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Abstract
Following our quest for N-heterocyclic Hammick silylenes, we have to probe the electronegative and electropositive substitu-
tions on the singlet (s) and triplet (t) silapyridine-4-ylidene fused by two furan rings compared to the synthesized silylenes 
by West (I-s), Denk (II-s), and Kira (III-s). In all cases, s silapyridine-4-ylidenes emerge as ground state, revealing more 
stability than their corresponding t analogous. All species seem to have a minimum on their energy surfaces, demonstrating 
the positive force constant and the positive frequency. The optimized s silylenes show bond length, divalent and dihedral 
bond angles, somewhat similar to their corresponding t congeners. Irrespective of how substituent groups are arranged in 
either the “W (ortho)” or “chair (para)” positions of the silylenic center, the most stability is verified by the substitution of 
more electronegative NH and O groups (as electron withdrawing groups; EWGs) in the corresponding furan rings, while the 
least stability is respected by III-s. In contradiction to previous reports on the N-heterocyclic Hammick carbenes, silylenes, 
and germylenes (NHCs, NHSis, and NHGes) that size, type, and orientation, in addition to the number of fused rings, for-
mulated influence on ΔΕs-t, ΔΕHOMO-LUMO, and reactivity of the corresponding divalent species, now PH, AsH, S, and Se 
(as σ and π- electron donating groups; EDGs) similar to EWGs stabilize their silylenic derivatives. In going from second 
row to third row and from third row to forth row of every group in the periodic table, stability is decreased. As a result, the 
stability and electronic properties of s and t NHSis are considerably dependent on the electronegativity and radius of the 
substituted dopants.

Keywords  Silapyridine · “W” or “chair” position · Silylenic center · Furan ring

Introduction

The chemistry of divalent compounds such as carbenes, orga-
nosilicon, etc. has fascinated a considerable attention in recent 
years [1–15]. Divalent silylenes are congeners of carbenes, but  
mostly seem to have the s configuration as the ground state 
[1–15]. The larger size of the valence orbitals of silicon reduces 
the electron–electron repulsion of the lone pair on the Si  
atom accordingly enlarges the split energy of electrons. Thus, 
a silylene energetically favors the s ground state as a stable 
configuration [1–15]. These intermediates are employed in 
light-emitting diode, electroluminescence, Si chemical vapor 
deposition procedures, optics, electronics, and semiconductors 

[1–15]. The simplest, acyclic, linear, and unsaturated silylene 
with H2C = Si molecular structure has been of great interest 
as a possible divalent intermediate in numerous organosilicon  
reactions. It may be established in the interstellar medium [1–15].  
Silylidenes have been the subject of various theoretical investi-
gations and experimental surveys [16–20]. The first unsaturated 
silylene was searched by Murrell et al. in 1977 at theoretical 
methods and levels [21]. The experimental findings recognized  
silylidene via its electronic absorption spectrum, in 1979  
[22] and later its microwave spectrum [23]. Optical properties,  
structural parameters, rotational constants, force constants, 
and vibrational frequencies of silavinylidene derivatives were  
estimated using computational chemistry [24–27]. In 1997, laser-
induced fluorescence spectroscopy and theoretical expectations  
were used in order to establish the ground state of this divalent 
species [28]. The influences of the substituted polar groups on 
thermodynamic stability (ΔΕs-t) were first described by Hop-
kinson et al. [29]. In spite of many investigations, achieving at s  
(ΔΕs-t > 0) vs. t ground state (ΔΕs-t < 0) for saturated and unsat-
urated NHCs, NHSis, and NHGes seems as a challenging issue. 
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If the promotion energy is increased, the s ground state will be 
reached. If the promotion energy is decreased, the t ground state  
will be reached. To this end, electronic, inductive, mesomeric, 
and steric influences are applied to change the multiplicity of 
NHCs, NHSis, and NHGes [29–34]. For instance, the substituted  
EDGs increase the 3p-character of Si valence orbitals which 
leads to t configuration. Gordon identified the first t ground state 
silylenes [17, 18, 30]. Apeloig researched the effects of EDGs on 
the multiplicity of silylenes [19, 20, 31]. Considering applications 
of unsaturated silylenes and increasing demand for stable NHSis 
[34], here we have studied substituent effects of EWGs and EDGs 
on two “W” and “chair” orientations with silylenic centers of 1-s, 
2x-s, 3x-s, and 1-t, 2x-t, and 3x-t Hammick silylenes (x = NH, PH, 
AsH, O, S, and Se), at DFT (Fig. 1) [35–39].

