y). By definition of <¢
and inductive hypothesis we get Vy (x <y = A€ y) andso z IF§, ~A. =

THEOREM 5.5 (Completeness).
If A= B, then A+ B.

PRrROOF. We argue by contraposition. Suppose A ¥ B. Then by lemma 5.2
there exists a prime theory x such that A € x and B ¢ x. x is non-trivial,
hence x € T°. By definition of canonical valuation z I-§ A and = ¥{ B, i.e.
AF B. ]

15Contraction lemma is dual to Lindenbaum only to a certain respect, or better to say
in a certain sense of “duality”. Like Lindenbaum it deals with prime theories, but looking
into them rather than over them. It may be therefore more appropriate to label it as
“reverse Lindenbaum lemma”. As opposed to this, Lukowski’s lemma is dual Lindenbaum
in a deep sense of the term.
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6. The united kite of negations. Minimal falsificationistic
negation

Dunn in [4] and [5] considers several kinds of negations, starting from what
he calls “subminimal negation” and up to the classical one. Namely, let
a (positive) consequence system & be determined by the axioms and rules
al — a6, r1 —r3 from the previous section, and let us consider the following
extra schemata for negation:

Contraposition: At B/~B ~A;

Constructive contraposition: A+ ~B/BF ~A;
Classical contraposition: ~A+ B/~B | A;
Congunctive contraposition: ANBF CJAN~C F ~B;
Disjunctive contraposition: A+ BV C/~CF ~AV B;
Constructive double negation: At ~~A;

Classical double negation: ~~A & A;

Absurdity: AN~AF B;

Negated absurdity: AN ~AF ~B;

Triviality: BF AV ~A,

Negated triviality: ~BF AV ~ A.

Then we have:
Subminimal negation (Sub) = & + contraposition.

As Dunn points out, subminimal negation has been introduced by Hazen
[7], who in turn follows a suggestion of Humberstone. Note, that Dunn’s
considerations do not generally presuppose the presence of conjunction and
disjunction. Dunn [4, pp. 5, 20] remarks that if we have conjunction and
disjunction it can be useful to require for subminimal negation to satisfy an
additional axiom ~AA~BF ~ (A V B) and he calls the operator so defined
preminimal negation. It is just the negation of Dosen’s system N from [2]
and [3].

Quasi-minimal negation (Qua) = Sub + constructive double negation.
Incidentally, ~A A ~B = ~ (A V B) becomes then derivable (together with
two others intuitionistically acceptable De Morgan laws). Another way to
get Qua is to directly extend & by the rule of constructive contraposition.

It is interesting to observe that what we call here “quasi-minimal”'6
negation is called just “minimal” in [4] and [5]. However, the latter label
is usually reserved for the negation operator of famous minimal logic of

Y6The label first suggested by J.M. Dunn (personal communication).
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Ort

DM Int

Qua

Sub

Figure 1. Dunn’s Kite of Negations

Johansson [8], a characteristic feature of which demands that although a
contradiction does not imply any sentence it does imply the negation of any
sentence. Quasi-minimal negation appears not to conform to this demand.

Intuitionistic negation (Int) = Qua + absurdity. Note, that this formula-
tion is from [4], where absurdity is taken in the form: A+ B, A+ ~B/A+ C,
as Dunn does not necessarily has conjunction in his logics. In the full lan-
guage we have to postulate for intuitionistic negation to satisfy additionally
conjunctive contraposition'” also known under the name antilogism.

De Morgan negation (DM) = Qua + classical double negation. De
Morgan negation can alternatively be defined by requiring that it satisfies
both constructive contraposition and its dual (classical contraposition).

Ortho negation (Ort) = Qua + classical double negation + absurdity.
Ortho negation is just classical (Boolean) negation, if the whole framework
of & is present. But as Dunn [5, p. 26] remarks, it can also be more generally
studied in the (non-distributive) framework of quantum logic.

Dunn considers also a possibility of having in one system a pair of dif-
ferent negation operators connected by a so-called Galois property. He calls
such a pair Galois connected negations or split negation, placing it between
subminimal and quasi-minimal negations. We can ignore this aspect here as
we will always presuppose a context with one negation operator within one
logical system.

