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Abstract
The intramolecular [3 + 2] cycloaddition (32CA) reactions of allenic nitrones have been studied within the molecular electron 
density theory (MEDT) at the MPWB1K/6-311G(d,p) computational level. These zwitter-ionic type 32CA reactions show 
high activation free energies between 22.2 and 34.9 kcal mol−1 in ethanol consistent with their predicted non-polar character 
and follow one-step mechanism with highly asynchronous transition states. Interestingly, when the nitrone and the allene 
moieties are separated by two methylene units, the [3 + 2] addition is energetically feasible along the C5-C6 terminal double 
bond of the allene, while the presence of four methylene units change the cyclization selectivity towards the internal C4-C5 
double bond of the allene. This is in complete agreement with the experimental outcomes. The molecular mechanism study 
in terms of bonding evolution theory (BET) shows varied electron density changes along these two reaction paths. Finally, 
the topological analysis of AIM (atoms-in-molecules) reveals the presence of non-covalent interactions at the interatomic 
bonding regions of the transition states, which agrees well with the electron localization function analysis and the forming 
C–C and C-O bond distances.

Keywords  Molecular electron density theory · Electron localization function · Activation energy · Allenic nitrones · [3 + 2] 
cycloaddition reactions

Introduction

Allenes present an intriguing group of reacting counter-
parts in [3 + 2] cycloaddition (32CA) reactions owing to 
the presence of two cumulative unsaturations [1]. Although 
the simplest allene shows limited reactivity in the 32CA 
reactions with C-phenyl-N-methyl nitrone 1, incorpora-
tion of electron-deficient substituents (such as cyano (2), 
carbomethoxy (3), phenylsulfonyl (4), methoxy (5), fluoro 
(6)) overcomes the unreactive nature, affording high yield 
of isoxazolidines under milder reaction conditions with site 
selectivity towards the generation of CA4-5 and CA5-6 addi-
tion (Scheme 1) [2–7]. Nitrone-allene 32CA reactions show 

well-established applications in the total synthesis of alka-
loids and natural products [8], and also exhibit interesting 
selectivity and mechanistic implications. Recently, Lee et al. 
have reported the mechanism and selectivity of the intermo-
lecular 32CA reactions of nitrones with activated allenes [9].

An interesting alternative to explore the reactivity of 
unactivated allenes was designed by Lebel and Banucci 
in 1970 [10] from the intramolecular [3 + 2] cycloaddi-
tion (IM32CA) reactions of allenic nitrones, and was also 
reported by Padwa et al. [11] in 1993 to proceed smoothly 
affording reasonably good yields. The IM32CA reactions 
consist of both nitrone and the allenic function suitably 
placed in the same molecule and exhibit interesting site 
selectivity for the two allenic double bonds depending on 
the substrate. For instance, the IM32CA reaction of exocy-
clic nitrone 7 affords isoxazolidine 8 by addition along the 
terminal C5-C6 double bond, while the allenic nitrone 9 
involves addition along the internal C4-C5 double bond and 
affords the bridged bicyclic isoxazolidine 10 (Scheme 2).

The IM32CA reaction of the allenic nitrone 11 gener-
ated from 5,6-heptadien-2-one and N-methylhydroxylamine 
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hydrochloride in ethanol afforded unsaturated bicyclic isoxa-
zolidine 14 with complete site selectivity for addition along 
the C5-C6 terminal double bond [10] (Scheme 3). The cycli-
zation of the homologue nitrone 12 under similar reaction 
conditions afforded the bicyclic adducts 15 by addition along 
the terminal C5-C6 double bond, and 16 by addition along 
the terminal C4-C5 double bond, while the latter undergoes 
acid-catalyzed ethanol addition to the exocyclic double bond 
to afford the ethers 17 and 18 (Scheme 3). The homologue 
nitrone 13 (n = 4) proceeded with exclusive site selectivity for 
addition along the internal C4-C5 double bond of the allenic 
function, leading to the bicyclic adduct 19 (Scheme 3). 
These experimental findings imply that the separation of the 
nitrone and the allenic functions plays the decisive role in the 
mode of cyclization. Although the generation of preferred 
adducts have been advocated qualitatively by considering the 
strain factor in some cases to eliminate the possibility of the 
competing site selectivity, yet the correlation of molecular 

reactivity with the electron density changes along the two 
feasible cumulative unsaturations are worth investigating to 
outline the plausible mechanism and accordingly analyze the 
observed selectivity of these IM32CA reactions.

