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1. Introduction and overview

We assume that there is a unique real world, which we are not able to discover
completely. Only fragments of this world are cognizable. By investigating
the fragments we try to describe the real world.

We decided to represent the cognizable part of the world as a partial
first order model, which is just a partial algebra enriched in predicates.The
properties of partial algebras can be easily imported to partial models. We
investigate extensions and completions of the given partial model or, more
generally, a family of partial models and describe a first order theory for
partial models as a set of infallible sentences i.e. the set of all first order
sentences valid in every completion of the given partial model. On the other
hand we find for the given consistent theory its partial part in a purely
syntactic way and construct a unique standard family of partial models
satisfying this partial theory.

Second section includes some facts concerning partial models; we also
investigate a family of partial models. Definitions and properties of possible
and infallible sets of sentences are presented in Section 4, where also some
algebraic properties of the class of completions are described. The three next
sections contain the main results of this paper. First we describe syntacti-
cally the sets of first order sentences of the given language which generates
the first order theory (the infallible set of sentences) for the given partial
model. Next we construct a standard model for the given one as a direct
limit of weak strictly finite submodels, i.e., the least partial model having
the same theory as the latter. In Section 7. we chose an infallible part of the
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given consistent first order theory and describe a construction of standard
model or family of models for this part. In the last section we use our results
to show a Scott’s information system and later in a kind of non-monotonic
logic - default logic and autoepistemic logic.

2. Partial models

We consider a signature 〈F,Π, n〉, with at most countable and pairwise dis-
joint sets of function and predicate symbols and with an arity function
n : F ∪ Π → N .

We use partial algebras theory throughout the paper. For more details
see [2] or [1]. The basic notion of this paper, a partial model is a structure
obtained from a partial algebra by enriching the latter in relations. Almost
all facts concerning partial algebras are easily imported to partial models,
see here our previous papers in this topic [8] [9] or [10].

Definition 2.1. A partial model of signature 〈F,Π, n〉 is a structure
A = 〈A, (fA)f∈F , (rA)r∈Π〉 such that 〈A, (fA)f∈F 〉 is a partial algebra of
signature 〈F, η〉, where η = n | F (the domain of the operation fA ⊆
An(f) ×A is denoted by domfA) and rA ⊆ An(r). We say that A is a model
(or a total model) of signature 〈F,Π, n〉 if all its operations are defined
everywhere (see [2]). A relation ( or operation) is discrete if it has an empty
domain. A partial model A is discrete if all its operations and relations are
discrete.

Every model (even total) of a given signature is a partial model of any
wider signature. Then, the additional operations and relations are discrete.

A homomorphism of partial models h : A −→ B is a function
h : A −→ B such that, for any f ∈ F , if a ∈ domfA then h ◦ a ∈ domfB

and then h(fA(a)) = fB(h ◦ a) and for any r ∈ Π and a1, . . . , an(r) ∈ A

if rA(a1, . . . , an(r)) then rB(h(a1), . . . , h(an(r))).

A bijective homomorphism of partial models h : A −→ B is an isomor-
phism if the inverse function is a homomorphism. We say then that A and
B are isomorphic and write A ∼= B.

For any homomorphism of partial models h : A −→ B we define a
homomorphic image h(A) as a partial model with carrier set h(A) and the
structure carried from A i.e. for any f ∈ F and b1, . . . , bn(f) ∈ h(A)

(b1, . . . , bn(f)) ∈ domfh(A) iff there exists (a1, . . . , an(f)) ∈ domfA such that
b1 = h(a1), . . . , bn(f) = h(an(f)) and then

fh(A)(b1, . . . , bn(f)) = h(fA(a1, . . . , an(f))
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and for any r ∈ Π and b1, . . . , bn(r) ∈ h(A) there exist a1, . . . , an(r) ∈ A such
that b1 = h(a1), . . . , bn(r) = h(an(r)) and then

rh(A)(b1, . . . , bn(r)) iff rA(a1, . . . , an(r)).

A partial model B is an extension of a partial model A iff there exists
an injective homomorphism eB : A −→ B. If B is total, then we say that
B is a completion of A.

• E(A) denotes the class of all extensions and

• T (A) denotes the class of all completions of A.

We now generalize the well known notion of a free completion to partial
models. For details see papers [8] or [10].

