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Abstract
Cathepsin K and S are two isoforms of cysteine protease with diverse biological functions in the aspect of osteoporosis and 
autoimmune diseases. Accordingly, the homologous sequence and similar binding site features among CTSK/S may lead to 
unselective inhibition and side effects. To address such issue, various computational strategies were applied in the current 
study to explore the selectivity mechanism of CTSK/S inhibitors, including sequence alignment, molecular docking, MD 
simulations, MM/GBSA energy calculation, and so on. Our findings highlight the notable effects of CTSK residues Glu59 
and Tyr67, as well as CTSS residue Asn67, on inhibition selectivity. Overall, this study provides an informative guideline 
for the rational design of CTSK/S selective inhibitors.
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Introduction

Cathepsins (CTS) are closely related to many human dis-
eases and are currently attracting much attention. More than 
20 CTS have been identified in the biological world, 11 of 
which are present in the human body. It has been proved 
that CTS overexpression promotes the development of dis-
eases such as neurodegenerative diseases [1], osteoporo-
sis[2], and autoimmune diseases [3], which has caused a 
large number of scholars to conduct extensive research on 

CTS inhibitors. Due to the highly conserved active site of 
CTS [4], research interest in recent years has focused on 
selective inhibition [5–7].

Cathepsin K and S (CTSK and CTSS) are two isoforms of 
cysteine proteases involved in different human physiological 
functions. CTSK was found in cells like osteoclasts and mac-
rophages, as well as playing a major role in osteoclastic bone 
resorption for type I collagen degradation [8]. Variants in the 
expression of the human CTSK gene lead to dense osteogen-
esis imperfecta [9, 10], implying that CTSK inhibitors may 
serve as an effective antiresorptive therapy for osteoporosis 
[11] and osteoarthritis [12].

While CTSS is mainly in lymph nodes involved in the 
occurrence and development of diseases, including immune 
system [13], pulmonary fibrosis [14], cardiovascular [7], and 
cancer [15]. CTSS is highly expressed in the major histo-
compatibility complex (MHC) II and plays a key role in anti-
gen presentation [16, 17]. Sophia [3] et al. found that CTSS 
inhibition suppresses the inflammatory response resulting 
from autoimmunity. Mice in which the CTSS gene was 
knocked out exhibit greater resistance than wild-type mice 
in the development of autoimmune diseases [18]. Thusly, 
CTSS is considered a potential target for the treatment of 
autoimmune diseases [19].

Odanacatib is the only CTSK inhibitor so far that has 
entered phase III clinical trials (NCT01803607, date of reg-
istration: 28/02/2013), but its development was discontinued 
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in 2016 as a result of its ability to reduce fracture risk while 
leading to an increased risk of cardiovascular disease, par-
ticularly stroke [20]. Considering the side effects of CTSK/S 
homology, it is necessary to develop novel CTSK/S inhibi-
tors with high selectivity.

Two target compounds were screened from 17 compounds 
(Table S1). Among them, compound 1 is a potent small mol-
ecule inhibitor binding to CTSK [21]; correspondingly, com-
pound 2 selectively inhibits CTSS [22] (Fig. 1). To reveal the 
mechanism of selective inhibition, we conducted a systematic 
study of CTSK/S and their complexes. By comparing the pro-
tein structures of CTSK and CTSS (Tanimoto scores: 0.036), 
analyzing the interaction patterns between CTS and inhibi-
tors, and applying multiple computational methods [23, 24] 
to verify the structural basis of selective inhibitions of CTS, 
which will provide a hint for the design and development of 
effective and selective inhibitors in future.

Experimental section

Protein and ligand preparation

The CTSK and CTSS crystal structures were downloaded 
from the RCSB PDB databank (http:// www. rcsb. org) with 
the PDB codes 1VSN and 2R9M, while protein sequences 
were retrieved from the Uniprot (https:// www. unipr ot. org/) 
and aligned by applying Discovery Studio and PyMOL. 
Through the Protein Preparation Wizard module within 
Schrödinger package 2020, the protein structures were 
protonated and minimized at pH 7.0 ± 0.2 while removing 
water molecules and adding hydrogen atoms. Ligand struc-
tures were prepared and optimized by using the LigPrep 
module of the Schrödinger package.