Computational methods

Geometry optimizations are carried out without any sym-
metry constraint, operating the GAMESS [40, 41] program 
at the (U)B3LYP [42–45] and (U)M06-2X methods [46, 47] 
together with 6–311 +  + G** and AUG-cc-pVTZ basis sets 
[48–55]. All optimized structures turn out to be minima on 
their energy surfaces for showing no imaginary frequency. 
The s-t energy gap (ΔEs-t), energies of the frontier molecular 
orbital (FMO), band gap (ΔΕHOMO-LUMO and ΔΕSOMO-SOMO+1 
for s and t species, respectively), ionization potential (IP), and 
electron affinity (EA) are calculated at 298.15 K and 1.00 atm 
[56–79]. The natural bond orbital (NBO) charges [56–59], the 
global reactivity descriptors [80–83], and the condensed Fukui 
function (CFF) are provided at the same level of theory [84, 
85]. The nucleophilicity index (N) is acquired from the energy 
difference between EHOMO of s NHSi (or ESOMO of t NHSi) 
and tetracyanoethylene [80–83]. The electrophilicity index 
(ω = μ2/2η), chemical potential (μ = (EHOMO-ELUMO)/2), and the 
maximum amount of electronic charge index (ΔNmax =  − μ/�
)are obtained as well [80–83]. The CFF descriptors are cal-
culated using the Multiwfn program via f + A = ρA

N + 1 − ρA
N 

(ρA is the electron population number of A atom and N refers 
to the number of electrons stable states), f + A = qA

N + 1 − qA
N 

(nucleophilic attack), f − A = qA
N − qA

N − 1 (electrophilic attack), 
and DfA = f + A − f − A (condensed dual descriptor) [84, 85]. 
The site is favored for a nucleophilic attack if DfA > 0 and is 
favored for an electrophilic attack if DfA < 0.

Results and discussion

Following the previous research works on divalent compounds 
[34–39], in this research the  substitution effects were studied on 
the singlet (s) and triplet (t) silapyridine-4-ylidene fused by two 
furan rings.   The physical prarmeters have been obtained using 
DFT calculations according to the previous reports [60–79]. 

The present work covers thermodynamic, kinetic, and electronic 
effects of EWGs and EDGs on the scrutinized s and t NHSis vs.  
the first synthesized silylenes at DFT (Schemes 1) [86–89].

Recently, different theoretical studies has been carried 
out on fusion of the different rings of pyridine-4-ylidene 
and heavier derivatives (Schemes 2).

The resulted reports reveal that heteroatom type, size of the 
fused ring, number of fused rings, and orientation of the sub-
stituted dopants change stability and other properties of these 
divalent species. Our s and t NHSis turn out to be minima for 
showing no negative force constant. Structural parameters 
including bond length (R; C—Si and Si—C) in angstrom, diva-
lent and dihedral bond angles in degree ( ̂A (C − Si − C) and D̂ 
(C − Si − C − X), respectively), and symmetry of silylenes are 
considered. Except for 3AsH-s and 3PH-s with C1 symmetry, 
structural optimizations of other silylenes show Cs symme-
try for all s and t states. All silylenes show D̂ ≅ 180°. In each 
of the three series, 1-s, 2x-s, and 3x-s silylenes show more R 
(about 0.020–0.040 Å) and less Â (about 10°) than their 1-t, 
2x-t, and 3x-t analogous. For instance, 2O-s and 3AsH-s show 
R of 1.868, 1.890, 1.853, and 1.846 Å, also Â of 92.461° and 
94.434°, respectively. Likewise, 2O-t and 3AsH-t show R 
of 1.878, 1.876, 1.864, and 1.836 Å, also Â of 102.021° and 
104.150°, respectively. Our silylenes turn out as singlet ground 
state for showing positive ΔEs-t values [33]. In series 1, while 
fusion of two benzene rings thermodynamically stabilizes the 
corresponding silylene (ΔEs-t = 185.30 kJ/mol), in series 2 and 
3, by decreasing the electronegativity and increasing the atomic 
radius, the ΔEs-t diminishes from 215.10 kJ/mol for EWGs to 
193.66 kJ/mol for EDGs (Table 1).

