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Abstract
Application of molecular electron density theory (MEDT) to investigate the [5+2] cycloaddition reaction between oxi-
dopyrylium and ethervinylether, we discovered that oxidopyrylium is an electrophile and ethervinylether is a nucleophile 
by an examination of conceptual DFT indices. Analysis of energetical parameters shows clearly that this cycloaddition is 
both regio- and stereoselective, which is extremely consistent with the experience. Topological analysis of the electron 
localization function (ELF) has shown that this [5+2] cycloaddition is achieved by a two-step, single-step mechanism along 
the most favored route. Aside from that, docking outcomes show that the (1–20) oxabicyclo[3.2.1]octene derivatives have 
a significant anti-HIV potential.
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Introduction

Cycloaddition reactions represent a valuable synthetic tool 
for the formation of carbo- and heterocyclic structures, 
often with high regio- and stereo-control [1]. Cycloaddition 

reactions, such as [4+2] Diels-Alder cycloaddition [2–5], 
[2+1] cycloaddition [6–9], and [3+2] cycloaddition [10–16], 
considered powerful tools for the construction of six-, three-, 
and five-membered rings, respectively, are heavily studied, 
and the literature contains numerous theoretical and experi-
mental studies on these types of reactions [17–25]. On the 
contrary, there is comparatively much less work on the for-
mation of seven-membered rings. Seven-membered rings 
are structural units widely present in a wide range of natu-
ral biologically active compounds. These chemicals can be 
found, for example, in rubriflordilactone A [26], phomarol 
[27], and cortistatin A [28]. Given the increase in natural 
compounds containing seven-membered rings which have 
been isolated with biological activity, it has become neces-
sary to find and develop synthesis of these molecules utiliz-
ing successful synthetic methods, among these strategies are 
metathesis, cyclizations, ring isomerization, and cycload-
ditions [29], but synthesis of these rings is difficult and 
challenging, due to unfavorable entropy in cyclization pro-
cesses [30]. Cycloaddition reactions represent an efficient 
and direct protocol for accessing seven-membered rings, 
primarily the [5+2] cycloaddition (52CA) reaction [31, 32] 
and the [4+3] cycloaddition reaction [33, 34]. However, due 
to the variety of forms, the final scenario is preferred to 
the cycloaddition [4+3] for the creation of rings with seven 
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chains 52CA. There are several types of 52CAs reactions 
based on the five-membered component involved in the reac-
tion [35]. The 52CA reactions between an oxidopyrylium 
and alkenes allow for the simultaneous generation of bridged 
bicyclic ethers and the seven-membered ring compounds, 
which are a structural basis present in biologically active 
natural products [36]. Most commonly, the oxidopyrylium 
cycloaddition reaction begins with the formation of an oxi-
dopyrylium zwitterionic intermediate through the removal of 
the acetoxy group from the acetoxypyrone precursor to the 
oxidopyrylium in the presence of alkenes [37] (Scheme 1). 
The formation of oxidopyrylium could also be obtained from 
acetoxypyrone using a base [38].

There has not been much theoretical study of the [5+2] 
cycloaddition reaction of oxidopyrylium with alkenes 
[39–41], compared to the [4+2] and [3+2] cycloaddition 
reactions, which are widely studied by various theoretical 
models of chemical reactivity [42–45].

One of the most widely used and robust reactivity mod-
els in recent years is Domingo’s so-called MEDT theory. In 
2016, Domingo introduced the molecular electron density 
theory (MEDT), a novel theoretical framework for describing 
reactivity in organic chemistry [46], regarding organic mol-
ecules’ reactivity is related to changes in electron density, in 
complete disagreement with all models based on molecular 
orbital analysis, such as boundary molecular orbital theory 
[47, 48]. In addition to investigating and characterizing the 
energetically relevant reaction pathways associated with the 
process under study, the reactivity indices produced from the 
CDFT, topological analysis methods ELF (electron localiza-
tion function) [49], QTAIM [50], and NCI [51], are employed 
in the current study to examine the reactivity inside the 
MEDT, we are particularly interested in the [5+2] cycloaddi-
tion of oxidopyrylium with an alkene (Scheme 2 and Fig. 1).

