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Abstract. The article is devoted to the systematic study of the lattice EN4
⊥ consisting

of logics extending N4
⊥. The logic N4

⊥ is obtained from paraconsistent Nelson logic N4

by adding the new constant ⊥ and axioms ⊥ → p, p → ∼⊥. We study interrelations

between EN4
⊥ and the lattice of superintuitionistic logics. Distinguish in EN4

⊥ basic

subclasses of explosive logics, normal logics, logics of general form and study how they are

relate.
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1. Introduction

This article continues the study of extensions of Nelson’s paraconsistent logic
started in [10, 11] and in what follows we assume the acquaintance of [11]. In
[10], we have introduced different kinds of semantics for Nelson’s logic N4,
in particular, we have defined the variety VN4 of N4-lattices such that the
lattice EN4 of N4-extensions is dually isomorphic to the lattice Sub(VN4)
of subvarieties of the variety VN4. We have also proved that N4-lattices
can be represented as twist-structures over implicative lattices. The article
[11] contains the origins of algebraic theory of N4-lattices. In this way, the
articles [10] and [11] provide the necessary semantical basis for the study of
EN4. But we will not do it and slightly change the object of investigation.
The logic N3, the explosive extension of N4, is usually considered in the
language with two negations, strong ∼ and intuitionistic ¬, despite the fact
that ¬ can be defined through ∼ as follows: ¬ϕ↔ ϕ→ ∼ϕ. The last equiv-
alence explains also the name ”strong negation”. If we pass from N3 to N4,
the above relation will not define neither intuitionistic nor minimal nega-
tion. Due to this reason the logic N4 is usually considered in the language
with the strong negation ∼ only. However, as we will see, the presence of
intuitionistic negation is desirable in this setting and the semantics in terms
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of twist-structures allows to obtain a philosophically plausible combination
of paraconsistent strong negation and explosive intuitionistic negation. The
interpretation of Nelson’s logic as a logic of information structures has a
long tradition, see, e.g., [20, 8]. The presentation of N4-lattices in terms of
twist-structures over implicative lattices allows to consider the logic N4 as an
information superstructure over positive logic and arbitrary N4-extension as
an information superstructure over some extension of positive logic. Recall
that implicative lattices provide semantics for positive logic and its exten-
sions. Thus, the underlying theory is positive. It is natural to consider an
information logic over logic considered in the full language containing nega-
tion. It is also natural to assume that this logic describing one or another
object domain is explosive and only the information superstructure is para-
consistent. According to these considerations the replacement of implicative
lattices by Heyting algebras in the definition of twist-structures will results
in the logic which can be considered as an information superstructure over
intuitionistic logic. This resulting logic is denoted N4

⊥ and the lattice of its
extensions EN4

⊥ will be the main object of investigations in this article.

2. Preliminaries

We will consider logics in the propositional languages L := {∨,∧,→,∼}
with the symbol ∼ for strong negation and L⊥ := L ∪ {⊥} with additional
symbol for the constant of absurdity. The connectives of equivalence ↔ and
of strong equivalence ⇔ are defined as follows: ϕ↔ ψ 
 (ϕ→ ψ)∧(ψ → ϕ)
and ϕ⇔ ψ 
 (ϕ↔ ψ)∧ (∼ψ ↔ ∼ϕ). By a logic we mean a set of formulas
closed under the rules of substitution and modus ponens. By For (For⊥) we
denote the trivial logic, i.e., the set of all formulas of the language L (L⊥).
For a logic L and a set of formulas X, denote L+X the least extension of L
containing X. By + we denote also the join operation in the lattice of logics.
Logics will be defined usually via Hilbert-style deductive systems with the
only rules of substitution and modus ponens. In this way, to define a logic
it is enough to give its axioms. The paraconsistent Nelson’s logic N4 is a
logic in the language L characterized by the axioms of positive logic and the
following axioms for strong negation:

A1. ∼∼ p↔ p

A2. ∼(p ∨ q) ↔ (∼ p ∧ ∼ q)

A3. ∼(p ∧ q) ↔ (∼ p ∨ ∼ q)

A4. ∼(p→ q) ↔ (p ∧ ∼ q)
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To obtain the explosive Nelson’s logic N3 one should add to the list of
N4-axioms the axiom

A5. ∼ p→ (p → q)

The logic N4
⊥ is a logic in the language L⊥ determined by the axioms

of N4 and the two additional axioms for the constant ⊥:

A6. ⊥ → p and A7. p→ ∼⊥.

Due to axiom A6 the intuitionistic negation can be defined in N4
⊥ as

¬ϕ := ϕ→ ⊥. If we put ⊥ := ∼(p0 → p0), we can prove

N3 ` ⊥ → p, p→ ∼⊥.

In particular, the intuitionistic negation is definable in N3. This is the
reason, why we do not distinguish the logics N3 and N3

⊥.
We say that a formula ϕ in the language L or L⊥ is in negation nor-

mal form (nnf) if it contains ∼ only before atomic formulas. The following
translation (·) sends every formula ϕ to a formula in negation normal form,
where p ∈ Prop and � ∈ {∨,∧,→}:

p = p ∼ p = ∼ p

∼∼ϕ = ϕ ϕ � ψ = ϕ � ψ

∼(ϕ ∨ ψ) = ∼ϕ ∧∼ψ ∼(ϕ ∧ ψ) = ∼ϕ ∨∼ψ

∼(ϕ→ ψ) = ϕ ∧ ∼ψ

Proposition 2.1. For any ϕ ∈ For(For⊥), N4(N4
⊥) ` ϕ↔ ϕ.

The proof easily follows from strong negation axioms A1–A4.

An important peculiarity of Nelson’s systems N3, N4 and N4
⊥ is that

the provable equivalence is not a congruence relation. However, the presence
of axioms of positive logic means that the provable equivalence is a congru-
ence relation with respect to positive connectives. More exactly, for any
formulae ϕ0, ϕ1 and positive formula ψ(p) with a propositional parameter,
the provability of ϕ0 ↔ ϕ1 in N3 (or N4, N4

⊥) implies the provability of
ψ(ϕ0) ↔ ψ(ϕ1) in that logic. The next proposition easily follows from the
existence of nnf for formulas in Nelson’s logics and shows that these logics
are closed under a weak form of replacement rule.

Proposition 2.2. The logics N4 and N4
⊥ are closed under the weak re-

placement rule
ϕ0 ↔ ϕ1 ∼ϕ0 ↔ ∼ϕ1

ψ(ϕ0) ↔ ψ(ϕ1)
.
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It follows immediately from this proposition that the provable strong
equivalence ⇔ will be a congruence relation in N4 and N4

⊥ as well as in
N3.

As concerns the semantical notation, a matrix is, as usual, a pair M =
〈A,DA〉, where A is an algebra and DA ⊆ A the set of distinguished el-
ements. In case when DA = {1} is one-element, we write 〈A, 1〉 instead
of 〈A, {1}〉 and identify, in fact, a matrix with an algebra in a language
with additional constant 1. A valuation in an algebra is defined in a stan-
dard way. A formula ϕ is said to be true on a matrix M = 〈A,DA〉,
M |= ϕ, if for any A-valuation, v(ϕ) ∈ DA. An identity ϕ = ψ is
true on an algebra A, A |= ϕ = ψ, if v(ϕ) = v(ψ) for any A-valuation.
The set Th(M) 
 {ϕ : M |= ϕ} is a theory of matrix M and the set
Eq(A) 
 {ϕ = ψ : A |= ϕ = ψ} is an equational theory of an algebra A. For
a class K of matrices (algebras), we define Th(K) 


⋂
{Th(M) : M ∈ K}

(Eq(K) 

⋂
{Eq(A) : A ∈ K}).

For a class of algebras K, we denote IK the class of all algebras isomorphic
to elements of K. For a Heyting algebra A, we denote by Fd(A) its filter of
dense elements and by F(A) the lattice of filters on A. If X ⊆ |A|, denote
〈X〉 the filter generated by X.

Definition 2.1. Let A = 〈A,∨,∧,→, 1〉 (= 〈A,∨,∧,→, 0, 1〉) be an im-
plicative lattice (Heyting algebra with the least element 0).

1. A full twist-structure over A is an algebra

A./ = 〈A×A,∨,∧,→,∼〉(A./ = 〈A×A,∨,∧,→,∼,⊥, 1〉)

with twist-operations defined for (a, b), (c, d) ∈ A×A as follows:

(a, b) ∨ (c, d) := (a ∨ c, b ∧ d), (a, b) ∧ (c, d) := (a ∧ c, b ∨ d)

(a, b) → (c, d) := (a→ c, a ∧ d), ∼(a, b) := (b, a),

(⊥ := (0, 1), 1 := (1, 0)).