All silylenes show more ΔEs-t than III (138.48 kJ/mol). 
This is because of the higher electronegativity of EWGs which 
makes them a stronger π-acceptor and hence prefers the singlet 
over the triplet state which causes a higher ΔEs-t. In going from 
the most electronegative heteroatom to the least electronega-
tive one, the ΔEs-t is decreased. More π-electron delocalization  
of the substituted dopantʼs free electron pair in two furan rings 
and a silapyridine ring makes possible more polarity and less 
polarizability of the s NHSis with regard to the t ones. Then 
again, substitution of either EWGs or EDGs groups in a zigzag 
(W) arrangement to the silylenic center produces less polarity.  
In accordance with Hoffmann et al.’s statement [89], a mol-
ecule could be known as stable if its smallest vibrational 
frequency is at least 100 cm−1 and it reveals an enormous 
FMO energy difference (here ΔEHOMO-LUMO for s states and 
ΔΕSOMO-SOMO+1 for t ones) [86–88]. Now, vibrational analysis 
demonstrates that the scrutinized NHSis including 1-s, 2x-s, 
3x-s, 1-t, 2x-t, and 3x-t, where x = NH, PH, AsH, O, S, and 
Se, are real minimums revealing positive frequency, and hence 
positive force constant (Table 2).

While fusion of two benzene rings kinetically 
stabilizes the s and t states of the corresponding 
silylenes, 1-s (ΔEHOMO-LUMO = 364.96  kJ/mol) and 1-t 
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Fig. 1   The optimized structures of the studied NHSis in this work
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Fig. 1   (continued)
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(ΔΕSOMO-SOMO+1 = 290.09 kJ/mol), in two other series by 
decreasing the electronegativity of x dopants and increas-
ing their atomic radius, the kinetic stability is diminished 
from 393.46 for EWGs to 191.61 kJ/mol for EDGs (Table 2). 
Hence, amid s NHSis, the most kinetic stable structures are 
2NH-s and 2O-s (393.38 and 393.46 kJ/mol), and the least 
stable ones are 3PH-s and 3AsH-s (378.04 and 379.50 kJ/
mol), correspondingly, which they are stabilized consid-
erably more than IIIs (351.33 kJ/mol). Between t NHSis, 
2NH-t and 2O-t species to some extent accomplish the 
abovementioned conditions by Hoffmann et al., indicating 
the smallest vibrational frequency of 73.42 and 73.57 cm−1 
besides ΔΕSOMO-SOMO+1 of 299.92 and 277.68  kJ/mol 
respectively. Between t NHSis, 3AsH-t species contra-
vene the above conditions, emerging lower vibrational 
frequency of 66.96  cm−1 and a lower ΔΕSOMO-SOMO+1 
(191.61 kJ/mol) than that of the distinguished by Hoffmann 

and co-workers. The band gap of all s and t NHSis is 
more than III-s (ΔEHOMO-LUMO = 351.33 kJ/mol) and III-t 
(ΔΕSOMO-SOMO+1 = 138.32 kJ/mol). Among these synthe-
sized silylenes, the silylenic centers of I-s and II-s molecules 
completely enjoy from π-conjugation of two nitrogen groups 
adjacent to their silylenic centers, while III-s benefits only 
from the hyper-conjugation effect of four SiMe3 groups. This 
difference significantly is influenced on stability of them. 
Here, the optimized NHSis similar to III silylene suffer from 
lack of π-donating of the neighboring nitrogen groups to 
silylenic centers. The highest occupied molecular orbital 
(HOMO) and the lowest unoccupied molecular orbital 
(LUMO) of s NHSis is considered dissimilar to the semi 
occupied molecular orbital (SOMO, SOMO + 1) of t NHSis 
(for instance, 2O-s and 2O-t silylenes, Fig. 2).