Protein contacts atlas

The crucial residues of CTSK and CTSS were identified via 
the Protein Contacts Atlas program (http:// www. mrc- lmb. cam. 
ac. uk/ pca/).

Molecular docking

Docking of inhibitors and CTSK/S were implemented by 
Glide module in the Schrödinger package [25]. Grid files 
were generated within 20 Å of any specified position of the 
ligands, then extra precision (XP) and flexible docked confor-
mational modes were selected. Docking results were evaluated 
and obtained using multiple scoring functions, including Glide 
GScore, Glide Energy, and Glide Emodel.

Molecular dynamics simulation

Molecular dynamics (MD) simulations of CTSK and CTSS 
complexes were performed by Desmond in the Schrödinger 
suite 2020. Firstly, the system was set up as a simple point 
charge (SPC) solvent model and OPLS_3e force field [26], with 
 Na+ and  Cl− ions added to keep the system electroneutral. Sub-
sequently, the MD simulation of 100 ns in NPT mode with a 
maximum iteration for minimization set to 2000 was monitored 
at 300.0 K and 1.01325 bar, and the time step was chosen to be 
2 fs. The root mean square deviation (RMSD) and root mean 
square fluctuation (RMSF) were calculated to examine the 
structural stability of the protein–ligand complexes over time.

Dynamic cross correlation matrix analysis

Dynamic cross-correlation matrix (DCCM) analysis is 
expected to quantify the correlation coefficient of movement 
between atoms. Relying on displacement from a uniquely 
determined average coordinate, DCCM analysis gives 
insight into the correlated motion of the atoms. The DCCM 
between the i th and j th atoms is defined by the following 
equation [27]:

where ri(t) represents a vector of the ith atomic coordinates 
as a function of time t; ⟨⋅⟩t represents the time ensemble 
average and Δri(t) = ri(t) − [ri(t)]t.

Molecular mechanics/generalized born surface area 
calculation

The trajectories of the ligand–protein complexes during the 
molecular dynamics simulation process were extracted, and 
the binding free energy was calculated by the prime module of 
Schrödinger. Parameters were set to the variable dielectric gen-
eralized-born (VSGB) solvent model and OPLS_3e force field, 
the energy calculation involves the following formulas [28].

DCCM(i, j) =
[Δri(t) ∗ Δrj(t)]t�

⟨[Δri(t)]2⟩t
�

⟨[Δrj(t)]2⟩t

ΔGbind = ΔGcomplex − (ΔGreceptor + ΔGligand)Fig. 1  Chemical structures of potent and highly selective CTSK and 
CTSS antagonists

http://www.rcsb.org
https://www.uniprot.org/
http://www.mrc-lmb.cam.ac.uk/pca/
http://www.mrc-lmb.cam.ac.uk/pca/
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ΔGbind,solv = ΔGbind,vacuum + ΔGcomplex,solv − (ΔGreceptor,solv + ΔGligand,solv)

Fig. 2  Comparison of structures and sequences of CTSK and CTSS. A 3D superimposed diagram and key residues of CTSK and CTSS. B 
Sequence alignment of CTSK (1VSN) and CTSS (2R9M)

Fig. 3  Visualization and the 
asteroid plots analysis of pro-
tein–ligand contacts. A CTSK 
crystal structure. B CTSS 
crystal structure. The inner shell 
residues are immediate residues 
that formed intermolecular con-
tacts with ligands, and the outer 
shell residues indirectly contact 
with the ligand
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ΔGbind,vacuum = ΔGcomplex,vacuum − (ΔGreceptor,vacuum + ΔGligand,vacuum)

ΔGsolv = ΔGsolv,polar + ΔGsolv,nonpolar

To avoid solvent to solvent interactions, the second formula 
is usually adopted for practical calculations, among which, 
ΔGbind,solv is the binding free energy of the complex in solvent; 
ΔGbind,vacuum , ΔGcomplex,solv , ΔGreceptor,solv , and ΔGligand,solv 
refer to the binding free energies of the receptor and ligand in 
the eukaryotic complex, solvent, respectively; ΔGsolv,polar and 
ΔGsolv,nonpolar refer to the solvation free energies of polar and 
non-polar, respectively.