Definition 2.2. We say that a total model B is a free completion of a
partial model A iff it is a completion of A generated by A and for every
total model C (of the same signature) and homomorphism h : A → C

there exists a unique homomorphism ĥ : B → C extending h such that the
following diagram commutes:

A B

C

?

-

�
�

�
��	

eB

h
ĥ

Fact 2.3. For every partial model there exists a unique (up to isomorphism)
free completion of this model.

F (A) denotes the free completion of a partial model A.

A is a weak submodel of B iff the identity embedding idA : A → B is a
homomorphism of partial models idA : A → B.

Hence every partial model is an extension of its weak submodel.

Fact 2.4. For any partial model B the family of all weak submodels of B

forms an algebraic lattice under the weak submodel relation (if empty sub-
models are allowed).

Definition 2.5. A partial model is finitely determined iff it has got finitely
many non-discrete operations and relations. It is strictly finite if it is finite
and finitely determined.
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The notion of direct limit will be used in the sequel. It can be found in
books on partial algebra theory e.g. [2] or [1]. For partial models only the
definition of homomorphism is changed.

Fact 2.6. Every partial model B is a direct limit of the family of all its weak
strictly finite submodels.

3. Extensions of a family of partial models

We assume that knowledge is represented by a family of partial models.
Every possible world should include (in some way) every member of the
given family, as well as the entire family. Let us take the following definition:

Let < = (Ai)i∈I be a family of partial models of a given fixed signature.
A partial model B is an extension of < iff there exists a family of injections
eiB : Ai → B , for every Ai ∈ <.

E(<), T (<) denote the classes of extensions and completions of a family
<, respectively.

Fact 3.1. E(<) =
⋂
{E(Ai) : Ai ∈ <} T (<) =

⋂
{T (Ai) : Ai ∈ <}

The disjoint sum of a family < = (Ai)i∈I is a partial model A, with
carrier set

⋃
(Ai × {i}), where operations are disjoint sums of operations in

the models Ai, and analogously for relations. The disjoint sum of a family
< is denoted

⋃̇
<.

Theorem 3.2. If there are no 0-ary operations (constants) in the signature
and if B is an extension of a family < then

1. the disjoint sum of the family < is an extension of <

2. B< =
⋃

(eiB(Ai))i∈I is a weak submodel of B

3. there exists an epimorphism h from
⋃̇
< onto B< such that for any

i ∈ I h |Ai
is an injection into B.

4. if B is a completion of < then there is a total submodel of B which
is a completion of < and additionally, is a homomorphic image of the
free completion F (

⋃̇
<) of the disjoint sum of <.

Definition 3.3. A partial model B is called a free sum of a family of partial
models < = (Ai)i∈I iff there exists a family of injections eiB : Ai → B for
every Ai ∈ < and if for certain partial model C there exists a family of
injections eiC : Ai → C then there exists a unique homomorphism h : B →
C such that h ◦ eiB = eiC .
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Notice that in a signature without constants the disjoint sum is a free
sum.

Fact 3.4. For any family < of partial models E(<) and T (<) are nonempty
iff the free sum of a family < exists.

In the next section (Fact 4.3) we give a logical condition on existence of
a free sum of the given family

4. Possible and infallible sets of sentences

We use in this section well known facts of first order logic [7]. The notion of
possibility is closely related to completions of the given partial model.

Let L be a first order language of signature 〈F,Π, n〉.
The set of all sentences of the language L is denoted by Sent(L).
For any ϕ ∈ Sent(L)

V ar(ϕ) denotes the set of all variables in ϕ
For Σ ⊆ Sent(L), Cn(Σ) denotes the closure of Σ under classical Tarski
style first order consequence. We write Σ |= φ iff φ ∈ Cn(Σ).
ModΣ, where Σ ⊆ Sent(L) denotes the class of all models satisfying Σ.

Assume that A is a given partial model in the signature of the given
language L ( a partial model of L, for short ).

Definition 4.1. A set of sentences Σ ⊆ L is possible for A iff there is a
model B ∈ T (A) such that B |= Σ.

We now introduce the notion of an infallible set of sentences, which is in
fact the theory of a partial model.

Definition 4.2. The set of sentences PA =
⋂
{Th(B) : B ∈ T (A)} is

called an infallible set of sentences for A. Every sentence belonging to PA

is called an infallible sentence for A. We write A |=p ϕ for ϕ ∈ PA.

The properties of possible and infallible sets of sentences are described
and proved in [8], [9] or [10].

If < is a family of partial models then we define possibility and infallibility
for < analogously.