Replacement of two EWGs in chair organizations to the 
silylenic center of 2O-s progresses unbroken π-conjugation 
by employing 3σ2 or sp2—lone pair of the divalent center and 
reduces HOMO energy of 1-s from −520.13 to −581.25 kJ/
mol in 2O-s and hence increases stability of HOMO of 2O-s 
structure. Undoubtedly, conjugation of the free electron pairs 
on EWGs with π-electrons of the fused double bond (C = C) 
in the silapyridine ring of 2O-s structure, decreases LUMO 
energy of 1-s from −155.28 to −187.80 kJ/mol in 2O-s 
(Fig. 2). Moreover, conjugation of the unpaired lone pairs on 
EWGs with the semi-filled 3pπ-orbital of the silylenic center 
of 2O-t diminishes the SOMO energy of 1-t from −322.10 
to −354.89 kJ/mol in 2O-t and henceforth increases the 
stability of SOMO in 2O-t. Furthermore, replacement of 
two EWGs in chair positions to the silylenic center of the 
2O-t structure adjusts π-conjugation by employing the 

N

Si

N

Si

H

H

I-s II-s

N

Si

N

t-Bu

t-Bu
III-s

SiMe3

SiMe3

Me3Si

Me3Si

Scheme 1   Thesynthesized silylene by West (I-s),Denk (II-s) as well 
asKira (III-s)

Scheme 2   The reported newly 
divalent species in the computa-
tional chemistry

H
N

Y Y

H
N

H
N

Y

H
N

Y

H
N

Y

H
N

Y

X = NH, PH, O, S

X = CH, NH, PHY = C, Si, Ge

Y = C, Si, Ge

X X X

X X X X X



2352	 Structural Chemistry (2023) 34:2347–2364

1 3

half-captured s1p1 orbital of the silylenic center and free 
electrons of furanʼs oxygen and hence reduces SOMO + 1 
energy of 1-t from −32.00 to −77.11 kJ/mol then increases 
stability of SOMO + 1 in 2O-t (Fig. 2). Delocalization of 
free electron pairs on EDGs and oxygen heteroatoms in the 
silapyridine ring not only leads to low leveling of HOMO 
and SOMO (e.g., from −520.13 in 1-s to −538.49 kJ/mol 
in 3AsH-s and from −322.10 in 1-t to −330.75 kJ/mol in 
3AsH-t) but also delocalization in the fused furan rings 
changes LUMO and SOMO + 1 energy (e.g., from −155.28 
in 1-s to −158.95 kJ/mol in 3AsH-s and from −32.00 in 1-t 
to −139.02 kJ/mol in 3AsH-t, Fig. 3).

Interestingly, the presence of two EWGs in the fused furan 
rings either in the “W” or “chair” positions of the silylenic 
center of the s and t NHSis engages π-cross conjugation 

(β-SOMO + 1 in 2O-t, Fig. 2) and the resulted ring current of 
the silapyridine ring has more than two EDGs. The polarity 
and polarizability of s NHSis with the substituted EWGs are 
different from those of s NHSis with the substituted EDGs and 
even the corresponding t ones. This observation implies that 
besides the inductive effect of more electronegative elements, 
by involving lone pairs of the substituted groups and silylenic 
centers in mesomeric effect, and π-conjugation polarity is 
decreased due to the increment of ring current with respect 
to chair arrangement to silylenic center (Table 2). Consistent 
with the DOS plots, every s NHSi displays more Eg value than 
its corresponding t NHSi so that the most value is estimated 
for the substituted EWG—singlet silylenes, and the least value 
is calculated for the substituted EDG—triplet silylenes. For 
example, 4.00 eV for 2O-s vs. 2.56 eV for 2O-t (Fig. 4), also 
3.94 eV for 3AsH-s vs. 1.99 eV for 3AsH-t (Fig. 5).