The molecular electron density theory [12] (MEDT) pro-
posed by Domingo in 2016 studies the role of electron den-
sity changes in the molecular reactivity and has emerged as 
an appealing alternative to the FMO theory for analysis of 
organic reactions. Several aspects of [3 + 2] cycloaddition 
(32CA) reactions [13, 14] have been successfully studied 
within the MEDT framework, namely the strain promotion 
[15, 16], reactivity [17, 18], catalysis [19, 20], substituent 
effects [21, 22], regio- [23, 24], stereo [25, 26] and chem-
oselectivity [27, 28]. Very recently, we have reported the 
MEDT studies for the IM32CA reactions of nitrones [29] at 
the MPWB1K/6-311G(d,p) level of theory, recommended 
as a precise computational model for the analysis of 32CA 
reactions.

This MEDT report is presented in five sections: (1) first, 
the topological analysis of the electron localization func-
tion [30, 31] (ELF) at the ground state (GS) of the reagents 
is performed to correlate the electronic structure and the 
molecular reactivity; (2) second, the electronic behaviour at 
the GS of the reagents is analyzed on the basis of the global 
reactivity indices defined with the conceptual density func-
tional theory [32, 33] (CDFT); (3) then, the potential energy 
surface (PES) along the feasible reactions paths is studied to 
locate the stationary points and analyze the energy profile 
with the evaluation of global electron density transfer [34] 
(GEDT) at the TSs to assess the polar character; (4) the 
mechanistic implications are studied in terms of the bonding 
evolution theory [35] (BET) to analyze the changes in elec-
tron density along the preferred reaction paths; (5) finally, 
the electronic structure at the TSs is analyzed from the ELF 
study, while the interatomic interactions are characterized 
from the AIM [36, 37] (atoms-in-molecules) parameters and 
subsequent NCI-Plot [38] visualization.

Computational methods

Optimization of the reagents, TSs and the products was 
done using Berny analytical gradient optimization method 
[39] at the MPWB1K/6-311G(d,p) level of theory. The 
stationary points were characterized as minima by the 
absence of imaginary frequency, while the TSs by one 
imaginary frequency along each reaction path. Solvent 
effects in ethanol were considered by full optimization at 
the same computational level using polarized continuum 
model within the self-consistent reaction field (SCRF) 
framework [40–42]. The relative enthalpies, entropies and 
free energies were calculated at 298 K and 1 atm in etha-
nol. The intrinsic reaction coordinate [43] (IRC) 
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calculations using the second-order Gonzales-Schlegel 
integration method [44, 45] were performed to verify the 
reaction path connecting the reactants and the products. 
The GEDT at the TSs was determined by GEDT (f) = 

∑

q∈f

q , 

where q is the NBO-derived charge [46, 47] at the consid-
ered reacting framework. The reactivity indices defined 
within the CDFT, namely the electronic chemical potential 
μ [48], global hardness η [49], global electrophilicity ω 
[50, 51] and nucleophilicity N [52], were calculated 
according to reference [32].

All calculations were performed using Gaussian 03 suite 
of programs [53]. The electron localization function [30, 31] 
(ELF) ((high-quality grid with a spacing of 0.06 Bohr) and 
AIM [36, 37] parameters were calculated using the Multiwfn 
software [54]. The ELF localization domains were visual-
ized using the UCSF Chimera software [55] at an isovalue 
0.86 and Visual Molecular Dynamics (VMD 1.9.3.) was 
used to visualize the NCI isosurfaces [56].

Results and discussion

ELF topological analysis at the ground state (GS) 
of the reactants

The ELF [30, 31] allows characterizing the electronic struc-
tures at the GS of the reagents and accordingly establishing 
the correlation with molecular reactivity. The three atom 