Alanine scanning mutation analysis

Alanine scanning mutagenesis (ASM) is a technique to study 
the extent to which specific residues contribute to the free 
energy in enzyme–substrate interactions. Taking advantage 
of the Schrödinger package to mutate specific residues on 
the non-main chain of the protein to alanine without affect-
ing the protein conformation, by combining the principle of 

Table 1  Docking scores of CTSK and CTSS complexes

Entry IC50 (nM) XP 
GScore 
(kcal/mol)

Glide 
energy 
(kcal/mol)

Glide 
Emodel 
(kcal/mol)

CTSK/compound 
1

1.4 − 7.15 − 46.87 − 53.84

CTSK/compound 
2

 > 25,000 − 5.22 − 45.78 − 64.48

CTSS/compound 
1

65,000 − 4.38 − 50.09 − 66.01

CTSS/compound 
2

0.8 − 7.38 − 54.93 − 82.27

Fig. 4  Predicted binding pat-
terns of CTSK/S and inhibitors. 
A CTSK/compound 1. B CTSK/
compound 2. C CTSS/com-
pound 1. D CTSS/compound 2
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free energy disassembly, the energy changed before, and after 
mutation ( ΔΔGbind ) of a single residue was calculated accord-
ing to the following formula.

Generation of structure‑based pharmacophore 
models analysis

Protein–ligand complexes conformations were extracted after 
MD simulation to generate structure-based pharmacophore 

ΔΔGbind = ΔGbind,mutant − ΔGbind,wild type

models by applying Ligand Scout 4.3. The model analyzed 
the chemical characteristics and steric hindrance relation-
ships of the active site, such as hydrogen bonding interac-
tions, hydrophobic groups, and cations, to obtain the best 
mode of target-ligand binding [29].

Quantum mechanics/molecular mechanics 
minimization

Quantum mechanics/molecular mechanics (QM/MM) 
combines the accuracy of QM calculations and the speed 

Fig. 5  RMSD line charts and 
bar charts of MD simulations. 
A CTSK apo and complexes. B 
CTSS apo and complexes. The 
mean values are labeled on the 
top of each bar and the error 
bars indicate the highest value of 
RMSD during the simulations

Fig. 6  RMSF and ΔRMSF plots 
of CTSK (green) and CTSS 
(blue) structures. (A–C) Apo 
and complexes of CTSK. (D–F) 
Apo and complexes of CTSS. 
Background in blue of RMSF 
plots indicates residues in the 
β-sheet and the red indicates 
residues in the α-helix second-
ary structure. Compound 1 is 
shown in purple and compound 
2 is displayed as yellow
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advantage of MM to study molecular interactions between 
protein and inhibitor. Specifically, the ligands and related 
residues were set up as the QM region with zero charge and 
other atoms as the MM region. The DFT-B3LYP method 
was used with the MM force field set to OPLS_3e via the 
Qsite module of Schrödinger, and default values were chosen 
for the remaining parameters.

Results and discussion

Structural comparisons between CTSK and CTSS

To compare the structural similarities and differences between 
CTSK and CTSS, the crystal structures of CTSK (PDB code: 
1VSN) and CTSS (PDB code: 2R9M) were aligned using 