Table 1   The calculated ΔΕs-t (in kJ/mol), polarity (in Debye), and 
polarizability (in kJ/mol) of the inspected singlet and triplet NHSis

Species ΔΕs-t Polarity Polarizability

1-s 185.30 4.77 309,407.70
1-t 2.27 308,696.12
2NH-s 213.18 2.03 300,763.26
2NH-t 1.12 314,362.44
2PH-s 205.11 2.20 350,811.41
2PH-t 1.07 367,520.48
2AsH-s 204.69 2.36 367,810.38
2AsH-t 1.04 386,496.08
2O-s 215.10 3.50 281,286.92
2O-t 1.52 295,782.17
2S-s 205.91 3.22 323,797.53
2S-t 1.11 341,429.03
2Se-s 204.74 3.16 341,139.12
2Se-t 0.95 364,700.49
3NH-s 212.72 8.27 299,155.61
3NH-t 6.09 305,085.48
3PH-s 195.04 7.28 360,510.05
3PH-t 5.35 361,195.28
3AsH-s 193.66 6.92 379,960.04
3AsH-t 5.04 388,841.67
3S-s 197.46 5.67 330,175.44
3S-t 3.77 331,308.71
3Se-s 196.79 5.64 352,550.84
3Se-t 3.78 352,445.42
I-s 258.49 1.61 211,367.10
I-t 3.92 229,367.57
II-s 224.63 1.28 230,342.70
II-t 3.34 250,715.12
III-s 138.48 1.15 283,158.12
III-t 0.90 293,146.67

Table 2   The rounded frequency (in cm−1), FMO energy (in kJ/
mol), and their energy differences (ΔEHOMO−LUMO for s states and 
ΔΕSOMO−SOMO+1 for t ones in kJ/mol) of the inspected singlet and tri-
plet NHSis

Species Frequency ΕHOMO
(α-ΕSOMO)

ΕLUMO
(α-ΕSOMO+1)

ΔΕHOMO-LUMO
(α-ΔΕSOMO-SOMO+1)

1-s 132.00 −520.13 −155.28 364.96
1-t 43.00 −322.10 −32.00 290.09
2NH-s 185.00 −557.11 −163.67 393.38
2NH-t 74.00 −328.66 −28.59 299.92
2PH-s 150.00 −556.85 −172.85 384.06
2PH-t 55.00 −336.26 −91.02 245.07
2AsH-s 146.00 −556.59 −173.11 383.43
2AsH-t 67.00 −334.95 −108.33 226.56
2O-s 174.00 −581.25 −187.80 393.46
2O-t 74.00 −354.89 −77.11 277.68
2S-s 169.00 −573.90 −189.64 384.27
2S-t 59.00 −352.79 −123.02 229.90
2Se-s 185.00 −569.70 −188.59 381.26
2Se-t 62.00 −349.38 −132.98 216.48
3NH-s 182.00 −539.02 −150.30 388.53
3NH-t 74.00 −322.10 −74.49 247.79
3PH-s 137.00 −537.97 −160.26 378.04
3PH-t 70.00 −331.54 −92.07 239.39
3AsH-s 144.00 −538.49 −158.95 379.50
3AsH-t 67.00 −330.75 −139.02 191.61
3S-s 152.00 −560.52 −177.84 382.60
3S-t 42.00 −350.43 −119.61 230.95
3Se-s 172.00 −557.38 −174.43 382.93
3Se-t 40.00 −347.02 −129.05 217.90
I-s 375.10 −526.69 −75.28 451.48
I-t 69.33 −320.79 −59.54 261.29
II-s 361.09 −496.52 −65.84 430.71
II-t 55.62 −265.44 −50.10 215.35
III-s 362.39 −535.34 −184.13 351.33
III-t 61.72 −322.36 −184.13 138.32
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2O-s; HOMO 2O-s; LUMO

2O-t; α-SOMO 2O-t; α-SOMO+1

2O-t; β-SOMO 2O-t; β-SOMO+1

Fig. 2   The FMO shapes of the selected 2O-s and 2O-t silylenes
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3AsH-s; HOMO 3AsH-s; LUMO

3AsH-t; α-SOMO 3AsH-t; α-SOMO+1

3AsH-t; β-SOMO 3AsH-t; β-SOMO+1

Fig. 3   The FMO shapes of the selected 3AsH-s and 3AsH-t silylenes
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Fig. 4   The density of state 
(DOS) plots of the selected 2O-
s and 2O-t silylenes