Computation methods

The optimization of the geometry of reactants, products, and 
transition states was performed by DFT computations apply-
ing the ωB97XD functional; it is an extension of the widely 
used B97-D functional and includes empirical dispersion 
corrections, which are designed to better account for van der 
Waals interactions in molecular systems, coincidentally with 
6-311G(d,p) basis [52]. Frequency calculations were used to 
characterize optimized stationary positions to make sure that 
none of the reactants or products had any imaginary frequen-
cies, and that the transition states have just one imaginary 
frequency. Intrinsic reaction coordinate (IRC) [53] paths 
were plotted in both directions, with the aim of verifying 
the energy profiles linking each transition stage to its two 
corresponding minimum. By employing the Tomasi group 
polarizable continuum model (PCM) to re-optimize the sta-
tionary points obtained in the gas phase, the solvent impact 
of dichloromethane was implicitly taken into account [54].

The global electrophilicity index was calculated using the 
equation shown below [55]:

wherein the electronic chemical potential and chemical 
hardness are represented by μ and η, respectively, the two 
quantities µ and η according to the aforementioned formu-
las, they were calculated utilizing the HOMO and LUMO 
values [55–58]:

and

� =
�
2

2�

� =
EHOMO + ELUMO

2

Scheme 1  The oxidopyrylium 
cycloaddition reaction

Scheme 2  [5+2] cycloaddi-
tion of oxidopyrylium with an 
alkene



843Structural Chemistry (2024) 35:841–852 

1 3

The overall nucleophilicity index N was calculated 
according to the following formula:

with EHO(Nu) corresponds to the HOMO energy of the rea-
gent and tetracyanoethylene’s HOMO energy is known as 
EHO(TCE) [58].

All reactivity indices were evaluated utilizing B3LYP/6-
31G(d) level in accordance with Domingo’s suggestions [59, 60].

The total of the naturally found atomic charges (q), as 
determined by a natural population analysis (NPA), was 
used to calculate the overall GEDT [61] electron density 
transfer of the atoms belonging to each reactant (f) at the 
transition state GEDT =

∑

qf  . The Topmod program has 
been employed to undertake a topological inquiry of the 
ELF electronic localization function [62]. The GaussView 
software was utilized for visualizing the locations of the 
ELF pool attractors [63], while the VMD program was 
applied to illustrate the ELF pool isosurfaces [64] with an 
isovalue of 0.82.

Result and even discussion

Comparison of the 3-OXP 2 and EthE ground-state electronic 
structures’ global and local reactivity indices obtained via CFDT.

� = ELUMO − EHOMO

N = EHO(Nu) − EHO(TCE)

Table 1 lists the computed global reactivity indices for 
3-OXP and EthE, including electronic chemical potential 
(μ), chemical hardness (η), electrophilicity (ω), and nucleo-
philicity (N). The geometry of 3-OXP and EthE has been 
entirely optimized at this level since these indices have been 
scaled to the computational level of B3LYP/6-31G(d), with 
the goal of having complete consistency with the scale sug-
gested by Domingo [59, 60].

According to an analysis of the data in Table 1, EthE 
(− 2.39 eV) has a lower electronic chemical potential (ECP) 
than 3-OXP (− 3.75 eV), which indicates that during a polar 
reaction, the electron density will transfer from EthE, which 
acts as a nucleophile, to 3-OXP, which acts as an electro-
phile. Domingo divided nucleophiles into three categories: 
strong, moderate, and marginal, with respective nucleo-
philicity indices of 3.00, 2.00–3.00, and less than 2.00 eV. 
Similar to this, electrophiles are likewise divided into three 
groups: strong, moderate, and marginal, depending on their 
electrophilicity indices, which range from 1.50 to 0.80 eV, 

Fig. 1  [5+2] cycloaddition of oxidopyrylium with an alkene

Table 1  Derived for 3-OXP and EthE are the global electronic quali-
ties (global electrophilicity (ω), global nucleophilicity (N), global 
electrochemical potential (μ), and chemical hardness (η)) calculated 
by B3LYP/6–31(d)

System μ η ω N

3-OXP  − 3.75 3.36 2.09 4.09
EthE  − 2.39 6.98 0.41 3.64
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1.50 to 0.80 eV, and 0.80 eV and lower, respectively. This 
scale classifies 3-OXP as both a strong electrophile with a 
value of 2.09 eV and a strong nucleophile with a value of 
4.09 eV. EthE is categorized as both a very poor electro-
phile with a value of 0.41 eV and a strong nucleophile with 
a value of 3.64 eV.