Fig. 7  Protein–ligand inter-
actions obtained from MD 
simulations of CTSK. A 
CTSK/compound 1 pocket. B 
CTSK/compound 2 pocket. C 
Interaction fraction of CTSK/
compound 1. D Interaction 
fraction of CTSK/compound 2. 
E Line charts and bar charts of 
hydrogen bond distance. The 
mean values are labeled on the 
top of each bar and the error 
bars indicate the max H-bond 
distance during the simulations. 
F Detailed compound 1 atom 
interactions with the CTSK 
residues. G Detailed compound 
2 atom interactions with the 
CTSK residues
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PyMOL and Discovery Studio. As demonstrated in Fig. 2, 
CTSK exhibited a similar tertiary structure as CTSS, with an 
amino acid sequence identity of 55.0% and an overall similar-
ity of 71.1%. Meanwhile, several important amino acids in the 
CTSK active pocket, such as Glu59, Gly64, Gly66, Try67, and 
Asn158, overlapped notably with the corresponding residues 

Tyr61, Asn67, Gly69, Phe70, and Asn163 in CTSS (Fig. 3), 
suggesting that the residues within CTSK/S pockets are 
highly identical. Remarkably, CTSK residues Cys25, His159, 
and Asn175, as well as CTSS residues Cys25, His164, and 
Asn184, all exerted proteolytic effects in the cleft between 
the N-lobe and C-lobe segments. In a word, CTSK and CTSS 

Fig. 8  Protein–ligand inter-
actions obtained from MD 
simulations of CTSS. A 
CTSS/compound 1 pocket. B 
CTSS/compound 2 pocket. C 
Interaction fraction of CTSS/
compound 1. D Interaction 
fraction of CTSS/compound 2. 
E Line charts and bar charts of 
hydrogen bond distance. The 
mean values are labeled on the 
top of each bar and the error 
bars indicate the max H-bond 
distance during the simulations. 
F Detailed compound 1 atom 
interactions with the CTSS 
residues. G Detailed compound 
2 atom interactions with the 
CTSS residues
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Fig. 9  Dynamics cross-correlation map for the Cα atom pairs within 
CTSK/S complexes. Correlation coefficient (Cij) was shown as dif-
ferent colors. Cij with values from 0 to 1 (blue) represents positive 

correlations, whereas Cij with values from − 1 (pink) to 0 represents 
negative correlations
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show impressive similarities and account for the difficulty of 
selective inhibition.

Binding affinity and modes analysis of CTSK 
and CTSS complexes

Re-docking of the CTSK/S co-crystalline complexes gener-
ated RMSD values of 0.916 and 0.541 Å for CTSK (PDB 
code 1VSN) and CTSS (PDB code 2R9M), indicating the 
docking process is credible. As disclosed from the results in 
Table 1, the docking scores of the complexes were consistent 
with bioactivity results, revealing that compound 1 shows a 
better binding affinity toward CTSK whereas compound 2 
prefers to interact with CTSS.

As shown in two-dimensional receptor-ligand interac-
tion diagrams (Fig. 4A), the phenyl of compound 1 formed 
π–π stacking with CTSK residue Tyr67, while the carbonyl 
oxygen and the positively charged tertiary amine on piper-
azinyl of compound 1 formed hydrogen bonds with Gly66 
and Glu59, respectively. Comparatively, compound 2 only 
formed one hydrogen bond with CTSK residue Gln19 
(Fig. 4B), suggesting compound 1 exhibited prior binding 
toward CTSK other than compound 2. While for the CTSS 
system, only one hydrophobic contact was formed in CTSS/
compound 1 complex (Fig. 4C), but various interactions 
were established for CTSS/compound 2 complex, such as 
π–π stacking of the phenyl with Phe70, hydrogen bonds of 
the sulfone group with Gly69, and acylamino with Asn67 
(Fig. 4D), showing compound 2 fits CTSS cavity better 
than compound 1. In summary, residues Glu59, Gly66, and 
Tyr67 are crucial for CSTK ligand binding, while residues 
Asn67, Gly69, and Phe70 contribute significantly to CTSS 
ligand interaction.

Analysis of molecular dynamics trajectories

To evaluate the conformational stability of CTSK/S com-
plexes, all systems were evaluated using RMSD values of 
protein α-carbon (Cα) atoms (Fig. S1). As shown in Fig. 5, 
the RMSD values of all the CTSK/S complexes eventually 
leveled off after slight fluctuations, indicating their confor-
mations were stable during the MD simulation.