components (TACs) participating in 32CA reactions can be 
classified as pseudodiradical, pseudo(mono)radical, carbe-
noid and zwitter-ionic, respectively, within the MEDT frame-
work [12–14]. The pseudodiradical TACs [57] are associated 
with the presence of two pseudoradical centres (monosynap-
tic basin integrating less than 1 e), and show highest reactivity, 
while the pseudo(mono)radical [58] and carbenoid TACs [59] 
show relatively lower reactivity and are associated respec-
tively with the presence of a pseudoradical and a carbenoid 
(monosynaptic basin integrating approximately 2 e) centre. 
The zwitter-ionic TACs [23] show the least reactivity in 32CA 
reactions and do not show the presence of pseudoradical and 
carbenoid centres. The most significant ELF valence basin 
populations, attraction positions and the ELF localization 
domains at the GS of the allenic nitrones 11, 12 and 13 are 
represented in Fig. 1. The ELF of 11, 12 and 13 show the pres-
ence of monosynaptic V(O1) and V′(O1) basins integrating 
5.96–5.97 e associated with the non-bonding electron density 
at O1 oxygen. The N2-C3 and N2-O1 bonding regions inte-
grate at 3.92–3.94 e and 1.43–1.44 e respectively associated 
with the N2-C3 double bond and N2-O1 single bond. The 
allenic moiety shows the presence of disynaptic V(C4,C5) 
and V′(C4,C5) basins integrating 3.68–3.75 e associated 
with the underpopulated C4-C5 double bond and the disyn-
aptic V(C5,C6) and V′(C5,C6) basins integrating 3.70–3.77 
e associated with the underpopulated C5-C6 double bond. 
Thus, the absence of pseudoradical and carbenoid centre in 
the allenic nitrones 11, 12 and 13 allows their classification 
as the zwitter-ionic TACs associated with high energy barrier.

N
H3C

O

CH3

(CH2)n

HCCH2C

n = 2 (11)
n = 3 (12)
n = 4 (13)

n = 2

n = 3

n = 4

N
O

CH3CH3

1
2 3

45

6

Ethanol

N
O

CH3CH3

N
O

CH3CH3

CH2

N
O

CH3CH3

EtO CH3

N
O

CH3CH3

EtO CH3

Ethanol

Ethanol

N
O

CH2

CH3CH3

1
2 3

456

1
2 3

4
56

1
2 3

45
6

Ethanol

14

15 16 17 18

19

32CA reaction

32CA reaction

32CA reaction

Scheme 3   IM32CA reactions of allenic nitrones 11, 12 and 13 



212	 Structural Chemistry (2024) 35:209–221

1 3

After establishing the electronic structure of the TACs, 
the proposed Lewis-like structures on the basis of ELF 
study is represented in Fig. 2 along with the NBO-derived 
charges. O1 of the nitrone moiety is negatively charged by 
−0.60 e, while C3 is positively charged by + 0.25 e, with 
the negligible charge 0.08 e at N2. In the allenic part, 
the terminal C6 carbon is negatively charged by −0.47 e, 
while C4 shows the negative charge of −0.28 e and −0.29 
e owing to the alkyl chain substitution.

Analysis of the CDFT indices

The reactivity indices defined with the CDFT [32, 33] 
have been employed in numerous studies [12–22] to ana-
lyze the electronic behaviour at the GS of the reagents. 

The electronic chemical potential µ [48], chemical hard-
ness η [49], global electrophilicity ω [50, 51] and global 
nucleophilicity N [52] at the GS of the allenic nitrones 
11, 12 and 13 are calculated at the B3LYP/6-31G(d) 
level of theory (Table 1) to characterize the reagents 
within the standard electrophilicity and nucleophilicity 
scales defined at the same computational level [51]. The 
electronic chemical potentials µ of the allenic nitrones 
are between −2.75 eV and −2.83 eV, showing minimal 
increase from 11 to 13 with the increase in the alkyl 
chain length separation between the nitrone and the 
allene moieties. The nitrones are classified as marginal 
electrophiles (ω < 0.80 eV) within the electrophilicity 
scale and strong nucleophiles (N > 3.00 eV) within the 
standard nucleophilicity scale.

Fig. 1   MPWB1K/6-311G(d,p) 
calculated total electron density 
(isovalue = 0.1) and ELF locali-
zation domains (isovalue = 0.81) 
of gas phase allenic nitrones 11, 
12 and 13 along with the most 
significant ELF basin popula-
tions. Protonated basins are 
shown in blue, monosynaptic 
basins in red, disynaptic basins 
in green and the core basins in 
black colour. ELF attractor posi-
tions are shown in pink colour

Fig. 2   Proposed Lewis-like 
structures together with the 
natural atomic charges in aver-
age number of electrons, e, of 
the allenic nitrones 11, 12 and 
13. Negative, negligible and 
positive charges are shown in 
red, green and blue colours, 
respectively
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Exploring the potential energy surface 
along the IM32CA reactions of the allenic nitrones 
11–13

Herein, the two feasible reaction channels associated with 
the IM32CA reactions of allenic nitrones 11–13 involving 
the addition of the nitrone moiety to the terminal C5-C6 
double bond and to the internal C4-C5 double bond have 
been studied (Scheme 4).