2. A twist-structure over A is an arbitrary subalgebra B of the full twist-
structure A./ such that π1(B) = A (in which case also π2(B) = A),
where πi, i = 1, 2, is a projection of a direct product onto the ith
coordinate.

3. The class of all twist-structures over A is denoted S./(A).

A valuation into a twist-structure B is defined in a usual way as a homo-
morphism of the algebra of formulae into B. The relation B |=./ ϕ, where
ϕ is a formula of a respective language, means that π1v(ϕ) = 1 for any
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B-valuation v. For a formula ϕ ∈ For(For⊥), the relation |=./ ϕ (|=⊥
./ ϕ)

means that B |=./ ϕ for any twist-structure B over implicative lattice (Heyt-
ing algebra).

For the logic N4, the completeness theorem in terms of twist-structures
was proved in [10] in an indirect way. First, we have proved the completeness
of N4 wrt Fidel-structures [6], and then established a one-to-one correspon-
dence between Fidel-structures and twist-structures. Below we give a short
direct proof of this statement for both N4 and N4

⊥.

Theorem 2.2. Let ϕ ∈ For(For⊥). Then

N4 ` ϕ ⇔ |=./ ϕ (N4
⊥ ` ϕ ⇔ |=⊥

./ ϕ).

Proof. The correctness in both cases can be verified directly. The com-
pleteness we prove only for N4

⊥.
Let |ϕ| := {ψ| N4

⊥ ` ϕ↔ ψ} and L
N4

⊥ := {|ϕ| | ϕ ∈ For⊥}. Consider
the structure

L
N4

⊥ := 〈L
N4

⊥ ,∨,∧,→, 0, 1〉,

where |ϕτψ| := |ϕ|τ |ψ| for τ ∈ {∨,∧,→}, 0 := |⊥|, and 1 := | ∼⊥|. Due to
the axioms of positive logic and axioms A6 and A7 it is a Heyting algebra.
Note that |ϕ| = 1 iff N4

⊥ ` ϕ. Further, consider the full twist-structure
(L

N4
⊥)./ and its subset

A := {(|ϕ|, | ∼ ψ|) | ψ ∈ |ϕ|}.

It follows immediately from the axioms of strong negation that this set is
closed under twist-operations. The twist-structure over L

N4
⊥ with the uni-

verse A we denote L./
N4

⊥ .
Consider an L./

N4
⊥-valuation v such that v(p) = (|p|, | ∼ p|). It follows by

induction on the structure of formulas that π1v(ϕ) = |ϕ| and π2v(ϕ) = | ∼ϕ|
for any formula ϕ. In this way, the valuation v refutes all formulas non-
provable in N4

⊥.

Remark. It was noted that the provable strong equivalence ⇔ has con-
gruence properties, therefore, on the set L∗

N4
⊥ := {|ϕ|∗ |ϕ ∈ For⊥}, where

|ϕ|∗ := {ψ| N4
⊥ ` ϕ ⇔ ψ}, we can define the structure of Lindenbaum al-

gebra in the usual way. Denote this algebra L∗

N4
⊥ . Notice that the mapping

|ϕ|∗ 7→ (|ϕ|, | ∼ϕ|) is an isomorphism of L∗

N4
⊥ and L./

N4
⊥ .

3. N4⊥-lattices

In this section we adopt to the logic N4
⊥ the lattice-theoretic semantics

developed for N4 in [10, 11].
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Definition 3.1. An algebra A = 〈A,∨,∧,→,∼,⊥, 1〉 is an N4
⊥-lattice if

the following hold.

1. The reduct 〈A,∨,∧,∼,⊥, 1〉 is a bounded De Morgan algebra, i.e.,
〈A,∨,∧,⊥, 1〉 is a bounded distributive lattice and the following iden-
tities hold: ∼(p ∨ q) = ∼ p ∧∼ q and ∼∼ p = p.

2. The relation �, where a � b denotes (a→ b) → (a→ b) = a→ b, is a
preordering on A.

3. The relation ≈, where a ≈ b if and only if a � b and b � a, is a
congruence relation with respect to ∨,∧,→ and the quotient-algebra
A./ := 〈A,∨,∧,→,⊥, 1〉/ ≈ is a Heyting algebra.

4. For any a, b ∈ A, ∼(a→ b) ≈ a ∧ ∼ b.

5. For any a, b ∈ A, a ≤ b if and only if a � b and ∼ b � ∼ a, where ≤ is
a lattice ordering on A.

The only difference of N4
⊥-lattices from N4-lattices defined in [10] is

that N4
⊥-lattices are bounded and A./ is a Heyting algebra, not an im-

plicative lattice as in the case of N4-lattices. A bounded implicative lattice
can be turned into a Heyting algebra, therefore, the following statement
holds.

Proposition 3.1. An algebra A = 〈A,∨,∧,→,∼,⊥, 1〉 is an N4
⊥-lattice

iff 〈A,∨,∧,→,∼〉 is a bounded N4-lattice and ⊥ and 1 are the least and the
greatest elements.

The next two statements establish the equivalence of the notions of N4
⊥-

lattices and of twist-structures over Heyting algebras. They can be proved
exactly so as in the case of N4-lattices and twist-structures over implicative
lattices [10].

Proposition 3.2. Let A be a Heyting algebra. If B ∈ S./(A), then B is an
N4

⊥-lattice, moreover, the following facts are true. Let (a, b), (c, d) ∈ |B|.

a) (a, b) � (c, d) if and only if a ≤ c.

b) (a, b) ≈ (c, d) if and only if a = c.

c) (a, b) ≤ (c, d) if and only if a ≤ c and d ≤ b.

d) The mapping [(a, b)]≈ 7→ a determines an isomorphism of implicative
lattices B./ and A.
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Proposition 3.3. Every N4
⊥-lattice A is isomorphic to a twist-structure

over A./ and the isomorphism is given by the rule

a 7→ ([a]≈, [∼ a]≈).

For an N4
⊥-lattice A, we put DA := {a ∈ A| a → a = a} and define a

matrix M(A) := 〈A,DA〉. For ϕ ∈ For⊥, we define

A |= ϕ ⇔ M(A) |= ϕ.

Let A be a Heyting algebra and B ∈ S./(A). It can be easily checked
using the definition of twist-operations that DB = {(1, a)| (1, a) ∈ |B|}.
Thus, the validity of formulas on a twist-structure B coincides with the
validity of formulas on B considered as an N4

⊥-lattice:

B |= ϕ ⇔ B |=⊥
./ ϕ.

In this way, we infer from Theorem 2.2 the completeness of N4
⊥ wrt N4

⊥-
lattices.

Theorem 3.2. For any ϕ ∈ For⊥, N4
⊥ ` ϕ if and only if A |= ϕ for any

N4
⊥-lattice A.

In [10], it was proved that N4-lattices form a variety determined by
the identities of de Morgan algebras and the set of identities 1N –11N . Since
N4

⊥-lattices are exactly bounded N4-lattices, they also form a variety V
N4

⊥

determined by the identities of de Morgan algebras, the set of identities 1N–
11N and the new identity:

12N . ⊥ ≤ p

The mappings V ar : EN4
⊥ → Sub(V

N4
⊥) and L : Sub(V

N4
⊥) → EN4

⊥

are defined as follows. For any L ∈ EN4
⊥, define a variety

V ar(L) := {A | ϕ→ ϕ = ϕ ∈ Eq(A) for all ϕ ∈ L}.

Clearly, V ar(L) ∈ Sub(V
N4

⊥). For any V ∈ Sub(V
N4

⊥), define a set of
formulae

L(V ) := {ϕ | ϕ→ ϕ = ϕ ∈ Eq(V )}.

Then L ∈ EN4
⊥. Repeating the reasoning from [10] we prove

Theorem 3.3. The mappings V ar and L are mutually inverse dual lattice
isomorphisms between EN4

⊥ and Sub(V
N4

⊥).
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Notice that N4
⊥-lattices have two lattice operations, therefore (see, e.g.

[5]), the variety V
N4

⊥ is congruence distributive. From this fact we infer

Proposition 3.4. The lattice EN4
⊥ is distributive.