To further investigate the structural flexibility of the 
local protein, RMSF values were calculated by comparing 
the transient position of residues to the average one. As dis-
played in Fig. 6, similar RMSF curves were characterized 
for CTSK/S complexes, suggesting that different ligands 
exhibit similar binding modes within CTS sites. Besides, 
lower peaks of conserved residues in CTSK, such as Cys25, 
Gly66, Tyr67, His159, and Asn175, as well as CTSS resi-
dues like Cys25, Asn67, Gly69, His164, and Asn184, illus-
trated constrained protein conformation upon ligand binding.

In addition, ΔRMSF values of Cα atoms were obtained 
by  RMSFComplex −  RMSFAPO. For the favorable complexes of 
CTSK/compound 1 and CTSS/compound 2, lower negative 
ΔRMSF values were detected (Fig. 6), indicating compound 
1 preferably stabilizes CTSK conformation and compound 
2 selectively inhibits CTSS.

Intermolecular interaction analysis by MD 
simulation

As disclosed from the protein–ligand interaction snapshots 
obtained from MD simulations, compound 1 was found to 
form an array of interactions with CTSK (Fig. 7A, C, E), 
including hydrogen bonds with Glu59 (63%), Gly66 (80 and 
94%), and Asn158 (55%), water bridges with Gly64 (60%), 
and hydrophobic interaction with Tyr67 (94%) (Fig. S2). 
Comparatively, only one stable H-bond was formed between 
compound 2 and CTSK residue Gln19 (Fig. 7B, D, E), sug-
gesting compound 1 selectively inhibits CTSK. These obvi-
ously showed that CTSK formed more stable H-bonds and 
hydrophobic interactions to compound 1 than compound 2.

For the CTSS complexes (Fig. 8), compound 2 formed 
more stable hydrogen bond interactions with CTSS residues 
Gly69 and Asn67 compared to compound 1, as also veri-
fied by hydrogen bond distance detection (Fig. 8E), indicat-
ing that compound 2 showed better binding affinity toward 
CTSS than compound 1. Briefly, CTSK residues Glu59 and 
Tyr67, as well as CTSS residue Asn67, have an effect on 
selective inhibition.

Dynamic cross correlation matrix analysis

The dynamic correlation matrix (DCCM) plot described the 
fluctuating correlations of the Cα atoms of the complexes 
during the MD simulation. As disclosed in Fig. 9, the CTS-
inhibitor complexes showed a significantly correlated motion 
compared to the apo CTS structure. In addition, the CTSK 
residues C25-E59, T139-N158, and H170-N175, as well 
as CTSS residues C25-F70, S135-N163, and N184-Y195, 

Table 2  Mean binding free energy of CTSK/S complexes

Energy CTSK (kcal/mol) CTSS (kcal/mol)

Compound 1 Compound 2 Compound 1 Compound 2

Total − 62.17 − 2.38 − 43.83 − 48.74
Coulomb  44.96 − 7.67 − 11.46 − 1.62
Covalent 2.15 2.80 3.59 1.45
Hbond − 1.66 − 0.67 − 0.80 − 1.03
Lipo − 16.15 − 12.28 − 13.15 − 10.82
Packing − 1.17 − 0.18 − 0.11 − 1.04
Solv_GB 46.39 16.29 22.03 8.55
vdW − 46.76 − 50.68 − 43.94 − 44.22
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Fig. 10  Bar charts and curves of protein–ligand complexes binding energy contributions during the whole MD simulation determined by MM/GBSA cal-
culations. A Mean binding energy of complexes. B CTSK/compound 1. C CTSK/compound 2. D CTSS/compound 1. E CTSS/compound 2
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exhibited positively correlated motions in the DCCM plots, 
confirming that bound inhibitors contribute significantly to 
the molecular interactions with CTS proteins.