Search for the stationary points along these reaction paths 
allowed locating the reagents, only one TS and the bicyclic 
adduct in each case, suggesting one-step mechanism. The 
TSs and adducts associated with the addition along the 
C5-C6 and C4-C5 double bonds are respectively prefixed 
as TS1 and TS2, followed by 2, 3 and 4 respectively indi-
cating the number of CH2 groups separating the nitrone 
and the allenic function. Thus, TS1-2, TS1-3 and TS1-4 
are the TSs associated with the addition of the nitrone moi-
ety of the reagents 11, 12 and 13 along the C5-C6 double 
bond respectively leading to the bicyclic adducts 14, 15 
and 20, while TS2-2, TS2-3 and TS2-4 are associated with 

the addition of nitrone moiety of the reagents 11, 12 and 
13 along the C4-C5 double bond respectively leading to 
the bicyclic adducts 21, 16 and 19. The relative energies, 
enthalpies, entropies and free energies in ethanol of the TSs 
and adducts are given in Table 2. The total thermodynamic 
data are gathered in the Supplementary Information. The 
studied IM32CA reactions are exergonic, with reaction 
free energies between −17.3 and −35.1 kcal mol−1, sug-
gesting kinetic control and show activation free energies 
between 22.2 and 34.9 kcal mol−1, consistent with the zw- 
type character. Some appealing conclusions can be derived 
from the relative free energies. (1) For the IM32CA reaction 
of nitrone 11, the activation free energy of TS1-2 asso-
ciated with addition along the C5-C6 bond is lowered by 
5.9 kcal mol−1 relative to that of TS2-2 associated with the 
addition along the C4-C5 bond. This is in complete agree-
ment with the experimental results [10] showing exclusive 
formation of the unsaturated bicyclic isoxazolidine 14. (2) 
The activation free energy of TS1-2 is lowered than that 
of TS1-3 and TS1-4 by 4.3 and 12.7 kcal mol−1 suggest-
ing that the addition of the nitrone moiety to the terminal 
C5-C6 double bond of the allenic function is relatively more 
feasible when the nitrone and the allene groups are sepa-
rated by two methylene units. (3) For the IM32CA reaction 
of nitrone 13, the activation free energy of TS2-4 asso-
ciated with addition along the C4-C5 bond is lowered by 
7.7 kcal mol−1 relative to that of TS1-4 associated with 
the addition along the C5-C6 bond. This is in complete 

Table 1   B3LYP/6-31G(d) 
calculated electronic chemical 
potential µ, chemical hardness 
η, global electrophilicity ω and 
global nucleophilicity N, in eV 
at the ground state of the allenic 
nitrones 11, 12 and 13 

µ η ω N

11 −2.83 5.06 0.79 3.75
12 −2.78 5.17 0.74 3.75
13 −2.75 5.22 0.72 3.75

N
H3C

O

CH3

(CH2)n

HCCH2C

n = 2 (11)
n = 3 (12)
n = 4 (13)

N
O

CH3CH3

N
O

CH3CH3

N
O

CH2

CH3CH3

1
2 3

456

1
2 3

4
56

1
2 3

45
6

14

15

20

TS1-2

TS1-3

TS1-4

N
O

CH3CH3

1
2 3

4
56

N
H3C

O

CH3

(CH2)n

HCCH2C

n = 2 (11)
n = 3 (12)
n = 4 (13)

TS2-2

TS2-3

TS2-4

N
O

CH2

CH3CH3

1
2 3

45
6

N
O

CH2

CH3CH3

1
2 3

45
6

21

19

16

Scheme 4   Studied reaction paths for the IM32CA reactions of allenic nitrones



214	 Structural Chemistry (2024) 35:209–221

1 3

agreement with the experimental results showing exclusive 
formation of the bicyclic isoxazolidine 19 [10]. (3) These 
unimolecular IM32CA reactions show negative relative 
entropies of the TSs between −9.2 and −20.4 kcal mol−1 and 
that of the adducts are between −12.7 and −25.6 kcal mol−1. 
Note that the relative entropies of 19 and 20 differ by 
0.1 kcal mol−1, that of 15 and 16 differ by 2.2 kcal mol−1 
and that of 14 and 21 differ by 2.8 kcal mol−1 suggesting the 
influence of ring size on the entropy differences of the two 
possible adducts. Inclusion of thermodynamic correction 
decreases the activation enthalpies by 0.6–1.3 kcal mol−1 
relative to the activation energies, while the reaction enthal-
pies are increased by 0.4–1.9 kcal mol−1 relative to the reac-
tion energies.