Regarding local reactivity, Domingo et al. suggested two 
new functions called electrophilic and nucleophilic Parr’s 
functions, to pinpoint among the most nucleophilic and elec-
trophilic centers in the species. According to the examina-
tion of the nucleophilic Parr functions of EthE, the carbon 
C1, P−

C1
= 0.58 , is the most nucleophilic center, whereas 

the 3-OXP’s electrophilic Parr functions reveal that the C4 
carbon is this molecule’s highest electrophilic center, with 
a P+

C4
= 0.52 value, and is three times larger than the C6 

carbon, with a P+

C6
= 0.17 value (Fig. 2).

The analysis of Parr functions leads to the conclusion that 
the C1 carbon of EthE and the C4 carbon of 3-OXP will 

have the best electrophile–nucleophile interaction along the 
nucleophilic attack of EthE on 3-OXP, suggesting that this 
reaction will primarily proceed via the C1-C4 regioisomeric 
pathway in clear agreement with experimental observations.

ELF enquiry of reagents 3‑OXP and EthE

Positions of the valence attractors with their populations, 
localization domain, and suggested Lewis structures for the 
two reactants 3-OXP and EthE are shown in Fig. 3.

Figure 3 shows that the oxygen atom of 3-OXP has two 
monosynaptic pools, V(O1) and V′(O1), with a combined 
population of 5.59 electrons. Additionally, the oxygen atom 
of O5 has a monosynaptic pool, V(O5), with a population 
of 3.67 electrons, which is indicative of two free electron 
doublets carried by the oxygen O5.

The presence of two disynaptic pools with electron popu-
lations of 1.88e and 1.78e, V(O5,C4) and V(O5,C6), respec-
tively, values close to 2e, signifying an O5-C4, O5-C6 single 
bond, as well as a disynaptic pool V(O,C3) with a population 
of 2.04e, indicates an O-C3 single bond. In addition, the 
presence of four disynaptic pools, with electron populations 
of 2.54, 2.96, 2.96, and 3.27e values greater than 2e and less 
than 4e, suggests a single bond with a double bond charac-
ter; on the other hand, the ELF analysis of EthE reveals the 
presence of two disynaptic pools, V(C1,C2) and V′(C1,C2), 
with a combined population of 3.71e, suggesting a remarka-
ble character of a double bond. Additionally, we observe that 
the oxygen atom of EthE has two monosynaptic pools, V(O) 

O CH3

O

CH2

EtO
0.52

0.580.05

0.17

Fig. 2  The electrophilic Parr function P+

k
 of 3-OXP and the nucleo-

philic Parr function P−
k
 of EthE 

V(C1,C2)

[1.86]

V'(C1,C2)

[1.85]

V(C2,O)

[1.46]

V(O)

[2.68]

V'(O)

[2.05]

[1.28]

[1.91]

V(O5)

[3.67]

V(O5)

[2.80]

V'(O5)

[2.79]

V(O5,C4)

[1.88]

V(C3,C4)

[2.96]

V(O5,C6)

[1.78]

V(C7,C8)

[2.96]

V(C6,C7)

[3.27]

V(C3,C8)

[2.54]

H
C

CH2O
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C

H3C
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Fig. 3  Positions of the 3-OXP and EthE reactants’ valence attractors, as well as their respective populations, localization domains, and Lewis structures
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and V′(O), with a combined population of 4.73e, which may 
be bound to two pairs of this atom’s non-bonding electrons.

The disynaptic pool V(C2,O), which has a population of 
1.46e but is unexpected compared to the expected value of 
2e, is present in the C2-O binding region. This depopulation 
of the C2-O binding region in the direction of the oxygen 
atom can also be attributed to the disynaptic pool, which has 
a population of 1.28e.