2O-s; Eg = 4.00 eV
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Fig. 5   The DOS plots of the 
selected 3AsH-s and 3AsH-t 
silylenes

3AsH-s; Eg = 3.94 eV



2357Structural Chemistry (2023) 34:2347–2364	

1 3

 

2O-s 

 

2O-t 

Fig. 6   The NBO charges calculated for the selected 2O-s and 2O-t silylenes
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Dissimilar to nonpolar and symmetric (achiral) mol-
ecules, the NBO charge is not commonly dispersed over the 
fused furan and silapyridine rings, revealing the inductive 
effect along with the mesomeric effect of the substituted 

EWGs and EDGs, respectively. For instance, we are shown 
the calculated NBO charges for the 2O-s, 2O-t, 3AsH-s, and 
3AsH-t silylenes (Figs. 6 and 7).

 

3AsH-s 

 

3AsH-t 

Fig. 7   The NBO charges calculated for the selected 3AsH-s and 3AsH-t silylenes
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2O-t 

 

3AsH-t 

− 3.200e-3  + 3.200e-3 

Fig. 8   The ESP maps and contours of the selected 2O-t and 3AsH-t silylenes. The red and blue regions on the scale bar indicate the lowest and 
the highest ESP values, respectively
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Table 3   The calculated N, ω, μ, 
η, S, and ΔNmax (all in kJ/mol) 
of the inspected singlet and 
triplet NHSis

Species N ω μ η S ΔNmax

1-s 391.35 156.15 −337.37 365.32 12.53 89.64
1-t 589.91 53.98 −177.36 290.14 16.39 58.80
2NH-s 354.72 164.83 −360.50 393.27 11.57 88.68
2NH-t 583.16 53.01 −178.32 299.78 15.42 57.83
2PH-s 354.72 173.50 −365.32 383.64 12.53 91.57
2PH-t 575.45 93.50 −213.99 244.83 19.28 83.86
2AsH-s 355.68 173.50 −365.32 383.64 12.53 91.57
2AsH-t 576.42 108.92 −221.70 226.52 20.24 94.46
2O-s 330.62 187.96 −384.60 393.27 11.57 94.46
2O-t 557.14 83.86 −215.92 277.61 16.39 75.18
2S-s 338.33 189.89 −381.71 384.60 12.53 95.43
2S-t 559.07 123.38 −238.09 230.37 20.24 99.28
2Se-s 342.19 188.93 −378.82 381.71 12.53 95.43
2Se-t 561.96 133.98 −240.98 216.88 21.21 106.99
3NH-s 373.03 153.26 −345.08 388.45 11.57 85.79
3NH-t 589.91 79.04 −198.57 247.72 18.31 77.11
3PH-s 374.00 160.97 −348.93 377.85 12.53 88.68
3PH-t 580.27 93.50 −212.06 239.05 19.28 84.82
3AsH-s 373.03 160.01 −348.93 379.78 12.53 88.68
3AsH-t 581.24 143.62 −235.19 191.82 24.10 118.56
3S-s 351.83 178.32 −369.18 382.67 12.53 92.54
3S-t 560.99 119.52 −235.19 231.34 20.24 98.32
3Se-s 354.72 174.47 −366.29 382.67 12.53 92.54
3Se-t 564.85 130.13 −238.09 217.84 21.21 105.07
I-s 385.56 100.25 −300.74 451.11 10.60 64.58
I-t 590.88 69.40 −189.89 261.22 17.35 70.37
II-s 415.44 91.57 −281.46 430.87 10.60 62.65
II-t 646.78 57.83 −158.08 214.95 21.21 70.37
III-s 376.89 184.11 −359.54 350.86 13.49 98.32
III-t 589.91 176.40 −253.51 137.84 33.74 176.40

Table 4   The calculated charges, 
CFF, and condensed dual 
descriptors for silylenic center 
of the selected singlet NHSis