The following representation of twist-structures will be useful.
For a Heyting algebra A, let ∇ be a filter on A such that Fd(A) ⊆ ∇,

and let ∆ be an ideal on A. Then it can be easily checked that the set

Tw(A,∇,∆) = {(a, b)| a, b ∈ A, a ∨ b ∈ ∇, a ∧ b ∈ ∆}

is closed under the twist-operations. The twist-structure from S./(A) with
such unverse we denote also Tw(A,∇,∆). It turns out that structures of
the form Tw(A,∇,∆) exhaust the set S./(A).

Proposition 3.5. Let A be a Heyting algebra and B ∈ S./(A). We define

I(B) := {a ∨ ∼ a| a ∈ B}, ∇(B) := π1(I(B)), ∆(B) := π2(I(B)).

Then Fd(A) ⊆ ∇(B) is a filter on A and ∆(B) is an ideal on A. Moreover,

B = Tw(A,∇(B),∆(B)).

This is an immediate consequence of Theorem 3.1 in [11].
For a twist-structure B and (a, b) ∈ |B|, we have (a, b) ∨ ∼(a, b) =

(a ∨ b, a ∧ b). Therefore, it follows from Proposition 3.5 that

∇(B) = {a ∨ b| (a, b) ∈ B} and ∆(B) = {a ∧ b| (a, b) ∈ B}.

Taking into account these representations and the intuition that for
(a, b) ∈ |B|, the element b is one of possible negations (counterexamples)
of a we call ∇(B) a filter of completions of B and ∆(B) an ideal of contra-
dictions of B. For arbitrary N4

⊥-lattices these notions can be defined as
follows. Let A be an N4

⊥-lattice. We define

∇(A) := {[a ∨ ∼ a]≈| a ∈ A} and ∆(A) := {[a ∧ ∼ a]≈| a ∈ A}.

Then
A ∼= Tw(A./,∇(A),∆(A)).

As well as in the case of N4-lattices [11] we define a special filter on
an N4

⊥-lattice A as a nonempty subset ∇ ⊆ A such that: 1. a ∈ ∇
and b ∈ ∇ imply a ∧ b ∈ ∇; 2. a ∈ ∇ and a � b imply b ∈ ∇. This
notion corresponds to special filters of the first kind on N -lattices introduced
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originally by H. Rasiowa [13]. It is obvious that the set of all special filters on
A forms a lattice, which we denote Fs(A). For a homomorphism h : A → B
of N4

⊥-lattices we define a kernel Ker(h) := h−1(DB). As we can see from
the following proposition special filters are in a one-to-one correspondence
with congruences on an N4

⊥-lattice and the least special filter on A coincides
with DA.

Proposition 3.6. 1. For any N4
⊥-lattice A, DA is a special filter.

2. Let h : A → B be an epimorphism of N4
⊥-lattices. Then Ker(h)

is a special filter. For any a, b ∈ |A|, h(a) = h(b) if and only if
a⇔ b ∈ Ker(h).

3. Let A be an N4
⊥-lattice and ∇ a special filter on A. Then DA ⊆ ∇.

The relation ≈∇, a ≈∇ b is equivalent to a ⇔ b ∈ ∇, is a congruence
relation on A and ∇ = Ker(h), where h : A → A/ ≈∇ is a canonical
epimorphism.

This follows from Proposition 4.2 in [11]. Let A be a Heyting algebra
and B ∈ S./(A). For ∇ ∈ F(A), put ∇./ := π−1

1 (∇) = {(a, b) ∈ A2| a ∈ ∇}.
For any ∇ ∈ Fs(B), put ∇./ := π1(∇).

Proposition 3.7. Let B ∈ S./(A). The lattices F(A) and Fs(B) are iso-
morphic and the mappings ∇ 7→ ∇./, ∇ ∈ F(A), and ∇ 7→ ∇./, ∇ ∈ Fs(B),
determine mutually inverse isomorphisms.

This is a variant of Proposition 4.3 in [11].

Corollary 3.1. Let A be an N4
⊥-lattice.

1. Con(A) ∼= Con(A./).

2. A is subdirectly irreducible if and only if the Heyting algebra A./ is
subdirectly irreducible.

Proposition 3.8. Let B be a Heyting algebra, F a filter on B. Let A ∈
S./(B) and A = Tw(B,∇,∆). Then

A/F ./ ∼= Tw(B/F,∇/F,∆/F ).

Proof. Define a mapping h : A/F ./ → (B/F )./ as follows. For any (a, b) ∈
|A|, h((a, b)/F ./) := (a/F, b/F ). Clearly, h is a homomorphism. Check that
this is a monomorphism. The equality (a/F, b/F ) = (c/F, d/F ) is equivalent
to (a ↔ c) ∧ (b ↔ d) ∈ F . At the same time, (a, b)/F ./ = (c, d)/F ./ is
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equivalent by Proposition 3.6 to (a, b) ⇔ (c, d) ∈ F ./, which is equivalent in
turn to (a ↔ c) ∧ (b ↔ d) ∈ F . Thus, h is a monomoprhism and it remains
to check that

h(A/F ./) = Tw(B/F,∇/F,∆/F ),

i.e., ∇(h(A/F ./)) = ∇/F and ∆(h(A/F ./)) = ∆/F . The property ”to
be presented as a ∨ ∼ a” is preserved and reflected by any homomorphism.
Therefore, (a/F, b/F ) ∈ I(h(A/F ./)) is equivalent to (a, b) ∈ I(A), which
immediately implies the desired equalities.

4. EN4⊥ and Int

We start the investigation of the class EN4
⊥ with the question on the inter-

relation between a logic in EN4
⊥ and its intuitionistic fragment. We define

a mapping σ from EN4
⊥ into the class Int of extensions of intuitionistic logic

Li so that σ(L) is simply a 〈∨,∧,→,⊥〉-fragment of L. The restriction of σ
to the class EN3 was investigated by Kracht and Sendlewski [9, 17].

First, we point out that the logic σ(L) is determined by the underlying
Heyting algebras of L-models. For a class K of N4

⊥-lattices, we put

K./ := {A./| A ∈ K}.

Proposition 4.1. For any L ∈ EN4
⊥ and class K of N4

⊥-lattices, if L =
LK, then σ(L) = LK./.

Proof. We may assume that K = IK. Due to Proposition 3.3 it is enough
to consider twist-structures in K. Let B ∈ K and B ∈ S./(A). Assume
that A(∼= B./) is not a model of σ(L). Let ϕ ∈ σ(L) and an A-valuation
v are such that v(ϕ) 6= 1. For any propositional variable p, there is an
element bp ∈ A with (v(p), bp) ∈ |B|. Let v′ be a B-valuation such that
v′(p) = (v(p), bp) for any p. It follows from the definition of twist-operations
that π1v

′(ψ) = v(ψ) for any ψ. Thus, π1v
′(ϕ) 6= 1 and B 6|= ϕ, which

conflicts with the assumption B |= σ(L) ⊆ L.

We have thus proved the inclusion σ(L) ⊆ LK./. To check the inverse
inclusion take an intuitionistic formula ϕ 6∈ σ(L). Let B ∈ K, B ∈ S./(A)
and B-valuation v be such that π1v(ϕ) 6= 1. Then π1v is an A-valuation
proving that A 6|= ϕ.

The following fact stated in the last proof we distinguish as a separate
lemma.
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Lemma 4.1. Let A be an N4
⊥-lattice and ϕ an intuitionistic formula. Then

A |= ϕ if and only if A./ |= ϕ.

Now we study the inverse image σ−1(L) for any L ∈ Int, i.e., the class
of all conservative extensions of L in EN4

⊥. We show that σ−1(L) forms
an interval in the lattice EN4

⊥ and consider the mappings sending L to the
end-points of the interval σ−1(L). Let for any L ∈ Int,

η(L) := N4
⊥ + L,

i.e., η(L) is obtained by extending the language and adding the strong nega-
tion axioms to L, and

η◦(L) = η(L) + {∼ p→ (p→ q), ¬¬(p ∨ ∼ p)}.

Logics in EN4
⊥ having the form η(L) we call special or s-logics, and logics of

the form η◦(L) are called normal explosive or ne-logics. Note that ne-logics
extend N3 and they were originally introduced by V. Goranko [7].

Prior to prove that η(L) and η◦(L) are the end-points of σ−1(L) we
describe models of η(L) and η◦(L) and translations of these logics into L.

Proposition 4.2. Let L ∈ Int and A be an N4
⊥-lattice.

1. A |= η(L) iff A./ |= L.

2. A |= η◦(L) iff A./ |= L, ∇(A) = Fd(A./) and ∆(A) = {0}.

Proof. 1. The direct implication follows by Lemma 4.1. The inverse im-
plication follows from the same lemma and the fact that the axioms of N4

⊥

hold in any N4
⊥-lattice.