Energetics study of the 52CA reaction 
between 3‑OXP and EthE

Due to the non-symmetry of the two reactants, there are four 
possible isomeric paths for the 52CA reaction of 3-OXP 
with EthE: two regioisomeric pathways, each of which pro-
duces two stereoisomers.

The C1-C4 single bond creation pathway and the C1-C6 
single bond initiation pathway are a pair of regioisomeric 
pathways, whereas stereoisomeric pathways named exo and 
endo depending on the position between the methyl group 
affixed to the C4 carbon of 3-OXP and the ethoxy group 
of EthE, such that along the exo pathway, the two ethoxy 
and methyl groups are on opposite sides. This 52CA reac-
tion exhibits a one-step mechanism, i.e., on the reaction’s 
surface potential energy, a single TS, TS-1x, TS-1n, TS-2x, 
and TS-2n, as well as their associated cycloadducts, P-1x, 
P-1n, P-2x, and P-2n, have been identified and character-
ized (Scheme 3).

Table 2 lists the relative electron energies for the species 
involved in the reaction of 52CA between 3-OXP and EthE, 
both in the gas phase plus when dichloromethane is present, 
while the detailed calculation in gas and DCM are presented 
in Tables S1 and S2.

The four competitive routes have gas phase activation ener-
gies of 2.1 (TS-1x), 5.0 (TS-1n), 3.9 (TS-2x), and 6.6 (TS-2n) 
kcal/mol. The results presented here indicate that the 52CA 
reaction is highly stereoselective and slightly regioselective 
because TS-1x has a lower energy than TS-2x of 1.8 kcal/mol 
and TS-1x has a lower energy than TS-1n of 2.9 kcal/mol. 
This reaction can also be regarded as irreversible because of 
the strong exothermic between 47.6 and 48.5 kcal/mol.

Scheme 3  Theoretical potential regio- and stereoisomeric reaction paths for the 52CA reaction involving 3-OXP and EthE 

Table 2  ωB97XD/6-311G(d,p) relative electronic energies (in kcal·mol−1), 
in the gas phase and in the presence of dichloromethane, for the species 
involved in the 52CA reaction between 3-OXP and EthE 

Gas phase Solution (DCM)

TS-1x 2.1 3.3
TS-1n 5.0 6.7
TS-2x 3.9 6.8
TS-2n 6.6 9.0
P-1x  − 48.5  − 44.4
P-1n  − 48.4  − 44.8
P-2x  − 47.6  − 44.3
P-2n  − 47.5  − 43.5
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Counting dichloromethane as a solvent, the activation 
energies increase to 3.3 (TS-1x), 6.7 (TS-1n), 6.8 (TS-
2x), and 9.0 (TS-2n) kcal/mol, due to a strong solvation of 
reactants with respect to transition states. The gas phase’s 
regioselectivity does not alter, but has improved, since the 
most favorable TS-1x has an energy 3.5 kcal/mol inferior 
than TS-2x, as well as the stereoselectivity increases, since 
TS-1x is more stable 3.4 kcal/mol than TS-1n.

Figure 4 illustrates the geometries of the transition states 
involved in the 52CA reaction between 3-OXP and EthE.

The four transition states correspond to asynchronous 
single bond formation processes, according to an examina-
tion of the geometries of the transition states involved in the 
reaction of 52CA between 3-OXP and EthE. More progress 
has been made in the formation of the single bond involving 
the C1 carbon of ETHE than the C2 carbon. Compared to 
C2-C6, the formation of the C1-C4 bond is further along. 
Dichloromethane’s two formed bonds’ different lengths 
provide as evidence that these transition stages have grown 
increasingly asynchronous. The most asynchronous transi-
tion stage, TS-1x, is also the most advantageous.

By computing the GEDT values of the four transition 
states, it was then possible to determine whether the 52CA 
reaction under investigation was polar or nonpolar. Non-
polar processes are reactions with GEDT values less than 
0.0e, while polar processes are reactions with GEDT val-
ues higher than 0.2e. The values of GEDT from EthE to 

3-OXP are 0.18e at TS-1x, 0.12e at TS-1n, 0.08 at TS-2n, 
and 0.10 at TS-2x, demonstrating the weak polarity of this 
52CA reaction.