The MPWB1K/6-311G(d,p) optimized geometries of the 
TSs in ethanol are shown in Fig. 3, with the bond distances 
between the four interacting atomic centres, GEDT and the 
imaginary frequencies in gas phase and ethanol are given in 
Table 3. The distances between the C–C interacting centres 

are greater than 2.0 Å, and that between the C-O interacting 
centres are greater than 1.9 Å suggesting that the formation 
of new C–C and C-O covalent bond formation has not been 
started at the TSs, considering the formation of C–C bonds 
at 1.9–2.0 Å and the C-O bonds at 1.7–1.8 Å [13]. This is in 
complete agreement with the ELF and AIM studies (“ELF 
and AIM topological analyses of the electron density at the 
TSs associated with the IM32CA reactions” section). Note 
that TS2-2, TS2-3 and TS2-4 associated with the addition 
along the C4-C5 double bond are more asynchronous and 
relatively more advanced compared to TS1-2, TS1-3 and 
TS1-4 associated with the addition along the C5-C6 double 
bond.

The GEDT [34] allows evaluating the flux of electron 
density at the TSs and hence the polar character. GEDT val-
ues above 0.2 e are associated with polar reactions, while 
those below 0.1 e are the non-polar ones. Accordingly, the 
calculated GEDT values at the TSs are given in Table 4. In 
both gas phase and ethanol, the GEDT values are between 

Table 2   MPWB1K/6-311G(d,p) relative energies in gas phase and the relative energies, enthalpies, entropy and free energies in ethanol at 
298.15 K, in kcal·mol−1, of TSs and cycloadducts for the IM32CA reactions of allenic nitrones 11, 12 and 13 

TS ∆E/
gas phase

∆E/
ethanol

∆H//
ethanol

∆S/
ethanol

∆G/
ethanol

Product ∆E/
gas phase

∆E/
ethanol

∆H/
ethanol

∆S/
ethanol

∆G/
ethanol

TS1-2 16.9 19.6 18.5 −12.4 22.2 14 −33.3  −29.7 −28.4 −15.5 −23.8
TS2-2 23.6 26.7 25.4 −9.2 28.1 21 −25.8 −21.5 −21.1 −12.7 −17.3
TS1-3 18.5 22.4 21.7 −16.3 26.5 15 −42.2 −37.1 −35.2 −20.8 −29.0
TS2-3 15.1 19.1 18.2 −16.6 23.2 16 −44.6 −39.6 −38.2 −18.6 −32.6
TS1-4 25.4 29.7 29.1 −19.6 34.9 20 −40.4 −34.8 −32.5 −25.6 −24.9
TS2-4 17.8 21.9 21.1 −20.4 27.2 19 −49.8 −44.5 −42.7 −25.5 −35.1

Fig. 3   MPWB1K/6-311G(d,p) 
optimized geometries of the TSs 
in ethanol
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0.01 and 0.06 e, indicating non-polar character allowing the 
classification of these zw- type 32CA reactions as the null 
electron density transfer (NEDF) [60] type. The predicted 
non-polar character is consistent with the calculated high 
activation parameters associated mainly with the rupture of 
the C–C double bond revealed from the ELF topological 
analysis along the reaction paths (“Revealing the molecular 
mechanism and flux of electron density along the reaction 
paths associated with the IM32CA reactions of the allenic 
nitrones 11 and 13” section).

Revealing the molecular mechanism and flux 
of electron density along the reaction paths 
associated with the IM32CA reactions of the allenic 
nitrones 11 and 13

The bonding evolution theory (BET) [35] is a quantum 
chemical methodology to establish the molecular mecha-
nism of a chemical reaction by studying the nature of elec-
tronic rearrangement along a reaction path. The bonding 
changes are analyzed topologically and energetically within 
the MEDT perspective, allowing a complete understanding 
of the bonding changes and the origin of the energy profile. 
Herein, the molecular mechanism of the preferred reaction 
paths for the IM32CA reaction of the allenic nitrones 11 and 

13, leading to the adducts 14 and 19, is studied. The com-
plete BET studies are given in the Supplementary material. 
In this section, we explain the appealing conclusions arising 
from these BET studies in a chemical fashion.