2. If η◦(L) |= A, then A |= ∼ p → (p → q). By Proposition 3.3 we may
assume that A is a twist-structure. For (a, b), (c, d) ∈ |A|,

∼(a, b) → ((a, b) → (c, d)) = ((a ∧ b) → c, a ∧ b ∧ d) = (1, a ∧ b ∧ d),

i.e., a ∧ b = 0 for any (a, b) ∈ |A|. This means exactly that ∆(A) = {0}.
Similarly, a direct computation shows that for a twist-structure A ∈ S./(B),
the condition A |= ¬¬(p ∨ ∼ p) is equivalent to ¬¬(a ∨ b) = 1 for any
(a, b) ∈ B, i.e., ∇(A) ⊆ Fd(B). The inclusion Fd(B) ⊆ ∇(A) holds for any
twist-structure, which proves the direct implication.

Now we assume that the right hand conditions of the equivalence are
satisfied. Due to Lemma 4.1 the first condition implies A |= L. We have A |=
∼ p→ (p→ q) by ∆(A) = {0}. Finally, in view of the above considerations,
∇(A) = Fd(A./) implies A |= ¬¬(p ∨ ∼ p).
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For a Heyting algebra A, we define A./
◦ := Tw(A, Fd(A), {0}). This is

the least twist-structure over A. For any B ∈ S./, A./
◦ ≤ B. Namely such

lattices are up to isomorphism models of ne-logics. If an N4
⊥-lattice A

is isomorphic to a lattice of the form B./
◦ , we call it a normal N3-lattice.

In what follows, N4
⊥-lattices isomorphic to full twist-structures are called

special N4
⊥-lattices.

Further, we define translations of η◦(L) and η(L) into L. To any formula
ϕ we assign intuitionistic formulas ϕ./ and ϕ◦

./ defined as follows. Let ϕ =
ϕ(p0, . . . , pn). For any k ≤ n, we put pk := pn+k+1. If ϕ is in nnf, then ϕ./

is the result of replacement of every occurrence of ∼ p in ϕ by p. If ϕ is not
in nnf, then ϕ./ := (ϕ)./. We define formulas ϕ̃ and ϕ◦

./ as follows:

ϕ̃ :=
∧

p∈var(ϕ)

¬(p ∧ p) ∧
∧

p∈var(ϕ)

¬¬(p ∨ p), ϕ◦
./ := ϕ̃→ ϕ./.

Proposition 4.3. Let A be a Heyting algebra and ϕ ∈ For⊥. The following
equivalences hold:

A./ |= ϕ ⇔ A |= ϕ./ and A./
◦ |= ϕ ⇔ A |= ϕ◦

./.

Proof. Below we assume that ϕ is in nnf.
To prove the first equivalence for any A./-valuation v, we take an A-

valuation v./ such that v./(p) := π1v(p) and v./(p) := π2v(p) for p ∈ var(ϕ).
For any A-valuation v, we define A./-valuation v./ such that v./(p) :=
(v(p), v(p)) for p ∈ var(ϕ). Taking into account the fact that the action
of intuitionistic operations on a twist-structure is agreed with their action
on the first component and that π1v(∼ϕ) = π2v(ϕ) we obtain

π1v(ϕ) = v./(ϕ./) for any A./-valuation v and

π1(v′)./(ϕ) = v′(ϕ) for any A-valuation v′.

The desired equivalence follows from these relations.
For the proof of the second equivalence let A |= ϕ◦

./ and v be an A./
◦ -

valuation. By definition of A./
◦ , π1v(p) ∧ π2v(p) = 0 and π1v(p) ∨ π2v(p) ∈

Fd(A) for any p ∈ var(ϕ), which implies v./(ϕ̃) = 1, whence, v./(ϕ./) = 1.
As was stated in the previous item π1v(ϕ) = v./(ϕ./) = 1.

Assume now A./
◦ |= ϕ and v(ϕ◦

./) 6= 1 for some A-valuation v. Then
v(ϕ̃) 6≤ v(ϕ./). Put F = 〈v(ϕ̃)〉 and consider the quotient algebra A/F and
the quotient valuation v′ := v/F . We have v′(ϕ̃) = 1 and v′(ϕ./) 6= 1. The
equality v′(ϕ̃) = 1 implies that π1(v′)./(p)∧π2(v′)./(p) = 0 and π1(v′)./(p)∨
π2(v′)./(p) ∈ Fd(A) for any p ∈ var(ϕ), i.e., we may assume that (v′)./ is an
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(A/F )./
◦ -valuation. Arguing as in the previous item from v′(ϕ./) 6= 1 we infer

(A/F )./
◦ 6|= ϕ. It remains to note that (A/F )./

◦
∼= (A)./

◦ /F
./ by Proposition

3.8.

Corollary 4.1. Let L ∈ Int and ϕ ∈ For⊥. The following equivalences
hold:

ϕ ∈ η(L) ⇔ ϕ./ ∈ L and ϕ ∈ η◦(L) ⇔ ϕ◦
./ ∈ L.

Proof. Let ϕ ∈ η(L) and A |= L. Then A./ |= η(L) by Proposition 4.2,
and A |= ϕ./ by the last proposition. Conversely, let ϕ./ ∈ L and A |= η(L).
Then A./ |= L by Proposition 4.2, and (A./)./ |= η(L). Since A ↪→ (A./)./,
we have A |= ϕ.

The second equivalence follows similarly from the second equivalence of
Proposition 4.2.

Corollary 4.2. For any L ∈ Int, the logics η(L) and η◦(L) are conservative
extensions of L.

Proof. The intuitionistic formulas are ∼-free, therefore, ϕ./ = ϕ for any
such formula. In this way, the conservativeness of η(L) follows from Corollary
4.1.

Let ϕ be an intuitionistic formula and ϕ ∈ η◦(L). Then ϕ◦
./ ∈ L. Take

a Heyting algebra A |= L and A-valuation v. Let A-valuation v′ be such
that v′(p) = v(p) and v′(p) = ¬v(p) for any p ∈ var(p). Then v′(ϕ̃) = 1 and
v′(ϕ./) = v(ϕ). Taking into account A |= ϕ◦

./ we obtain v(ϕ) = 1.

For L ∈ EN4
⊥, denote Mod(L) := {A| A |= L}.

Let K be a class of Heyting algebras. Put

K./ := {A./| A ∈ K} and K./
◦ := {A./

◦ | A ∈ K}.

Proposition 4.2 states, in fact, that

η(L) = L(Mod(L))./ and η◦(L) = L(Mod(L))./
◦ .

The proposition below generalizes this result.

Proposition 4.4. Let L ∈ Int and L = LK. Then

η(L) = LK./ and η◦(L) = LK./
◦ .
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Proof. The inclusions η(L) ⊆ LK./ and η◦(L) ⊆ LK./
◦ follow from Propo-

sition 4.2.
Let ϕ 6∈ η(L). Then ϕ./ 6∈ L and there is A ∈ K such that A 6|= ϕ./. It

follows by Proposition 4.3 that A./ 6|= ϕ, i.e., ϕ 6∈ LK./.
Similarly, we use Proposition 4.3 to prove the second equality.

Taking into account Proposition 4.1 the last proposition can be reworded
as follows.

Corollary 4.3. Let L ∈ EN4
⊥.

1. L is a special logic if and only if L is determined by some family of
special N4

⊥-lattices.

2. L is an ne-logic if and only if L is determined by some family of normal
N3-lattices.

Note that Item 2 of this Corollary was stated in [7].

Proposition 4.5. For any L ∈ Int, σ−1(L) = [η(L), η◦(L)].

Proof. If L1 ∈ σ−1(L) and an N4
⊥-lattice A is such that A |= L1, then

A./ |= L by Lemma 4.2, and A |= η(L) by Item 1 of Proposition 4.3. Thus,
η(L) ⊆ L1.

For any A ∈ Mod(L1), (A./)./
◦ embeds into A and belongs to Mod(L1).

Let K = {A./| A ∈ Mod(L1)}. Then K./
◦ ⊆ Mod(L1). By Proposition

4.1, L = LK, and η◦(L) = LK./
◦ by Proposition 4.4. We have thus proved

L1 ⊆ η◦(L).
That η(L) and η◦(L) belong to σ−1(L) was stated in Corollary 4.2.