ELF analysis to ascertain the 52CA reaction’s  
chemical mechanism

Through performing an ELF topological analysis on a few 
chosen spots of the IRC of the most advantageous transi-
tion state, TS-1n, it was possible to obtain insight into the 
chemical mechanism of the 52CA reaction involving 3-OXP 
and EthE.

This ELF analysis will allow us to detect successive 
changes in the selected points’ electron densities. The IRC 
profile of TS-1n consisted of a total of 250 points in the 
forward and reverse directions. The positions of ELF valence 
attractors along with their corresponding populations of rel-
evant structures are shown in Fig. 5.

Despite the modest variations in their electron popula-
tions, the ELF valence patterns of the interacting fragments 
at the initial point P1—where they are significantly sepa-
rated from one another—resemble those of the two separate 
reactants 3-OXP and EthE. The depopulation of the disyn-
aptic basin V′(C1,C2) begins at position P2. A new mono-
synaptic basin V(C4) with an initial electron population of 
0.31e has developed at point P3. Point P4 sees the forma-
tion of a novel monosynaptic pool, V(C1), with an initial 

Fig. 4  The optimized transi-
tion state geometries connected 
to the 52CA reaction between 
3-OXP and EthE. The units of 
measurement are angstroms. In 
brackets, the dichloromethane 
values are listed

TS-1n TS-1x

TS-2n TS-2x

2.570
(2.616) 2.114

(2.082) 2.835
(2.862) 2.053

(2.046)

2.160
(2.133)

2.502
(2.521)

2.497
(2.537)

2.149
(2.115)
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population of 0.24e. It is confirmed that the C1-C4 bond 
forms before the C2-C6 bond at point P5 due to the disap-
pearance of the two monosynaptic basins V(C1) and V(C4) 
and the emergence of a new disynaptic basin V(C1,C4) with 
an initial population of 1.23e. A new monosynaptic pool 
V(C6) on carbon C6 with an initial electronic population 
of 0.50e is formed at point P6, while a monosynaptic pool 
V(C2) on carbon C2 with an initial electronic population 
of 0.11e is formed at point P7. Due to the depopulation of 
V(O5) at point P8, a new monosynaptic pool V′(O5) with an 
initial population of 1.87e is formed on the oxygen atom O5. 
A second disynaptic pool, V′(C7,C8), formed at point P9 
with an initial electronic population of 1.59e, demonstrating 
the production of the C7 = C8 double bond. The two mono-
synaptic pools V(C2) and V(C6) fuse at point P10, resulting 
in the formation of the C2-C6 single bond and a disynaptic 
pool V(C2,C6) with an initial population of 1.63e. Accord-
ing to these findings, the 52CA reaction between 3-OXP 
and EthE proceeds via a one-step, two-phase mechanism, 
in which the two new single bonds are formed between the 

two reactants in an uncoordinated environment and the for-
mation of the C1-C4 bond is advanced in comparison to the 
formation of the C2-C6 bond.

Molecular docking

As a powerful tool for assisting the development of potential 
medications for a wide range of ailments, computer-aided 
drug design (CADD) based on ligand and structure-based 
processes such as 3D-QSAR, pharmacophore, molecular 
docking, and ADMET has evolved [65]. The retrovirus 
family, which includes the human immunodeficiency virus 
(HIV), which causes acquired immunodeficiency syndrome 
(AIDS), assaults immune system cells by destroying or 
weakening their functioning [66]. It is still crucial to find 
new medications with antiviral properties, as HIV mutates 
rapidly, leading to treatment ineffectiveness and the devel-
opment of drug-resistant strains. Protein Data Bank (http:// 
www. rcsb. org) was used to retrieve the target HIV-1 protease 
protein’s three-dimensional (3D) crystal structure prior to 