(1) The molecular mechanism associated with the 
IM32CA reactions of the allenic nitrones 11 and 13 are 
represented in Schemes 5 and 6 respectively. The IM32CA 
reaction of 11 can be topologically characterized by eight 
differentiated phases while that of 13 by seven topologi-
cal phases. (2) For the IM32CA reaction of 11, the starting 
structure of the phases is denoted as S0-I, S1-I, S2-I, S3-I, 
S4-I, S5-I, S6-I and S7-I, and for that of 13 is represented as 
S0-II, S1-II, S2-II, TS2-4, S3-II, S4-II and S5-II. (3) For the 
IM32CA reaction of 11, S1-I is associated with the crea-
tion of non-bonding electron density at N2 nitrogen with 
energy cost (EC) of 15.4 kcal·mol−1, S2-I is associated with 
the rupture of C5-C6 double bond with energy cost (EC) 
of 16.2 kcal·mol−1, S3-I is associated with the formation 
of pseudoradical centre at C3 with energy cost (EC) of 
16.6 kcal·mol−1 and TS1-2 with the EC of 16.9 kcal·mol−1 
belongs to Phase-III. Therefore, the activation energy asso-
ciated with this IM32CA reaction is related to the formation 
of non-bonding electron density at N2 nitrogen, rupture of 
C5-C6 double bond and the creation of pseudoradical cen-
tre at C3 carbon. The subsequent phases are related to the 

Table 3   MPWB1K/6-311G(d,p) 
calculated forming bond 
distances (Å), imaginary 
frequencies (cm−1) at optimized 
TSs and GEDT in average 
number of electrons associated 
with the IM32CA reactions of 
allenic nitrones 11, 12 and 13 

TS Gas phase Imaginary frequency Ethanol Imaginary frequency

dC-O dC-C GEDT dC-O dC-C GEDT

TS1-2 2.229 2.036 0.01 −499.996 2.238 2.009 0.01 −515.975
TS2-2 1.908 2.226 0.04 −476.925 1.903 2.197 0.04 −496.903
TS1-3 2.169 2.169 0.04 −459.460 2.191 2.136 0.03 −487.604
TS2-3 1.989 2.295 0.04 −551.980 2.000 2.254 0.03 −572.059
TS1-4 2.096 2.274 0.05 −493.542 2.112 2.233 0.05 −515.339
TS2-4 2.063 2.267 0.06 −474.143 2.071 2.228 0.05 −492.057

Table 4   ELF valence basin 
populations at the MPWB1K/6-
311G(d,p) optimized gas 
phase TSs associated with the 
IM32CA reactions of the allenic 
nitrones 11, 12 and 13 

TS1-2 TS1-3 TS1-4 TS2-2 TS2-3 TS2-4

V(O1) 2.95 2.95 2.94 2.94 2.95 2.95
V′(O1) 2.88 2.88 2.87 2.90 2.88 2.89
V(N2,O1) 1.29 1.31 1.30 1.24 1.26 1.28
V(N2,C3) 2.51 2.55 2.66 2.93 2.93 2.95
V(C5,C6) 3.55 3.57 3.03 1.87 1.88 1.88
V′(C5,C6) 1.90 1.91 1.89
V(C4,C5) 1.89 1.90 1.87 3.20 3.23 3.27
V′(C4,C5) 1.84 1.84 1.83
V(N2) 1.31 1.24 1.19 1.32 1.32 1.25
V(C3) 0.39 0.36 0.36
V(C5) 0.59
V(C4) 0.45 0.37 0.38
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creation of pseudoradical centre at C5 (S4-I), formation of 
C3-C5 single bond (S5-I), creation of pseudoradical centre 
at C6 (S6-I) and finally the formation of O1-C6 single bond 
(S7-I). The ELF localization domains of these structures are 
given in Fig. 4. The formation of second O1-C6 bond begins 
when the first C3-C5 bond formation has been completed by 
94%, suggesting two-stage one-step mechanism.