A set of sentences Σ ⊆ L is possible for < iff there is a model B ∈ T (<)
such that B |= Σ.

Similarly, the infallible set of sentences for < is the set of all the sentences
true in every completion of this family. P< denotes the set of sentences
infallible for < and we write < |=p ϕ for ϕ ∈ P<.
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Fact 4.3. Let < be a family of partial models then

1. P< =
⋂
{Th(B) : B ∈ T (<)}.

2. P< = Cn(
⋃
{PAi

: Ai ∈ <}).

3. P< is consistent iff T (<) is nonempty.

4. The free sum of < exists iff P< is consistent.

The next theorem will be very useful in describing the infallible set for
the given partial model.

Let A be a partial model of a language L of signature 〈F,Π, η〉. We
extend L to LA by adding a set of constants C = {ca : a ∈ A}. Now, we
describe the structure of A in LA. Let ΣA be the sum of the following sets:

Σ1 = {ca 6= cb : a, b ∈ A , a 6= b}

Σ2 = {f(ca1 , ..., caη(f)
) = ca : f ∈ F ,

(a1, ..., aη(f)) ∈ dom fA , fA(a1, ..., aη(f)) = a}

Σ3 = {r(ca1 , ..., caη(r)
) : r ∈ Π , rA(a1, ..., aη(r))}

Theorem 4.4. Let A be a partial model of L. A set Σ ⊆ Sent(L) is possible
for A iff the set Σ ∪ ΣA of sentences of LA is consistent.

Let A′ denote a partial model interpreting A in LA i.e. A′ = A ,
fA = fA

′
for every f ∈ F , rA = rA

′
for every f ∈ F and cA

′

a = a.

Corollary 4.5. For any partial model A of L PA = PA′ ∩ Sent(L).

Corollary 4.6. T (A′) = ModΣA = ModPA

Properties of classes of completions in a language LA

Some algebraic properties of T (A) for a given partial model A of L will be
discussed first. We use the notation of [3]. Thus for a class K of total models
we use denotations:
S(K) - the class of all models isomorphic to submodels of models in K
H(K) - the class of all homomorphic images of models in K
I(K) - the class of all isomorphic copies of models in K
P (K) - the class of all models isomorphic to direct products of models in K
P0(K) - the class of all models isomorphic to direct products of nonempty
families of models in K
P r(K) - the class of all models isomorphic to reduced products of models
in K
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P r
0 (K) - the class of all models isomorphic to reduced products of nonempty

families of models in K
P u(K) - the class of all models isomorphic to ultraproducts of models in K
P u

0 (K) - the class of all models isomorphic to ultraproducts of nonempty
families of models in K

We say that K is closed under an operator O iff O(K) ⊆ K.

Fact 4.7. The class T (A) of completions of a partial model A of a lan-
guage L is closed under I, P0, P

r
0 , P u

0 and, in general, is not closed under
S,H,P, P r, P u.

The non-closure under P,P r, P u follows from the fact that the product
of the empty family of models is a trivial one-element model.

The class of all completions of a partial model A is not closed under
elementary submodels, in general. Look at the following:

Example 4.8. Let A = N ∪{∞}, that is A is a partial model obtained from
the standard model of arithmetics N of signature < +, ·, 0, 1 > by joining
the additional separated element ∞. Such a partial model embeds into the
non-standard model of arithmetics, thus the latter is a completion of A. And
N is an elementary submodel of the non-standard model of arithmetics, but
it is not a completion of A.

But the following holds:

Theorem 4.9. If B |= PA for a given partial model A then there exists a
model which is elementarily equivalent to B and is a completion of A.

Let us consider know the class of completions of the partial model A′ of
the language LA as defined after Theorem 4.4. Then

Fact 4.10. A class T (A′) of completions of the partial model A′ of the
language LA is closed under I, P0, P

r
0 , P u

0 , S and elementary submodels and,
in general, is not closed under H,P, P r, P u.

The closure under S follows from the fact that all elements of A are
constants now, so they must belong to every submodel.

For a moment let us fix our attention on languages in a signature without
predicates. Then we can use the universal-algebraic terminology.

A variety is a class of algebras closed under HSP ; on the other hand a
variety is a class definable by a set of equations. Similarly, a quasi-variety is
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a class of algebras closed under ISP r, and on the other hand a quasi-variety
is a class definable by a set of quasi-equations. For details see e.g. [3].