Fig. 5  Positions of ELF valence 
attractors with their populations 
of relevant structures

http://www.rcsb.org
http://www.rcsb.org
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docking. To examine substituted (1–20) oxabicyclo[3.2.1]
octene derivatives’ interactions with the HIV-1 protease 
(PDB ID: 1HSG) protein, a molecular docking simulation 
was conducted using the AutoDock 4.2.6 program and the 
graphical interface AutoDockTools (ADT) version 1.5.6 
[67]. Prior to the docking process, the 1HSG protein’s water 
molecules and polar hydrogen atoms were removed. Next, 
Kollman and Gasteiger atom charges were added using 
ADT. The central grid box is approximately (13.073, 22.467, 
and 5.557) based on the ligand position in the protein, and 
the grid maps were constructed to 60 in the X, Y, and Z 
dimensions. Software programs called PyMOL and Dis-
covery Studio Visualizer were employed to demonstrate the 
potential binding processes of the oxabicyclo[3.2.1]octene 
derivatives with their target proteins and visually check the 
docked molecule and its H-bond interactions in an effort to 
explain their anti-HIV-1 effects, respectively [68, 69].

Figures S1 and S2 depict the results obtained on dock-
ing all the (1–20) oxabicyclo[3.2.1]octene derivatives with 
target 1HSG protein based on docking studies, while Fig. 6 
depicts docking result of compound 5. All the ligands inter-
acted with key active site residues of the HIV-1 protease 
such as ASP29, ASP30, ILE50, GLY48, and ARG8. The 
docked molecules contain conventional hydrogen bonds that 
are mainly formed with oxygen atoms of oxabicyclo[3.2.1]
octene and N atoms of C≡N group. The docking variables, 
which include intermolecular energy, inhibition constant, 
and binding energy of the (1–20) oxabicyclo[3.2.1]octene 
derivatives with the 1HSG targeted protein, were depicted 
in Table S3. The binding energies for all the substituted 
(1–20) oxabicyclo[3.2.1]octene derivatives with the HIV-1 

protease (PDB ID: 1HSG) protein exhibited dock values 
between − 5.01 and − 8.73 kcal/mol. The order of binding 
energies in relation to the drug activeness against 1HSG is 
15 > 2 > 11 > 17 > 14 > 19 > 12 > 7 > 20 > 13 > 8 > 16 > 6 = 
18 > 10 > 5 > 9 > 3 > 1 > 4. Compound 15 formed a strong 
conventional hydrogen bond with ARG8 (2.1 Å) and one 
van der Waals with ASP29 (4.1 Å) of 1HSG protein. The 
obtained results indicate that the (1–20) oxabicyclo[3.2.1]
octene derivatives have high potential to act as anti-HIV 
agents. The docking findings could influence the design and 
development of novel AIDS medication candidates.

Computational pharmacokinetic analysis 
(physicochemical and ADME properties) 
of the (1–20) oxabicyclo[3.2.1]octene derivatives

The two main reasons why many drug candidates still fail 
to become drugs are the lack of efficacy and safety, which 
means that at every step of drug discovery and develop-
ment, the properties of chemicals that affect absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) 
are essential. The ADME analysis measures absorption, dis-
tribution, metabolism, and excretion; an online software tool 
was employed to examine the physicochemical, lipophilic-
ity, water solubility, and pharmacokinetics, drug-likeness 
plus medicinal chemistry properties of the (1–20) oxabicy-
clo[3.2.1]octene derivatives. Using an online program called 
SwissADME, which is accessible at http:// www. swiss adme. 
ch, the ADME forecasts were made [70].

The “Rule of Five (Ro5)” or Lipinski’s rule of five (5), 
developed by Christopher A. Lipinski in 1997 [71], is the 

Fig. 6  2D and 3D diagrams of the (15) oxabicyclo[3.2.1]octene compounds docked in the anti-HIV-1 protein’s binding site

http://www.swissadme.ch
http://www.swissadme.ch
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first and best-known rule-based methodology to use when 
identifying chemicals as prospective therapeutic candi-
dates. According to Lipinski’s rule, active molecules should 
have a molecular weight (MW) of less than 500 g/mol, an 
octanol/water partition coefficient (iLOGP) of less than 5, 
a number of hydrogen bond acceptors (NHBA) of more 
than 10, a number of hydrogen bond donors (NHBD) of 
less than 5, and a topological polar surface area (TPSA) of 
more than 130 g/mol.