(4) For the IM32CA reaction of 13, S1-II is associated 
with the creation of non-bonding electron density at N2 
nitrogen and rupture of the C4-C5 double bond with energy 

cost (EC) of 17.2 kcal·mol−1, TS2-4 is associated with the 
formation of pseudoradical centre at C4 with energy cost 
(EC) of 17.8 kcal·mol−1. Therefore, the activation energy 
associated with this IM32CA reaction is related to the for-
mation of non-bonding electron density at N2 nitrogen, 
rupture of C4-C5 double bond and the creation of pseu-
doradical centre at C4 carbon. The subsequent phases are 
related to the creation of pseudoradical centre at C3 (S2-II), 
creation of pseudoradical centre at C5 (S3-II), formation 
of C3-C4 single bond (S4-II) and finally the formation of 
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Scheme 5   Simplified representation of the molecular mechanism of the reaction path associated with the IM32CA reaction of allenic nitrone 11 
leading to adduct 14 arising from the topological analysis of the ELF

Scheme 6   Simplified representation of the molecular mechanism of the reaction path associated with the IM32CA reaction of allenic nitrone 13 
leading to adduct 19 arising from the topological analysis of the ELF
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O1-C5 single bond (S5-II). The ELF localization domains of 
these structures are given in Fig. 5. The formation of second 
O1-C5 bond begins when the first C3-C4 bond formation 
has been completed by 77%, suggesting asynchronous one-
step mechanism for this IM32CA reaction. (5) The minimal 
GEDT along the reaction path to reach the TSs establishes 
non-polar character of these IM32CA reactions consistent 
with the high activation energies.

ELF and AIM topological analyses of the electron 
density at the TSs associated with the IM32CA 
reactions

Finally, the ELF topological analysis at the TSs involved in 
the 32CA reactions was performed. The relevant valence 
basin populations are given in Table 4 and the ELF locali-
zation domains are shown in Fig. 6. TS1-2, TS1-3 and 
TS1-4 associated with the addition along the C5-C6 bond 
of the allenic nitrones 11, 12 and 13 present similar ELF 
topology, and that of TS2-2, TS2-3 and TS2-4 associated 
with the addition along the C4-C5 bond show similitude in 

the electronic structure. All six TSs show the presence of 
V(N2) monosynaptic basin integrating 1.19–1.32 e associ-
ated with the accumulation of non-bonding electron density 
at N2 nitrogen, which is not found in the allenic nitrones 
11–13. The ELF of TS1-2, TS1-3 and TS1-4 shows the for-
mation of V(C3) monosynaptic basin integrating 0.36–0.39 
e associated with the presence of pseudoradical centre at 
C3, which is not found in TS2-2, TS2-3 and TS2-4. Note 
that to create the pseudoradical centre at C3 carbon and 
non-bonding electron density at N2 nitrogen, the N2-C3 
bonding region at TS1-2, TS1-3 and TS1-4 experiences 
depopulation between 1.27 e and 1.41 e relative to the sepa-
rated reagents, while this depopulation is between 0.98 e 
and 1.01 e at TS2-2, TS2-3 and TS2-4, since the non-bond-
ing electron density at N2 nitrogen is only formed in these 
three TSs. The N2-O1 bonding region is also depopulated 
between 0.12 e and 0.15 e at TS1-2, TS1-3 and TS1-4 and 
between 0.15 e and 0.20 e at TS2-2, TS2-3 and TS2-4 to 
contribute for the accumulation of non-bonding electron 
density at the N2 nitrogen. Interestingly, TS1-4 shows the 
presence of V(C5) monosynaptic basin integrating 0.59 e 

Fig. 4   MPWB1K/6-311G(d,p) ELF localization domains of S4-I, S5-
I, S6-I and S7-I associated with the formation of C3-C5 and O1-C6 
bonds in the IM32CA reaction of allenic nitrone 11 (protonated 

basins are shown in blue, monosynaptic basins in red, disynaptic 
basins in green and the core basins in black colour (isovalue = 0.85). 
The ELF attractors are shown in pink colour