Let 1 denote the (unique up to isomorphism) one-element total algebra.
Then the class of completions of a partial model A′ of a language LA has
the following properties:

Theorem 4.11. 1. T (A′) ∪ {1} is a quasi-variety definable by Σq ∪ Σ2,
where Σq = {ca = cb ⇒ x = y : a, b ∈ A, a 6= b}.

2. H(T (A′)) is a variety definable by Σ2.

3. T (A′) = H(T (A′)) \
⋃
{Mod(ca = cb) : a, b ∈ A, a 6= b}

Theorem 4.12. For T (A′) ∪ {1} and H(T (A′)) we have that

1. F (A′) is the free algebra with an empty set of generators

2. the free extension F (A′∪̇X) of a disjoint sum A′∪̇X is a free algebra
with the set of generators X

Let ∆ be a set of equations in L. Let K∆ denote the class of completions
of A that satisfy ∆, i.e., K∆ = T (A′) ∩ Mod∆.

Theorem 4.13. 1. K∆ ∪ 1 is a quasi-variety.

2. H(K∆) = H(T (A′)) ∩ Mod∆ is a variety.

3. the free algebras are F (A′∪̇X)/∆

4. K∆ is nonempty iff nat∆ : F (A′) → F (A′)/∆ is a homomorphism
injective on A.

Analogously we can define a variety of models (a logical variety) as a
class of models closed under HSP , and logical quasi-variety as a class of
models closed under ISP r.

5. Characterizing sets of sentences

In this section we give a characterization of a given partial model by a set
of existential sentences of the given language generating the theory of this
model.

Finite case

Let A be a strictly finite partial model of L. We uniquely describe the
structure of A by a certain existential sentence of L.
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Example 5.1. Let A be a partial model with carrier set A = {2, 4, 6},the
partial operation of addition and the relation of divisibility taken from arith-
metics. Then we have the following sentence in LA

sA
A := 2 6= 4 ∧ 2 6= 6 ∧ 4 6= 6 ∧ 2 + 2 = 4 ∧ 2 + 4 = 6 ∧ 4 + 2 = 6 ∧ 2 | 2 ∧ 2 | 4
∧4 | 4∧2 | 6∧6 | 6, which conveys the positive information on operations and
relations in A. Notice that this sentence is a conjunction of the sentences in
ΣA.

Now, notice that the sentence
sA := ∃x∃y∃z(x 6= y ∧ x 6= z ∧ y 6= z ∧ x + x = y ∧ x + y = z ∧ y + x = z ∧
x | x ∧ x | y ∧ y | y ∧ x | z ∧ z | z) is a consequence of sA

A in L.

Let A be a strictly finite (n-element) partial model. Then for every ele-
ment of A we introduce a variable symbol. Let Σ1(x1, ..., xn), Σ2(x1, ..., xn),
Σ3(x1, ..., xn) be Σ1,Σ2,Σ3 from Theorem 4.4 with constants replaced by the
corresponding variables.

Definition 5.2. A sentence
sA := ∃x1∃x2...∃xn(

∧
Σ1(x1, ..., xn) ∧

∧
Σ2(x1, ..., xn) ∧

∧
Σ3(x1, ..., xn))

of the language L is called the characterizing sentence of the strictly finite
partial model A.

Definition 5.3. We say that a sentence of a given language L is of the
?-form iff it has the following form

(?) s := ∃x1∃x2...∃xn(x1 6= x2 ∧ x1 6= x2 ∧ ... ∧ x2 6= x3 ∧ ... ∧ xn−1 6=
xn∧f1(...) = .∧f2(...) = .∧ ...∧fk(...) = .∧r1(...)∧r2(...)∧ ...∧rn(...)),

where n ∈ N and fi(...) = . and rj(...) denote the conjunctions of all formu-
las of the form fi(x1i

, ..., xn(fi)) = xn(fi)+1 and rj(x1j
, ..., xn(rj )), respectively

Fact 5.4. Every sentence s of L of the ?-form is a characterizing sentence
of some strictly finite partial model.

Proof. In the proof of this fact we construct a model As which is useful in
construction of a standard model in Section 6.