N N−1 N+1 f− f+ Df

1-s 0.246202 0.440159 0.071977 −0.1940 −0.1742 0.0197
2NH-s −0.231504 0.157441 −0.355592 −0.3889 −0.1241 0.2649
2PH-s −0.018365 0.267522 −0.213938 −0.2859 −0.1956 0.0903
2AsH-s −0.017998 0.259987 −0.220018 −0.2780 −0.2020 0.0760
2O-s 0.056335 0.375183 −0.202857 −0.3188 −0.2592 0.0597
2S-s 0.137727 0.435282 −0.169472 −0.2976 −0.3072 −0.0096
2Se-s 0.056027 0.347627 −0.195511 −0.2916 −0.2515 0.0401
3NH-s −0.06924 0.298285 −0.30532 −0.3675 −0.2361 0.1314
3PH-s 0.302538 0.464849 −0.198913 −0.1623 −0.5015 −0.3391
3AsH-s 0.297809 0.458859 −0.206562 −0.1611 −0.5044 −0.3433
3S-s 0.089755 0.410434 −0.196839 −0.3207 −0.2866 0.0341
3Se-s 0.056335 0.375183 −0.202857 −0.3188 −0.2592 0.0597
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Regardless of the W (zigzag) and/or chair arrangement, 
the positive NBO charge is dispersed over hydrogen, carbon, 
silylenic center, and EDGs, while the negative NBO charge is 
dispersed over silapyridinicʼs nitrogen, carbon, and EWGs. The 
dispersed NBO charge qualitatively confirms that the substituted 
EWGs and EDGs in the difuranosilapyridine structure either in 
the “W” or “chair” positions of the silylenic center stabilize not 
only the s NHSis but also the t ones. The negative and positive 
NBO charges of the s and t NHSis indicate that these sites can 
be attacked more easily by electrophilic and nucleophilic regents, 
correspondingly. The electrostatic potential (ESP) maps qualita-
tively confirm blue color for positive charge, red color for nega-
tive charge, the electron cloud in the middle of two rings, and the 
dependency of NBO charge on electronegativity of EWGs and 
EDGs (Fig. 8).

For enquiry of the substituent effects of EWGs and EDGs 
on global reactivity of their corresponding s and t NHSis, we 
are calculated N, ω, μ, η, S, and ΔNmax (Table 3).

A commonly found finding is the lower N, higher ω, higher 
absolute value of μ, higher η, and lower S of every s NHSis 
than every t congener. The positive ΔNmax index exhibits the 
positive charge capacity of every s and t NHSi, and here all 
species are expected electron acceptor in organic chemistry 
reactions or catalysts. Certainly, the five-membered furan ring 
contains lower basicity than the six-membered pyridine ring 
and other amines. The reduced basicity is strengthened by 
π-delocalization of the free electron on the oxygen atom of 
the furan ring. In fact, the smaller bond angle of the furan ring 
(about 12°) than the pyridine ring enlarges the p character of 
the bonding sp2 orbital and the s character of the nonbonding 
σ orbital. Here, the higher s character of the nonbonding σ 
orbital of either the doped EWGs or EDGs in either W or chair 
positions leads to lower N and higher ω of their s and t NHSis 
than in 1-s and 1-t structures. The Hirshfield charges, CFFs, 

atomic, and global indices are calculated to predict the chemi-
cal system’s reactive sites and character. Here, the Hirshfield 
charges, CFFs, and Dfs for silylenic centers of the selected 
singlet NHSis display dissimilar trends dependent on the elec-
tronegativity, size, and topology of the substituted heteroatoms 
of NH, PH, AsH, O, S, and Se, either in the “W (ortho)” or 
“chair (para)” position of the silylenic center, in the fused rings 
(Table 4).

For example, the silylenic center of the 2NH-s species 
shows the most nucleophilicity via the highest f − (−0.3889 
e), the lowest f + (−0.1241 e), and the most positive value of 
Df (+ 0.2649 e) between NHSis, while the silylenic center 
of the 3AsH-s species shows the most electrophilicity via 
the lowest f − (−0.1611 e), the highest f + (−0.5044 e), and 
the most negative value of Df (-0.3433 e) between NHSis. 
Comparatively, at the level of computation, the IP and EA 
for benzene (a reference molecule) have been reported to be 
889.69 and −66.51 kJ/mol, respectively [90]. A closed look 
at 1-s and the substituted NHSis (2x-s and 3x-s) shows that 
the electrons are more and less binded than those of benzene, 
respectively (Table 5).