Remark. An analog of this statement does not hold for the lattice of N4-
extensions. We can define σp(L) as a positive fragment of L ∈ EN4. It
is true that N4 + L is the least element of (σp)−1(L), where L is some
extension of positive logic. In general case (σp)−1(L) has not the greatest
element. This is due to the fact that the family of intermediate logics with
the same positive fragment not necessarily has the greatest element.

Following M. Kracht [9] we determine another useful characterization of
special logics.

Proposition 4.6. Let L ∈ EN4
⊥.

1. L is a special logic if and only if all rules of the form ψ/ψ./ are ad-
missible in L.

2. L is an ne-logic if and only if L ∈ EN3 and ¬¬(p ∨ ∼ p) ∈ L.
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Proof. 1. Let L be a special logic. According to Corollary 4.3 L is deter-
mined by some family of special N4

⊥-lattices. Now, admissibility of rules
ψ/ψ./ follows from Proposition 4.3.

Conversely, assume that all rules of the form ψ/ψ./ are admissible in L.

Lemma 4.2. Rules of the form ψ.//ψ are admissible in any L ∈ EN4
⊥.

Proof. Let A be an N4
⊥-lattice. If A |= ψ./, then A./ |= ψ./ by Lemma

4.1, and (A./)./ |= ψ by Proposition 4.3. Since A embeds into (A./)./, we
conclude A |= ψ.

Taking into account this lemma and Corollary 4.1 we obtain for any ϕ,
ϕ ∈ L if and only if ϕ./ ∈ L if and only if ϕ ∈ η(σ(L)). Thus, L = η(σ(L))
and L is a special logic.

2. If L is an ne-logic then, ∼ p → (p → q) and ¬¬(p ∨ ∼ p) belong to L
by definition.

Let L ∈ EN3, ¬¬(p ∨ ∼ p) ∈ L, and A |= L. In this case, ∆(A) = {0}.
The validity of ¬¬(p ∨ ∼ p) is equivalent to ∇(A) = Fd(A). We have thus
proved that any model of L is a normal N3-lattice. By Corollary 4.3 L is
an ne-logic.

Denote N3
◦ := N3 + {¬¬(p ∨ ∼ p)}.

Proposition 4.7. 1. σ : EN4
⊥ → Int is a lattice epimorphism commut-

ing with infinite meets and joins.

2. η : Int → EN4
⊥ is a lattice monomorphism commuting with infinite

meets and joins.

3. η◦ is a lattice isomorphism of Int and EN3
◦.

Proof. 1. It follows immediately from the definition.

2. That η is one-to-one follows from Corollary 4.2. It can be easily
checked that η commutes with infinite joins. Let L∗ :=

⋂
i∈I Li. Since

σ(
⋂

i∈I η(Li)) is obviously equal to L∗, the equality η(L∗) =
⋂

i∈I η(Li) will
follow from the fact that

⋂
i∈I η(Li) is a special logic. Each of η(Li) is

closed under all rules of the form ψ/ψ./ by Proposition 4.6. Obviously, the
intersection

⋂
i∈I η(Li) is also closed under such rules, and it is also a special

logic by the same proposition.

3. η◦ embeds Int into EN3
◦ by Corollary 4.2. That η◦ is onto follows

from Item 2 of Proposition 4.6.

We have thus presented the class EN4
⊥ as a union of disjoint intervals

of the form σ−1(L):



306 S. P. Odintsov

EN4
⊥ =

⋃

L∈Int

[η(L), η◦(L)].

Now, we establish interrelations between these intervals. It turns out that
if L1 ⊆ L2, then σ−1(L2) is embedded into σ−1(L1) as upper subinterval, at
the same time, σ−1(L2) is a homomorphic image of σ−1(L1).

Let L1, L2 ∈ Int and L1 ⊆ L2. We define two mappings rL2,L1
: σ−1(L2)→

EN4
⊥ and eL1,L2

: σ−1(L1) → EN4
⊥ as follows:

rL2,L1
(L) = L ∩ η◦(L1) and eL1,L2

(L) = L+ η(L2).

Proposition 4.8. Let L1, L2 ∈ Int and L1 ⊆ L2. The following facts hold.

1. For any L ∈ σ−1(L2), we have eL1,L2
rL2,L1

(L) = L.

2. For any L ∈ σ−1(L2), we have

rL2,L1
eL1,L2

(L) = L+ rL2,L1
(η(L2)).

3. eL1,L2
is a lattice epimorphism from σ−1(L1) onto σ−1(L2).

4. rL2,L1
is a lattice monomorphism from σ−1(L2) into σ−1(L1) and

rL2,L1
(σ−1(L2)) = [rL2,L1

(η(L2)), η◦(L1)].

5. For any L3 ∈ EN4
⊥ such that L2 ⊆ L3, we have

eL2,L3
eL1,L2

= eL1,L3
and rL2,L1

rL3,L2
= rL3,L1

.

Proof. 1. Let L ∈ σ−1(L2). We calculate

eL1,L2
rL2,L1

(L) = (L+ η(L2)) ∩ (η◦(L1) + η(L2)).

We have L+η(L2) = L since η(L2) is the least element of σ−1(L2). Consider
L′ := η◦(L1)+η(L2). Due to homomorphism properties of σ we have σ(L′) =
L2. Moreover, L′ ∈ EN3

◦ since η◦(L1) ⊆ L′. By Item 3 of Proposition 4.7
we conclude L′ = η◦(L2). Finally, L+η◦(L2) = L since η◦(L2) is the greatest
element of σ−1(L2).

2. Again, for L ∈ σ−1(L1), we have

rL2,L1
eL1,L2

(L) = (L ∩ η◦(L1)) + (η(L2) ∩ η◦(L1)),

where the first conjunction term is equal to L since η◦(L1) is the greatest
element of σ−1(L1), and the second disjunction term is exactly rL2,L1

(η(L2)).
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3. That eL1,L2
is a lattice homomorphism follows from the distributivity

of EN4
⊥. Let L ∈ σ−1(L1). Since σ is a homomorphism, we have

σeL1,L2
(L) = σ(L) + ση(L2) = L1 + L2 = L2.

Thus, the range of eL1,L2
is contained in σ−1(L2). Item 1 implies that eL1,L2

is onto.
4. As above, we use distributivity of EN4

⊥ and homomorphism prop-
erty of σ to prove that rL2,L1

is a lattice homomorphism from σ−1(L2) into
σ−1(L1). If rL2,L1

(L) = rL2,L1
(L′), then applying the formula of Item 1

we obtain L = L′. In this way, rL2,L1
is a monomorphism. The equality

rL2,L1
(σ−1(L2)) = [rL2,L1

(η(L2)), η◦(L1)] follows from Item 2.
5. This follows immediately from definitions.

5. The interval σ
−1(Lk)

It was proved in the previous section that the lattice EN4
⊥ decomposes

into a union of disjoint intervals σ−1(L), where L ∈ Int and that σ−1(L1)
is isomorphic to an upper subinterval of σ−1(L2), whenever L2 ⊆ L1. Since
the classical logic Lk is the greatest non-trivial point of Int, σ−1(Lk) is an
upper part of any interval of the form σ−1(L) for any intermediate L. Due to
this reason we start the study of the structure of EN4

⊥ with the description
of the interval σ−1(Lk).

First, we consider subdirectly irreducible models of logics in σ−1(Lk).
According to Corollary 3.1 any such model is isomorphic to an element of
S./(A), where A is a subdirectly irreducible model of Lk. Any subdirectly
irreducible model of Lk is isomorphic to the two-element Boolean algebra
2. Therefore, we have exactly four subdirectly irreducible models of logics
in σ−1(Lk):

2
./ = Tw(2, {0, 1}, {0, 1}), 2

./
◦ = Tw(2, {1}, {0}),

2
./
R = Tw(2, {1}, {0, 1}), 2

./
L = Tw(2, {0, 1}, {0}).