The relationships among negations introduced above can be summarized
in a form of a diagram (resembling a child’s kite, whence its name) as shown
in Figure 1.!® Moreover, the above observation concerning quasi-minimal

17T am grateful to Dunn and Zhou for turning my attention to this fact.

18We omit here preminimal negation mentioned above which should be placed between
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negation suggests a natural extension of this construction by minimal nega-
tion proper (a la Johansson):

Minimal negation (Min) = Qua + conjunctive contraposition. That is,
Min is just Int without unrestricted absurdity.

In Min negated absurdity can easily be derived by a one-step applica-
tion of conjunctive contraposition to a2. If our language does not include
conjunction and disjunction, negated absurdity has to be postulated instead
of conjunctive contraposition, e.g. in the form A+ B, A+ ~B/AF ~C.
Then we can get intuitionistic negation directly from minimal negation by
replacing negated absurdity by the unrestricted one.

Ort
Int
DM
Min
Qua
Sub

Figure 2. Extended Kite of Negations

Min is naturally settled between quasi-minimal and intuitionistic nega-
tions thus producing (a bit lopsided) “extended kite of negations” (Figure 2).
It is interesting to observe that some of the negations in Figure 2 allow dual
counterparts. Namely, we can define:

Dual quasi-minimal negation (D-Qua) = Sub + classical double nega-
tion. D-Qua is a departure from subminimal negation in a different direction
as Qua. It can also be obtained by extending system & simply with classical
contraposition.

Analogously as with quasi-minimal negation, we face at this point an
interesting alternative: either to turn to De Morgan negation by adding
constructive double negation to D-Qua, or to continue our way towards
dual minimal negation and, further, dual intuitionistic negation:

Sub and Qua.
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Ort

Min

Sub

Figure 3. United Kite of Negations

Dual minimal negation (D-Min) = D-Qua + disjunctive contraposition.
(Negated triviality is derivable in D-Min).

Dual intuitionistic negation (D-Int) = D-Min + triviality. In this way
we just regain our falsification logic FL.

Then once again we end up with ortho negation by extending dual intu-
itionistic (falsificationistic) negation with constructive double negation.

It is easy to see that replacing of Qua, Min and Int in Figure 2 by D-
Qua, D-Min and D-Int respectively gives us the “dual kite of negations”.
Both kites can be united within a joint diagram (Figure 3) which reflects
the relationships between all the negations introduced above.

Note, that as dual intuitionistic negation appears to be virtually coin-
cident with falsificationistic negation, D-Min can be regarded as minimal
falsificationistic negation.'® The model for D-Int (i.e. a falsificationistic
model) immediately suggests an analogous construction for minimal falsifica-
tion logic that can be obtained by an appropriate “dualizing” of a semantics
for minimal logic (see, e.g. [24]).

That is, a minimal falsificationistic model is a quadruple (S, N, <,IFg),
where S, <, and g are as in falsificationistic model above, and N C S.
We take again definition 4.1 for I-; and observe that lemma 4.2 holds. The
crucial clauses for D-Min are then as follows:

DEFINITION 6.1 (Minimal falsificationistic negation).
alky~A<e I >a(Be N and flkbp A);

1911 the presence of anti-implication this would imply definition ~A < ¢+ A, with no
further conditions on ¢ (which would mean that ¢ could be just some arbitrary chosen
propositional variable).
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allp ~ASVE>a(feN = [l A).

A direct check shows that although unrestricted triviality is not valid
under this definition, negated triviality is.

Informally N can be interpreted as a set of normal states, e.g. a set of
experimental data which are consistent and can serve as a reliable source for
scientific research. Then definition 6.1 says that ~A is acceptable in « iff A
is refuted in some normal state (3 accessible from «. And vice versa, ~A is
refuted in « iff we can show that A will be acceptable in any future state
provided this state is normal.

Summing up, United Kite of Negations presents a general structure which
allows us to locate our falsification logic among a broad variety of logical sys-
tems. We leave for a future work developing a uniform semantic construction
for the whole United Kite.
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