Fig. 5   MPWB1K/6-311G(d,p) ELF localization domains of S2-II, S3-
II, S4-II and S5-II associated with the formation of C3-C4 and O1-C5 
bonds in the IM32CA reaction of allenic nitrone 13 (protonated 

basins are shown in blue, monosynaptic basins in red, disynaptic 
basins in green and the core basins in black colour (isovalue = 0.85). 
The ELF attractors are shown in pink colour
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deriving electron density from the C4-C5 bonding region, 
while no such change in electronic structure is observed in 
TS1-2 and TS1-3. On the other hand, TS2-2, TS2-3 and 
TS2-4 show the presence of V(C4) monosynaptic basin 
integrating 0.45 e, 0.37 e and 0.38 e respectively associated 
with the formation of pseudoradical centre at C4 carbon, 
the electron density of which comes from the depopula-
tion of the C4-C5 bonding region along the reaction path. 
Note that the addition along the C5-C6 and C4-C5 bonds 

of the allenic nitrones show varied pattern of changes in 
electron density and accordingly follow different molecu-
lar mechanism. Finally, the absence of disynaptic basins 
associated with the formation of new covalent bonds reveal 
early nature of these TSs in each case in which the new 
covalent bonds have not been started.

The topological analysis of the AIM was performed to 
characterize the interatomic interactions at the TSs. The 
AIM parameters, namely the total electron density ρ and 

Fig. 6   MPWB1K/6-311G(d,p) ELF localization domains of the TSs associated with the IM32CA reactions of nitrones 11, 12 and 13 (protonated 
basins are shown in blue, monosynaptic basins in red, disynaptic basins in green and the core basins in black colour (isovalue = 0.85)

Table 5   Total electron density, 
ρ (a.u.), Laplacian of electron 
density ∇2

�(r
c
) (a.u.) of BCP1 

and BCP2 at the TSs associated 
with the IM32CA reactions in 
gas phase and in ethanol

Gas phase Ethanol

BCP1
(C–C)

BCP2
(C–O)

BCP1
(C–C)

BCP2
(C–O)

ρ ∇2
�(r

c
) ρ ∇2

�(r
c
) ρ ∇2

�(r
c
) ρ ∇2

�(r
c
)

TS-12 0.082 0.025 0.048 0.104 0.086 0.019 0.047 0.102
TS-22 0.058 0.062 0.088 0.141 0.060 0.059 0.089 0.140
TS-13 0.064 0.037 0.052 0.117 0.068 0.033 0.050 0.112
TS-23 0.053 0.042 0.074 0.140 0.056 0.039 0.073 0.138
TS-14 0.053 0.042 0.060 0.130 0.057 0.039 0.058 0.126
TS-24 0.055 0.043 0.064 0.132 0.059 0.041 0.063 0.130
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the Laplacian of electron density ∇2
�(rc) , at the bond criti-

cal points BCP1 and BCP2 associated respectively with the 
forming C–C and C-O bonds are given in Table 5. The total 
electron density ρ less than 0.1 au and the positive Lapla-
cian of electron density indicate non-covalent interactions 
in each case, consistent with the ELF topological analysis 
and the forming bond distances greater than 2.0 Å. The NCI 
isosurfaces at TS1-2, TS1-3 and TS1-4 represented in Fig. 7 
show green isosurfaces at the interatomic regions, indicative 
of weak non-covalent interactions.

Conclusion

The zw- type intramolecular 32CA reactions of allenic 
nitrones 11, 12 and 13 experimentally reported by Lebel 
and Banucci [10] have been studied within MEDT at the 
MPWB1K/6-311G(d,p) computational level. The topo-
logical analysis of the ELF of the nitrones 11, 12 and 13 
allows establishing their zwitter-ionic structure. Analysis of 
the global reactivity indices defined within CDFT classi-
fies the nitrones as strong nucleophiles and marginal elec-
trophiles. These IM32CA reactions follow non-concerted 
one-step mechanism with asynchronous TSs. In the allenic 
nitrone 11, the nitrone and allenic frameworks are separated 
by two methylene groups and the addition is energetically 
preferred along the C5-C6 double bond, while for the allenic 
nitrone 13, in which the nitrone and allenic frameworks  
are separated by four methylene groups, the addition takes 
place exclusively along the C4-C5 double bond of the allene. 
This study allows understanding the cyclization selectivity 

in intramolecular 32CA reactions of allenic nitrones. The 
molecular mechanism revealed from the bonding evolution 
theory predicts varied changes in the electron density along 
the reaction paths associated with the IM32CA reactions of 
the nitrones 11 and 13. However, in each case, the early TSs 
are located in which the formation of new C–C and C-O 
covalent bonds have not been started.
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