These lattices define logics closely related with the well known finite-
valued logics. Consider matrices of the form M(A) = 〈A,DA〉 correspond-
ing to the above defined N4

⊥-lattices. The lattice 2
./
◦ is two-element. Its

elements (0, 1) and (1, 0) can be identified with the classical truth-values f
and t, respectively. The strong negation ∼ coincides with the classical one
and DA = {t} in this case. Thus, the matrix M(2./

◦ ) defines, in fact, the
classical logic with the additional constant ⊥ such that ∼ p ↔ p → ⊥. We
denote L̃k := L2

./
◦ .
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The matrix M(2./) has additional truth values b := (1, 1) and n := (0, 0).
It has two distinguished values, D2

./

= {t, b}, and the following lattice
structure.

q
q

q
q�

�
�

@
@

@

�
�

�

@
@

@

n b

f

t

In fact, M(2./) can be considered as a four-valued Belnap’s matrix ([3, 4])
enriched with the weak implication → and the constant ⊥ interpreted as f .
We denote B

→
4 := L2

./.
The logic of 2./

R differs from the logic RM3 [1, 2], the greatest non-classical
extension of relevance logic RM , only by the additional constant ⊥. Indeed,
the logic RM3 can be defined via the matrix M = 〈{f, t, b},∨,∧,⊃,∼, {t, b}〉,
where f ≤ b ≤ t, ∨ and ∧ are the usual lattice join and meet, ∼ is an order
reversing involution, and the implication is defined by the rule:

a ⊃ b :=

{
b, if a ∈ DM

t, if a 6∈ DM .
(i)

We have |2./
R | = {f, t, b} and D2

./

R = {t, b}. The lattice structures of M
and 2

./
R are identical, the strong negation is also an order reversing involution,

finally, a direct computation shows that ⊃ coincides with the weak implica-
tion of 2

./
R . Thus, L2

./
R is RM3 enriched with ⊥. We denote RM⊥

3 := L2
./
R .

Note that this logic under the notation  L3w (weak  Lukasiewicz logic) is also
studied and axiomatized on a different logical base by D. Vakarelov [19].

It was pointed out in [18] that the logic of 2
./
L is definitionally equivalent

to the three valued logic  L3 of  Lukasiewicz. We have |2./
L | = {f, n, t}. Let

us set
a ⊃ b := (a→ b) ∧ (∼ b→ ∼ a)

and calculate the truth-tables for ⊃ and ∼ on {f, n, t}:

⊃ f n t

f t t t
n n t t
t f n t

∼

f t
n n
t f

Thus, 〈{f, n, t},⊃,∼, {t}〉 is the well known matrix for  L3. All operations
of 2

./
L can be defined through ⊃ and ∼ as follows:
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¬a := a ⊃ ∼a, a ∨ b := (a ⊃ b) ⊃ b,

a ∧ b := ∼(∼ a ∨ ∼ b), a→ b := a ⊃ (a ⊃ b).

Due to this reason we denote L2
./
L as  L3.

Note that the N4
⊥-lattices 2

./, 2
./
◦ , 2

./
R , and 2

./
L have no non-trivial

homomorphic images and are embedded one into another as follows

@
@

@I

�
�

��

�
�

��

@
@

@I

2
./
◦

2
./

2
./
R 2

./
L

Thus, the interval σ−1(Lk) contains exactly five logics determined by
the following sets of subdirectly irreducible N4

⊥-lattices:

{2./}, {2./
R ,2

./
L }, {2./

R}, {2./
L }, {2./

◦ }.

We have thus proved the following

Proposition 5.1. The interval σ−1(Lk) has the following structure:

q

q
q

q
q�

�
�

@
@

@

�
�

�

@
@

@

RM⊥
3  L3

RM⊥
3 ∩  L3

L̃k

B
→
4

In particular, η(Lk) = B
→
4 and η◦(Lk) = L̃k.

Taking into account that L ⊆ η◦σ(L) for any L ∈ EN4
⊥ and that

η◦(L1) ⊆ η◦(L2) whenever L1 ⊆ L2 we conclude

Corollary 5.1. 1. Any non-trivial extension of N4
⊥ is contained in the

logic L̃k.

2. The logic N4
⊥ has no contradictory non-trivial extension.
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We have thus pointed out the first essential difference of the structure
of EN4

⊥ from the structure of Jhn, the class of non-trivial extensions of
the minimal logic [12]. The minimal logic has the whole class of contra-
dictory extensions isomorphic to the class of extensions of positive logic,
whereas in the case of N4

⊥, adding to N4
⊥ a contradictory scheme leads to

a trivialization. Further, unlike Jhn the class EN4
⊥ \ {For⊥} of non-trivial

N4
⊥-extensions forms a lattice with the unit element L̃k.

6. The lattice structure of EN4⊥

Our next step is to describe the predecessors of L̃k in EN4
⊥. We know

of two predecessors. It follows from Proposition 5.1 that RM⊥
3 and  L3

are the predecessors of L̃k in EN4. A further example provides the twist
structure 3

./
◦ , where 3 is a three-element linearly ordered Heyting algebra,

|3| = {0, 1, 2}, 0 ≤ 1 ≤ 2. Since Fd(3) = {1, 2}, the lattice 3
./
◦ has four

elements (0, 1), (1, 0), (0, 2), and (2, 0). The lattice structure and the action
of strong negation on 3

./
◦ are presented on the diagram below.

q
q

q
q�

�
�

�

@
@

@
@

�
�

�
�

@
@

@
@6

?

-�(0, 1) (1, 0)

(0, 2)

(2, 0)

We can see that 3
./
◦ and 2

./ are isomorphic as lattices, but the negation
acts on 3

./
◦ in another way.

Proposition 6.1. In the lattice EN4
⊥, L̃k has exactly three predecessors:

RM⊥
3 ,  L3, and L3

./
◦ . Each non-trivial element of EN4

⊥ different from L̃k

is contained in one of them.

Proof. Let L ∈ EN4
⊥ and L 6= L̃k. Assume L is not contained in RM⊥

3

or in  L3. By Proposition 5.1 σ(L) 6= Lk in this case. It follows that L
has a model A = Tw(B,∇,∆), where B is not a Boolean algebra, in which
case ∇ 6= {1}. Take an element a in B such that a 6= 0, 1 and a ∈ ∇,
and consider the twist-structure A0 := Tw({0, a, 1}, {a, 1}, {0}). Clearly,
A0 ≤ A and A0

∼= 3
./
◦ . Thus, L |= 3

./
◦ and L3

./
◦ ⊆ L.
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The logic L3
./
◦ is incomparable with RM⊥

3 and  L3 because on one hand
the intuitionistic fragment of L3

./
◦ is not classical and on the other hand

∼ p→ (p→ q) ∈ L3
./
◦ \RM⊥

3 and ¬¬(p ∨ ∼ p) ∈ L3
./
◦ \  L3.

Recall that an element x of a lattice A is called a splitting element if
there exists a y such that for every element z ∈ A, either z ≤ x or y ≤ z. If
x is a splitting element, the corresponding y is called the splitting of A by x
and is denoted by A/x. We write A/{x, y} for A/x ∨ A/y.

Proposition 6.2. The logics RM⊥
3 and  L3 are splitting elements in the

lattice EN4
⊥ and the following holds:

EN4
⊥/RM⊥

3 = N3, EN4
⊥/ L3 = N4

⊥ + ¬¬(p ∨ ∼ p), EN4
⊥/L3

./
◦ = B

→
4

and

EN4
⊥/{RM⊥

3 ,  L3} = N3
◦.

Proof. If L ∈ EN3, then ∆(A) = {0} for any A |= L. Therefore, 2
./
R is not

a model of L and L 6⊆ RM⊥
3 . If L 6∈ EN3, there is A = Tw(B,∇,∆) such

that A |= L and ∆ 6= {0}. Choose an a ∈ ∆ such that a 6= 0 and consider
the quotient A0 := A/〈a〉./. By Proposition 3.8

A0
∼= A1 := Tw(B/〈a〉,∇/〈a〉,∆/〈a〉).

Since a ∈ ∆, ∆/〈a〉 = B/〈a〉. Consequently, A1 contains a subalge-
bra Tw({0/〈a〉, 1/〈a〉}, {1/〈a〉}, {0/〈a〉, 1/〈a〉}), which is isomorphic to 2

./
R .

Thus, L ⊆ RM⊥
3 and we have proved the equality EN4

⊥/RM⊥
3 = N3.

If ¬¬(p ∨ ∼ p) ∈ L, then every model of L is up to isomorphism of the
form Tw(B, Fd(B),∆). Obviously, 2

./
L does not satisfy this condition since

∇(2./
L ) = {0, 1}. Therefore, L 6|= 2

./
L , and L is not contained in  L3.

If ¬¬(p ∨ ∼ p) 6∈ L, then L has a model A = Tw(B,∇,∆) such that
∇ 6= Fd(B). Passing to the quotient A0 := A/(Fd(B))./ we obtain a model
of L such that A0

∼= Tw(B0,∇0,∆0), B0 is a Boolean algebra and ∇0 6= {1}.
Let a ∈ ∇0 and a 6= 1. Let a be a Boolean complement of a in B0. By
Proposition 3.8 we have

A0/〈a〉
./ ∼= A2 := Tw(〈a〉, 〈a〉,∆1).