If n is the number of all different variables in s, then we take any
n-element set A = {a1, ..., an} and substitute univocally every xi by the
element ai. We describe on A a partial model As of a language L as follows:

1. For every fi ∈ F let us determine (a1i
, ..., an(fi)) ∈ domfAs

i and

fAs

i (a1i
, ..., an(fi)) = an(fi)+1 iff fi(x1i

, ..., xn(fi)) = xn(fi)+1 is an
atomic subformula of s
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2. for every rj ∈ Π rAs

j (a1j
, ..., an(fj )) iff rj(x1i

, ..., xn(fi)) is an atomic
subformula of s

For a model constructed in this way s = sAs is a characterizing sentence.

Fact 5.5. Let A be a strictly finite partial model of L. Then

1. for any total model B of L B |= sA iff B ∈ T (A)

2. for any partial model B B |=p sA iff B ∈ E(A)

3. every infallible sentence is a first order consequence of the character-
izing sentence sA in L i.e. PA = Cn(sA)

Infinite case

Recall (Example 4.8) that satisfiability of the infallible set of sentences for
a given infinite partial model is not sufficient for embedding of this model.

In the infinite case the set ΣA is infinite and therefore infinite conjunc-
tions are required. To omit this problem we give a set SA of sentences of the
language L which characterizes the given not strictly finite partial model A.

Let Φ? denote the set off all sentences of the ?-form from a given set Φ
of sentences of a language L.

Definition 5.6. Let s, σ be sentences of a language L. We say that s is a
?-consequence of σ (and write s ≤? σ) if σ is of the ?-form and s ∈ (Cn(σ))?.
We say that s is ?-equivalent to σ (and write s ≡? σ) if s is logically equiv-
alent to σ and both are of the ?-form.

The next three theorems have a purely technical character.

Theorem 5.7. Let (Bi)i∈I be a family of all strictly finite weak submodels
of a given partial model A. Let si denote the characterizing sentence for Bi.
Then

1. If Bi is a weak submodel of Bj then si is a ?-consequence of sj

2. If si is a ?-consequence of sj then Asi
∼= Bi and Asj

∼= Bj and Bi is
a weak submodel of Bj .

Theorem 5.8. Let s, σ ∈ {si : i ∈ I}. Then

1. If |V ar(s)| = k and |V ar(σ)| = m then
s ≤? σ iff there exists an injective map µ : V ar(s) → V ar(σ) such
that if f(x1, ..., xη(f)) = x ∈ At(s) then f(µ(x1), ..., µ(xη(f))) = µ(x) ∈
At(σ)
and if r(x1, ..., xη(r)) ∈ At(s) then r(µ(x1), ..., µ(xη(r))) ∈ At(σ).
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2. s ≤? σ and σ ≤? s iff s ≡? σ.

3. s ≤? σ iff As embeds into Aσ. By (1) above this embedding is uniquely
determined by µ .

4. As
∼= Aσ iff s ≡? σ

Proof. We give a proof of (3.) to show the induced embedding.
Let s ≤? σ. Then As = {v(x) : x ∈ V ar(s)} and Aσ = {w(x) : x ∈ V ar(σ)},
where v,w are injective valuations of variables. Let µ : V ar(s) → V ar(σ) be
a function as in (1). We define h : As → Aσ as h(v(x)) = w(µ(x)). Then h
is injective because of the injectivity of v,w, µ. It is a homomorphism since
if (v(x1), ..., v(xη(f))) ∈ domfAs and fAs(v(x1), ..., v(xη(f))) = v(x),
then f(x1, ..., xη(f)) = x ∈ At(s) and hence f(µ(x1), ..., µ(xη(f))) = µ(x) ∈

At(σ). In consequence (w(µ(x1)), ..., w(µ(xη(f)))) ∈ domfAσ and

fAσ(w(µ(x1)), ..., w(µ(xη(f)))) = w(µ(x)).

Notice that µ (and the induced homomorphism) is not unique.

Theorem 5.9. 1. The relation of a ?-consequence is a directed partial
order on the set {si : i ∈ I}/ ≡?

2. The relation of embedding induced by the ?-consequence relation is a
directed partial order on the set {Asi

: i ∈ I}/ ∼=.

Definition 5.10. For a given partial model A let (Bi)i∈I be the family of
all strictly finite weak submodels of A. Characterizing set of sentences is a
set SA = {si : i ∈ I}/ ≡? of all characterizing sentences for all strictly finite
weak submodels of A factored by the ?-equivalence relation.

Fact 5.11. The characterizing sentence sA of a strictly finite partial model
A is the greatest element in its characterizing set SA. Moreover, SA =
(Cn(sA))?/ ≡?.