According to the rule of five, a compound cannot be orally 
active when two or more of Lipinski’s rules of five are vio-
lated. All the (1–20) oxabicyclo[3.2.1]octene derivatives have 
no transgressions of the bioavailability score and Lipinski’s 
rule of all the ligands showed a score of 55% (Table S4).

The bioavailability radar is employed to provide a pre-
liminary assessment of a molecule’s drug-likeness. The 
pink area must completely enclose the red line of the tested 
substance, indicating their drug-likelihood with a better 
bioavailability profile. The (1–20) oxabicyclo[3.2.1]octene 
derivatives are predicted orally bioavailable in Fig. S3. Six 
physicochemical indices, including lipophilicity (XLOGP3), 
size, polarity, solubility, flexibility, and saturation, were 
shown on the axis by the bioavailability radars. The two-
dimensional bioavailability radar graphs of 15 compound 
show that the disadvantageous physicochemical property 
the deviation outside the pink area can be used to determine 
factors like saturation.

Solubility is an important property in the search for oral 
administration medications. The amount of water that may 
be dissolved is indicated in log (mol/l) (insoluble = 10, 
poorly soluble = 6, moderately soluble = 4, very soluble = 2, 
highly soluble = 0). The outcomes of the logS values of all 
oxabicyclo[3.2.1]octene derivatives in Table S2 show that 
they are very soluble and soluble in water except 15 com-
pound. Thus, all the oxabicyclo[3.2.1]octene derivatives 
have good solubility in water and could facilitate well oral 
adsorption.

All the (1–20) oxabicyclo[3.2.1]octene derivatives have 
high gastrointestinal (GI) absorption except 3 compound and 
non-substrate to P-glycoprotein. Figure 4 illustrates the rela-
tionship between TPSA and LogP used in the “Boiled-Egg” 
model to estimate brain penetration and gastrointestinal 
absorption of the chosen compounds. The graphic shows that 
the chemicals 2, 5, 7, 8, 10, 13, 14, 16, and 18 are expected 
to pass through the blood–brain barrier (BBB) in the yellow 
zone (yolk), while the other oxabicyclo[3.2.1]octene deriva-
tives show a negative response for BBB (in the white).

A molecule will hardly pass through the skin if skin per-
meability (Log Kp), an important component to take into 
account for enhancing medicinal efficacy, is greater than 
2.5 cm/h. According to Table S2, the Log Kp for oxabicy-
clo[3.2.1]octene derivatives ranges from 4.55 to 8.04 cm/h 
(2.5). Therefore, it is reasonable to anticipate that all octene 

derivatives will effectively permeate skin. Additionally, for 
all derivatives of oxabicyclo[3.2.1]octenes, synthetic acces-
sibility (SA) values less than 10 indicate that the compounds 
similar to drugs are relatively simple to synthesize.

Conclusion

The [5+2] cycloaddition reaction between oxidopyrylium 
3-OXP and ethoxyethylene EthE yields as products the 
bridged cyclic ethers and associated seven-membered ring. 
Theoretical investigation into P-1x, P-1n, P-2x, and P-2n 
has been conducted within the MEDT framework at the 
computational level DFT/ωB97XD/6-311G(d,p). This 52CA 
reaction can proceed along 4 isomeric reaction paths and 
exhibits good regio- and stereoselectivity which improved 
greatly with the addition of the solvent. An examination 
of the transition state geometries for the exo and endo ste-
reoisomers indicates that the process of formation of sin-
gle bonds C1–C4 and C2–C6 and asynchronous, also the 
asynchronicity increases when the solvent effect of dichlo-
romethane was taken into account. Analysis of the GEDT 
at the transition points to demonstrate this reaction’s weak 
polarity. According to an ELF topological study of specific 
locations on the IRC profile of the most advantageous transi-
tion state TS-1x’s electron density distribution, the reaction 
will proceed in a non-concerted, two-phase, one-step man-
ner. The coupling of the pseudoradical centers C1 with C4 
and C2 with C6 resulted in the development of the novel 
carbon–carbon, C1-C4 and C2-C6 single bonds.
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