Since a 6= 1, the subalgebra Tw({1, a}, {1, a}, {a}) of A2 is isomorphic to 2
./
L .

Therefore, L |= 2
./
L . We have thus proved EN4

⊥/ L3 = N4
⊥ + ¬¬(p ∨ ∼ p).

To prove EN4
⊥/L3

./
◦ = B

→
4 we notice that L3

./
◦ = η◦(L3) according

to Proposition 4.4. Thus, if σ(L) ⊆ L3, then L ⊆ η◦(L) ⊆ η◦(L3). It
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is well known that L3 is the greatest intermediate logic different from Lk.
Consequently, if σ(L) 6⊆ L3, then σ(L) = Lk and L extends η(Lk). It
remains to notice that η(Lk) = B

→
4 by Proposition 5.1.

The last equality immediately follows from the first and the second.

We denote N4
N := N4

⊥ + {¬¬(p ∨ ∼ p)} and distinguish in EN4
⊥ the

following subclasses:

Exp := {L ∈ EN4
⊥| ∼ p→ (p→ q) ∈ L},

Nor := {L ∈ EN4
⊥| ¬¬(p ∨ ∼ p) ∈ L},

Gen := EN4
⊥ \ (Exp ∪ Nor).

Let L ∈ EN4
⊥. We say that L is explosive if L ∈ Exp, we call L normal if

L ∈ Nor. Finally, if L ∈ Gen, we say that L is a logic of general form. In
the proposition below, we collect a series of simple facts on the introduced
classes.

Proposition 6.3. 1. Exp∩Nor = EN3
◦ and L3

./
◦ is the greatest element

in Exp ∩ Nor different from L̃k.

2. Exp = EN3.

3. Exp \ Nor = [N3,  L3]

4. L ∈ Exp iff L 6⊆ RM⊥
3 iff for any A ∈Mod(L), ∆(A) = {0}.

5. Nor = EN4
N.

6. Nor \ Exp = [N4
N, RM⊥

3 ]

7. L ∈ Nor iff L 6⊆  L3 iff for any A ∈Mod(L), ∇(A) = Fd(A./).

8. Gen = [N4
⊥, RM⊥

3 ∩  L3].

All statements of this proposition easily follow from Propositions 6.1 and
6.2. Figure 1 below presents the structure of EN4

⊥ \ {For⊥} based on the
information given in the last proposition.

Our plans for the rest of the article are as follows. First, we consider
the restrictions of the operator σ to the classes Exp and Nor and point out
the full analogy with the situation described above. For any L ∈ Int, the
inverse image of L with respect to the corresponding restriction of σ forms
an interval in the class Exp (Nor), and the end-points of such an interval can
be translated into L. Further, we study interrelations of the class Gen and
classes Exp and Nor.

Denote
σ3 := σ �Exp and σn := σ �Nor .
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The mappings η3 : Int → Exp and ηn : Int → Nor are defined as follows. For
every L ∈ Int,

η3(L) := η(L) + {∼ p→ (p → q)} and ηn(L) := η(L) + {¬¬(p ∨ ∼ p)}.

Clearly, η◦(L) = η3(L) + ηn(L).
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Figure 1.

Logics in Exp having the form η3(L) we call special explosive or se-logics,
and logics in Nor of the form ηn(L) are called special normal or sn-logics.
Models of se- and sn-logics are described in the following

Proposition 6.4. Let L ∈ Int and A be an N4
⊥-lattice.

1. A |= η3(L) iff A./ |= L and ∆(A) = {0}.

2. A |= ηn(L) iff A./ |= L and ∇(A) = Fd(A./).

The proof is analogous to Proposition 4.2.
In what follows we omit the proofs if they can be obtained similarly to

the previous results.
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For a Heyting algebra A, we define

A./
3 := Tw(A,A, {0}) and A./

n := Tw(A, Fd(A),A).

If an N4
⊥-lattice A is isomorphic to a lattice of the form B./

3 , we call it a
special N3-lattice. If an N4

⊥-lattice A is isomorphic to a lattice of the form
B./

n , we call it a special normal N4
⊥-lattice.

We define formulas ϕ3
./ and ϕn

./ as follows:

ϕ3
./ :=

∧

p∈var(ϕ)

¬(p ∧ p) → ϕ./, ϕn
./ :=

∧

p∈var(ϕ)

¬¬(p ∨ p) → ϕ./.

Proposition 6.5. Let L ∈ Int and ϕ ∈ For⊥. The following equivalences
hold:

ϕ ∈ η3(L) ⇔ ϕ3
./ ∈ L and ϕ ∈ ηn(L) ⇔ ϕn

./ ∈ L.

Proposition 6.6. Let L ∈ EN4
⊥.

1. L is a special explosive logic if and only if L is determined by some
family of special N3-lattices.

2. L is a special normal logic if and only if L is determined by some
family of special normal N4

⊥-lattices.

Proposition 6.7. For any L ∈ Int,

(σ3)−1(L) = [η3(L), η◦(L)] and (σn)−1(L) = [ηn(L), η◦(L)].

Proposition 6.8. 1. σ3 : Exp → Int and σn : Nor → Int are lattice
epimorphisms commuting with infinite meets and joins.

2. η3 : Int → Exp and ηn : Int → Nor are lattice monomorphisms com-
muting with infinite meets and joins.

Note that the results on σ3 and η3 are known from [7, 9].

7. Explosive and normal counterparts

The decomposition of EN4
⊥ into the classes Exp, Nor, and Gen is very similar

to the decomposition of the class Jhn of non-trivial extensions of minimal
logic into subclasses of intermediate, negative, and of proper paraconsistent
logics [12]. Our next step is to define explosive and normal counterparts for
logics in EN4

⊥ in exactly the same way as we have defined intuitionistic and
negative counterparts for extensions of the minimal logic.
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The mappings (−)exp : EN4
⊥ → Exp, (−)nor : EN4

⊥ → Nor, and (−)ne :
EN4

⊥ → Exp ∩ Nor are defined by the rules:

Lexp := L+ N3, Lnor := L+ N4
N, Lne := Lexp + Lnor,

where L ∈ EN4
⊥. Call the logic Lexp an explosive counterpart of L, Lnor

a normal counterpart of L, and Lne a normal explosive counterpart of L.
Thus, by definition the explosive (normal) counterpart of a logic L ∈ EN4

⊥

is the least explosive (normal) logic containing L.

Notice that the logic N4
⊥ has the following counterparts:

N4
⊥
exp = N3, N4

⊥
nor = N4

N, N4
⊥
ne = N3

◦.

Further simple properties of counterparts are collected in the proposition
below.

Proposition 7.1. 1. (−)exp, (−)nor, and (−)ne are lattice epimorphisms.

2. L ∈ Exp iff L = Lexp iff Lnor = Lne.

3. L ∈ Nor iff L = Lnor iff Lexp = Lne.

4. L ∈ EN3
◦ iff Lexp = Lnor

5. σ(L) = σ(Lexp) = σ(Lnor) = σ(Lne) for every L.

6. Lne = η◦σ(L) for every L.

Proof. Item 1 follows from the distributivity of the lattice EN4
⊥. Items

2 and 3 hold by the definition of counterparts. Item 4 follows from the
relation N3

◦ = N3+N4
N. Homomorphism properties of σ and the equalities

σ(N3) = σ(N4
N) = σ(N3

◦) imply Item 5.

We prove the last item. By Item 5 σ(Lne) = σ(L) and Lne ∈ EN3
◦ by

definition. Thus the equality Lne = η◦σ(L) follows from the fact that η◦ is
a lattice isomorphism of Int and EN3

◦ stated in Proposition 4.7.

Semantical characterization of logics N3, N4
N, and N3

◦ and the defini-
tion of counterparts allow to characterize models of counterparts as follows.

Proposition 7.2. Let L ∈ EN4 and A be an N4
⊥-lattice.

1. A |= Lexp if and only if A |= L and ∆(A) = {0}.

2. A |= Lnor if and only if A |= L and ∇(A) = Fd(A).

3. A |= Lne if and only if A |= L, ∆(A) = {0}, and ∇(A) = Fd(A).
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We study now how counterparts can be defined in an original logic L.
For any formula ϕ, we put

ϕe :=
∧

p∈var(ϕ)

¬(p ∧ ∼ p), ϕn :=
∧

p∈var(ϕ)

¬¬(p ∨ ∼ p),

and

ϕexp := ϕe → ϕ, ϕnor := ϕn → ϕ, ϕne := (ϕe ∧ ϕn) → ϕ.