Theorem 5.12. For any partial model A of L,

Cn(SA) = Cn(ΣA) ∩ Sent(L) = PA

6. Standard Models

Let us introduce the technical notion:

Definition 6.1. A rank of a sentence s of the ?-form is the natural number
r(s) =| V ar(s) | + | At+(s) | where At+(s) denotes the set of all atomic
subformulas of s that are not inequalities.
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Fact 6.2. 1. If s ≤? σ then r(s) ≤ r(σ).

2. σ covers s iff s ≤? σ and r(σ) = r(s) + 1.

Definition 6.3. A standard model for A is a partial model Aς such that
SA = SAς and if there exists a partial model B |=p SA then Aς embeds
into B.

Example 6.4. 1. Every strictly finite partial model is a standard model
for itself.

2. A′ is a standard model for itself in the language LA.

Now we give a construction of a standard model for arbitrary partial
model A.

Let us take a family (Bs)s∈SA
as in the proof of Fact 5.4. We are going to

construct a direct limit of this family. SA with the relation ≤? is a directed
partial order. We define now a family of homomorphisms hsσ : Bs → Bσ

such that for any s ≤? s′ ≤? σ it holds that hsσ = hs′σ ◦ hss′ . In details, for
every pair of sentences s ≤? σ such that r(σ) = r(s) + 1 we take a function
µ as in Theorem 5.7 (1), and then we take the homomorphism induced by
µ. The remaining injections are recursively defined as compositions. Let A?

denote the direct limit of such a directed family.

Theorem 6.5. Let A be a partial model. Then A? embeds into A and both
have the same characterizing sets of sentences.

Theorem 6.6. If B? is the direct limit of a family (Bs)s∈SA
with a family

of injections gsσ given by another choice of µ, then A? ∼= B?.

By above theorems for any partial model A the direct limit A? is a
standard model for A.

Corollary 6.7. Let A be a partial model of L

1. For every A there exists a unique (up to isomorphism) standard model,
namely A?.

2. If L is countable, then the standard model is countable, too.

3. The class of completions of the standard model for A is axiomatizable
by PA and it is a closure of T (A) under elementary equivalence.
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7. The infallible part of a theory

We have described the theory (the infallible set of sentences) of a partial
model and constructed a standard model using a characterizing set of sen-
tences. In this section we consider any consistent theory and we choose the
maximal infallible part of this theory. We describe conditions for the exis-
tence of a standard model for the given theory or of a standard family, in
the opposite case.

Let Φ be a consistent theory in the language L and take Φ?. We decided
to give the construction of required models in proofs of the following three
theorems:

Theorem 7.1. If 〈Φ?/ ≡,≤?〉 is directed then there exists a unique (up to
isomorphism) infinite partial model A such that PA = Cn(Φ?). Moreover,
if there exists the greatest element σ in this partial order then this model is
strictly finite.

Proof. The direct limit AΦ of the family (As)s∈Φ?/≡ is the required model.

Theorem 7.2. If there exists an upper bound on the length of chains in
〈Φ?/ ≡,≤?〉, then there exists a unique (up to isomorphism) family of strictly
finite partial models < such that P< = Cn(Φ?)

Proof. By assumption every maximal chain is finite and has the greatest
element. Let (sj)j∈J be the set of these bounds. The required family < is
the family of all the Asj

’s for j ∈ J . Uniqueness follows from Theorem 7.1.
Then for any Asj

we have PAsj
= Cn(sj). Hence Cn(Φ?) = Cn(

⋃
(sj)j∈J) =

Cn(
⋃

(PAsj
)j∈J) = P<.

Theorem 7.3. For any order of 〈Φ?/ ≡,≤?〉 there exists a unique (up to
isomorphism) family of partial models < such that
P< = Cn(Φ?).

Proof. The required family < consists of all the direct limits for all maximal
directed suborders. Every maximal directed suborder = induces a partial
model A= as in Theorem 7.1 such that PA=

= Cn((Φ?) ∩ =). Thus P< =
Cn(Φ?).

Definition 7.4. A standard family of partial models for a theory Φ in a
language L is a family < such that P< = Cn(Φ?) and if there is a family R
satisfying PR = Cn(Φ?) then every model in < embeds into a certain model
in R.
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It follows from above four theorems that:

Corollary 7.5. For every consistent theory there exists a unique (up to
isomorphism ) standard family of partial models.