Interestingly, the 1-s species shows the most positive value 
of IP and EA (691.44 and 303.75 kJ/mol), then the 2NH-s 
and 3NH-s isomers show the most positive value of IP and 
EA (361.00 and 50.49 kJ/mol, respectively), while the 3AsH-s 
species shows the most negative value of EA (−170.42 kJ/mol) 
between NHSis. Hence, substituent effects compete with the 
aromaticity of NHSis because substituentsʼ interaction with 
the π-system decreases degree the of π-electron delocalization.

Conclusion

To reach for novel s and t NHSis, we have studied elec-
tronic effects on structural, thermodynamic, and kinetic  
factors of the fused dibenzo and difuranosilapyridine-
4-ylidenes. To this end, three series structures (from 1-s 
to 3x-t; x = NH, PH, AsH, O, S, and Se) are compared and 
contrasted with some of the synthesized silylenes using 
DFT. Every s NHSi exhibits more polarity, lower polariz-
ability, more positive frequency, and higher ΔΕHOMO-LUMO 
than its corresponding t NHSi; yet ΔΕHOMO-LUMO of them 
is more than III-s and III-t. In other words, all silylenes 
substituted by EWGs and EDGs display more stability than 
III, so that the ΔEs-t and ΔΕHOMO-LUMO ranges are changed 
from 193.66 and 379.50 kJ/mol for 3AsH to 215.10 and 
393.46 kJ/mol for 2O-s vs. 138.48 and 351.33 kJ/mol for 
III-s, respectively. The ESP contour maps qualitatively 
confirm the distributed NBO atomic charge and determine 
nucleophilic and electrophilic sites. Moreover, s silylenes 
show lower nucleophilicity (N), higher electrophilicity 
(ω), chemical potential (μ), and global hardness (η) than 
their related t congeners. The fused furan NHSis (either 

Table 5   The calculated Ε values for neutral (N), cation (N − 1), and 
anion (N + 1) states (in hartree), IP = E (N − 1) − E (N) and EA = E 
(N + 1) − E (N) (in kJ/mol) of the selected singlet NHSis

Species E(N) E(N − 1) E(N + 1) IP EA

1-s −806.68 −806.416 −806.564 691.44 303.75
2NH-s −835.35 −835.22 −835.35 361.00 9.86
2PH-s −1408.44 −1408.25 −1408.41 387.73 −43.03
2AsH-s −5193.04 −5192.87 −5193.07 445.90 −78.69
2O-s −875.03 −874.87 −875.06 434.48 −84.35
2S-s −1520.97 −1520.84 −1521.02 446.91 −110.81
2Se-s −5523.38 −5523.22 −5523.42 422.58 −96.43
3NH-s −835.35 −835.20 −835.33 387.90 50.49
3PH-s −1408.47 −1408.29 −1408.54 485.59 −168.50
3AsH-s −5193.33 −5193.12 −5193.37 476.89 −170.42
3S-s −1520.96 −1520.79 −1521.01 448.49 −131.68
3Se-s −5523.37 −5523.24 −5523.41 440.72 −94.34
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s or t ones) reveal lower N and higher ω than 1-s and 1-t 
structures on account of the inductive effect and meso-
meric effect of the EWGs and EDGs on the completed σ2 
orbital and 3pπ

2 orbital of their silylenic centers. Indeed, 
the stability and electronic properties of s and t NHSis are 
considerably dependent on the electronegativity and radius 
of the substituted groups. We hope for experimental inves-
tigations that substitute the different heteroatoms in two 
fused furan silapyridines either the “W” or “chair” position 
of the silylenic center with the purpose of stabilizing not 
only the s silylenes but also the t congeners. Based on the 
Hirshfield charge, CFF, and Df results, the silylenic center 
of the 2NH-s species shows the highest nucleophilicity, 
whereas the silylenic center of the 3AsH-s species shows 
the highest electrophilicity. A close look at 1-s and the 
substituted NHSis (2x-s and 3x-s) shows that the electrons 
are more and less binded than benzene.
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