Let A be a twist-structure, A = Tw(B,∇,∆). We associate with A the
following substructures:

Aexp = Tw(B,∇, {0}), Anor = Tw(B, Fd(B),∆),

Ane = Tw(B, Fd(B), {0}).

It can be easily seen that if A is a model of L, then Aexp, Anor, and
Ane are models of explosive, normal, and normal explosive counterpart of
L, respectively. The validity of formulas on Aexp, Anor, and Ane can be
simulated in A as follows.

Proposition 7.3. Let A ∈ S./(B) and ϕ ∈ For⊥. The following equiva-
lences hold:

Aexp |= ϕ ⇔ A |= ϕexp, Anor |= ϕ ⇔ A |= ϕnor, Ane |= ϕ ⇔ A |= ϕne.

Proposition 7.4. Let L ∈ EN4
⊥ and ϕ ∈ For⊥. The following equivalences

hold:

ϕ ∈ Lexp ⇔ ϕexp ∈ L, ϕ ∈ Lnor ⇔ ϕnor ∈ L, ϕ ∈ Lne ⇔ ϕne ∈ L

These two propositions can be proved similarly to Proposition 4.3 and
Corollary 4.1.

Let K be a class of twist-structures and τ ∈ {exp, nor, ne}. We put

Kτ := {Aτ | A ∈ K}.

Proposition 7.5. Let K be a class of twist-structures, L = LK, and τ ∈
{exp, nor, ne}. Then Lτ = LKτ .

Proof. Consider the case of explosive counterpart. Obviously, Lexp ⊆
LKexp. If ϕ 6∈ Lexp, then ϕexp 6∈ L by the previous proposition, and there is
A ∈ K such that A 6|= ϕexp. By Proposition 7.3 Aexp 6|= ϕ.
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In the end of this section, we consider classes of logics having given
explosive and normal logics as explosive and normal counterparts. According
to Proposition 7.1 explosive and normal counterparts of a logic have the same
intuitionistic fragment. Therefore, for given L1 ∈ Exp and L2 ∈ Nor, there
is a logic L with Lexp = L1 and Lnor = L2 only if σ(L1) = σ(L2).

For L1 ∈ Exp and L2 ∈ Nor with σ(L1) = σ(L2), we define the family of
logics

Spec(L1, L2) := {L ∈ EN4
⊥| Lexp = L1 and Lnor = L2}

and the logic

L1 ∗ L2 := N4
⊥ + {ϕexp| ϕ ∈ L1} ∪ {ϕnor| ϕ ∈ L2}.

First of all we note that all logics of Spec(L1, L2) have the same intuition-
istic fragment and that if one of logics L1 or L2 belongs to the intersection
Exp ∩ Nor, the class is one-element.

Proposition 7.6. Let L1 ∈ Exp and L2 ∈ Nor be such that σ(L1) = σ(L2) =
L.

1. Spec(L1, L2) ⊆ σ−1(L).

2. If L2 ∈ Exp, then Spec(L1, L2) = {L1}.

3. If L1 ∈ Nor, then Spec(L1, L2) = {L2}.

Proof. 1. If L′ ∈ Spec(L1, L2), then L′
exp = L1 and

L = σ(L′
exp) = σ(L′) + σ(N3) = σ(L′) + Li = σ(L′).

2. If L2 ∈ Exp ∩ Nor = EN3
◦, then L2 = η◦(L). Since η◦(L) is the

greatest element of σ−1(L), we obtain L1 ⊆ L2.
Let L′ ∈ Spec(L1, L2). Then we have L′ + N4

N = L2 ⊇ L1 ⊇ N3. We
claim that N3 ⊆ L′ in this case. Assume that L′ is not explosive. Then
there is a twist-structure A |= L′ with ∆(A) 6= {0}. By Proposition 7.2,
Anor |= L2 = L′

nor and ∆(Anor) = ∆(A) 6= {0}. The latter is impossible,
since L2 is explosive.

3. From L1 ∈ Nor we conclude L2 ⊆ L1 and finish the proof similarly to
the previous item.

In case when neither of L1 or L2 is normal explosive, the class Spec(L1,
L2) forms an interval in the lattice EN4

⊥ containing at least two points.

Proposition 7.7. Let L1 ∈ Exp and L2 ∈ Nor be such that σ(L1) = σ(L2).
Then Spec(L1, L2) = [L1 ∗ L2, L1 ∩ L2]. If L1 6∈ Nor and L2 6∈ Exp, then
L1 ∗ L2 6= L1 ∩ L2.
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Proof. It follows by definition that L ⊆ Lexp ∩ Lnor for all L ∈ EN4
⊥,

i.e., L ⊆ L1 ∩ L2 for all L ∈ Spec(L1, L2). Let us check that L1 ∩ L2 ∈
Spec(L1, L2). We calculate

(L1 ∩ L2)exp = (L1 + N3) ∩ (L2 + N3) = L1 ∩ η
◦σ(L1) = L1.

That (L1 ∩ L2)nor = L2 can be checked similarly.
We have thus proved that L1 ∩ L2 is the greatest point of Spec(L1, L2).

Let us consider the logic L1 ∗ L2. If L ∈ Spec(L1, L2), then

{ϕexp| ϕ ∈ L1} ∪ {ϕnor| ϕ ∈ L2} ⊆ L

by Proposition 7.4, i.e., L1 ∗ L2 ⊆ L. It remains to verify that L1 ∗ L2 ∈
Spec(L1, L2).

Let L∗ := L1 ∗ L2. The inclusions L1 ⊆ L∗
exp and L2 ⊆ L∗

nor follow
from the definition of L1 ∗ L2 and Proposition 7.4. Let us prove the inverse
inclusions.

By definition

L∗
exp = N3 + {ϕexp| ϕ ∈ L1} ∪ {ϕnor| ϕ ∈ L2} = L1 + {ϕne| ϕ ∈ L2}.

The last equality is due to the fact that for any ϕ,

N3 ` ϕ↔ ϕexp and N3 ` ϕnor ↔ ϕne,

which follows from ¬(p∧∼ p) ∈ N3. By Proposition 7.4 formulas of the form
ϕne belong to L∗

exp if and only if ϕ ∈ (L∗
exp)ne. The equality σ(L1) = σ(L2)

implies L2 ⊆ (L2)ne = (L1)ne, whence, ϕ ∈ L2 implies ϕne ∈ L1. Thus,
L∗

exp = L1. That L∗
nor = L2 can be proved similarly.

Assume L1 6∈ Nor and L2 6∈ Exp and prove that in this case

(∼ p→ (p→ q)) ∨ ¬¬(r ∨ ∼ r) ∈ (L1 ∩ L2) \ (L1 ∗ L2).

Since ∼ p → (p → q) ∈ L1 and ¬¬(r ∨ ∼ r) ∈ L2, the disjunction of these
formulas belongs to the intersection L1∩L2. To prove that (∼ p→ (p → q))∨
¬¬(q∨∼ q) 6∈ L1 ∗L2 we notice that on one hand L1 ∗L2 ⊆ B

→
4 =  L3 ∗RM

⊥
3

and on the other hand (∼ p→ (p → q)) ∨ ¬¬(q ∨ ∼ q) 6∈ B
→
4 .

As a consequence we obtain a semantical characterization of logics of the
form L1 ∗ L2.

Corollary 7.1. Let L1 ∈ Exp and L2 ∈ Nor be such that σ(L1) = σ(L2).
For every N4

⊥-lattice A holds the equivalence

A |= L1 ∗ L2 ⇔ Aexp |= L1 and Anor |= L2.
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Proof. The direct implication follows from the fact that L1∗L2 ∈ Spec(L1,
L2) stated above. The inverse implication follows from the definition of
L1 ∗ L2.

8. Conclusion

The goal of this paper was to show that if we pass from the explosive logic
N3 to its paraconsistent analogue N4

⊥, then the class of extensions extends
in a regular way. The above results demonstrate that the lattice EN4

⊥

has natural and non-trivial structure modulo the lattice of N3-extensions.
Despite essential differences this picture is similar to the structure of the
lattice of extensions of Johansson logic over the lattice of superintuitionistic
logics [12]. Moreover, we have studied in details the interrelation between
the class of N4

⊥-extensions and the well studied class of intermediate logics,
which provides basis for the investigation of transfer problems for the class
of N4

⊥-extensions. Transfer problems for N3-extensions were studied in
[7, 9, 16, 17].
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