Some applications

Scott’s information systems

Definition 7.6. Scott’s information system [6] is a structure:
S = (D,∆, Con,`S), where D is a set (of data ) , ∆ is a selected element
from D (the least information bit) , Con is a certain family of finite subsets
of D (consistent finite sets), `S is a binary entailment relation and any
Φ,Ψ,Γ,Φ′,Ψ′ ∈ Con satisfy the following conditions:

1. if Φ ⊆ Ψ ∈ Con then Φ ∈ Con

2. {ϕ} ∈ Con for every ϕ ∈ D

3. ∅ `S {∆}

4. Φ `S Φ

5. Φ `S Ψ i Ψ `S Γ imply Φ `S Γ

6. Φ ⊆ Φ′, Φ `S Ψ, i Ψ′ ⊆ Ψ imply Φ′ `S Ψ′

7. Φ `S Ψ i Φ `S Ψ′ imply Φ `S Ψ ∪ Ψ′

Definition 7.7. A set Φ such that

1. all finite subsets of Φ are in Con

2. if Ψ ⊆ Φ and Φ `S ϕ then ϕ ∈ Φ

is called an element (partial) of a system S.

Thus Scott’s elements are all the sets of sentences closed under `S.

Using our terminology we construct a Scott’s information system and
then apply it to non-monotonic logics.

Let A be a partial model of a language L. By Corollary 6.7 let A be a
standard model for PA in L.

Let the set of data be the set of all the sentences possible for A i.e. MA.
Let Con be the set of all the finite possible sets for A.

The least information bit is represented by the infallible set PA. The
entailment relation is defined as follows:
Φ `S Ψ iff Ψ ⊆ Cn((Cn(PA ∪ Φ))?).
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Theorem 7.8. SA = (MA, PA, Con,`S) is a Scott’s information system.

Theorem 7.9. If a set of sentences is Scott’s element then it is the infallible
set for a certain extension of A.

Proof. To prove this theorem assume that Φ = Cn((Cn(PA ∪Ψ))?). Since
Ψ is possible for A, it is consistent with PA and Φ is satisfied in a certain
completion B of A. By Theorem 7.3 there exists a family < such that
P< = Φ. Every model in < is a weak submodel of B. Properties of the
lattice of weak submodels imply that

⋃
< is also a weak submodel of B and

hence extends A.

Corollary 7.10. A set of sentences is Scott’s element iff it is the infallible
set for an extension of A characterized by (Cn(PA∪Ψ))?, where Ψ is a finite
possible set for A.

Thus the structure of Scott’s elements with inclusion corresponds to the
structure of extensions of A with A-embedding. It is a complete meet semi-
lattice. Moreover if the union of two Scott’s elements is consistent then there
exists the supremum of these elements. Such structures are called chopped
lattices.

Default logics

A default theory [5] is a pair 4 = 〈D,F 〉 such that
F is a set of closed formulas (facts)
D is a set of defaults of the form
α:β1,...,βm

w , where α is any proven formula and β1, ..., βm are formulas consis-
tent with the knowledge we have. w is called the consequent of the default.

We give an interpretation of default theories in our terminology for a
fixed standard model A of a fixed language L .

Let F = PA, let D be a set of defaults
α:β1,...,βm

w , where β1, ..., βm are possible sentences for A.

w is the consequent of the default α:β1,...,βm

w
iff w ∈ Cn((Cn(PA ∪ {α, β1, ..., βm}))?)

Theorem 7.11. Let α:β1,...,βm

w be a default of the default theory 〈D,PA〉 in-
troduced above. If {α, β1, ..., βm} is a set possible for A then the set of all
the consequents of this default is equal to PB for a certain extension B of A.

The proof is analogous to the proof of Theorem 7.9.

Theorem 7.12. The fixed point of a theory 〈D,PA, 〉 is P<, where < is the
family of extensions of A obtained by the last theorem for all the defaults
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in D. An extension of this default theory is the infallible set for any family
extending <.

Introducing modal operators as in [8] i.e. if L,M denote modal operators
of necessity and possibility, respectively, then for every ϕ ∈ Sent(L)
|= Lϕ iff ϕ ∈ PA

|= Mϕ iff ϕ is possible for A.
We use the introduction to autoepistemic logics by K.Konolige [4]. For
any default we have corresponding Lα ∧ Mβ1 ∧ ... ∧ Mβm ` w iff w ∈
Cn((Cn(α, β1, ..., βm))?). This description is adequate for the modal logic
S5.
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