Binding free energies calculation for CTSK/S 
and inhibitors

To investigate the binding affinities of the inhibitors toward 
CTS proteins, the binding free energies during the 100 ns MD 
simulations were decomposed and calculated. As presented 
in Table 2 and Fig. 10, CTSK bound tighter to compound 1 
(− 62.17 kcal/mol) rather than compound 2 (− 52.38 kcal/

mol), while CTSS displayed a greater binding affinity for 
compound 2 (− 48.74 kcal/mol) rather than compound 1 
(− 43.83 kcal/mol). In addition, the better Coulomb energy 
of CTSS/compound 1 was offset by the solvation-free energy, 
further supporting the preference of CTSS for compound 2. 
Besides, the MM/GBSA values of the CTS-inhibitor systems 
fluctuated smoothly during the simulation, suggesting that 
the binding of CTS toward inhibitors is stable. For the favora-
ble complexes of CTSK/compound 1 and CTSS/compound 
2, the Coulomb and Solv_GB energy terms are the main con-
tributors that distinguish the selective inhibition of CTSK/S.

Fig. 11  Alanine scanning 
mutagenesis analysis plots

Fig. 12  Structure-based pharmacophore models generated by the last frame of MD simulation. Hydrophobic features are depicted as yellow 
spheres, hydrogen bond donors are displayed as green arrows, and hydrogen bond acceptors are depicted as red arrows
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Alanine scanning mutagenesis analysis

Alanine scanning mutagenesis analysis provided further 
insight into key residues participating in molecular interac-
tions, such as CTSK residues Cys25, Glu59, and Tyr67, as well 
as CTSS residues Ser21, Phe70, Thr72, and Val162 (Fig. 11). 
In addition, residues  Asp61CTSK,  Asn158CTSK,  Asn67CTSS, and 
 Phe211CTSS showed negative ΔΔG values, indicating their side 
chains could lead to spatial resistance during interaction with 
the inhibitors. The mentioned results further illustrate that 
CTSK residues Glu59 and Tyr67, as well as CTSS residue 
Asn67, affect the selectivity of inhibition of CTSK/S.

Pharmacophore features for CTSK/S selective 
inhibitors

To elucidate the chemical characteristics necessary for the bind-
ing of the inhibitors to CTSK/S, the complexes obtained from 
MD simulations were generated as three-dimensional pharma-
cophores. As shown in Fig. 12, the phenyl group of compound 
1 exhibited a hydrophobic interaction, and the cyano group 
of compound 1 acted as a hydrogen bond acceptor. While for 

compound 2, both the trifluorotoluene and the trifluoromethyl 
groups were hydrophobic spheres, as well as the sulfone and 
the amino group acted as hydrogen bond acceptors and donors, 
respectively. Moreover, the MD trajectories of the favorable 
complexes of CTSK/compound 1 and CTSS/compound 2 were 
clustered, and the obtained conformations were analyzed phar-
macologically, proving the reliability and validity of the above 
(Fig. S3). In conclusion, hydrophobic compounds with a sul-
fone and amino group as hydrogen bond acceptors and donors 
can selectively bind to CTSK/S receptors.

Quantum mechanics calculation

Natural bond orbitals (NBO) and Mulliken calculations were 
performed to explore the effect of inhibitors on hydrogen bond 
formation. As disclosed from the local charges of the inhibi-
tors shown in Fig. 13, the H38, H51, and H52 atoms of com-
pound 1 displayed positive charges as electron donors, while 
the O23 and O24 atoms were negatively charged as electron 
receptors. Likewise, the positively charged N22 in compound 
2 served as a hydrogen bond donor, and the negatively charged 
O29 and O30 served as hydrogen bond acceptors.

Fig. 13  Atomic charges calculated with NBO and Mulliken methods
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QM/MM calculations were carried out to obtain frontier 
molecular orbitals HOMO–LUMO. As displayed in Fig. 14, 
the HOMO orbital of CTSK/compound 1 was located in the 
phenyl region, and the LUMO orbital focused on the phe-
nylamide group, indicating that the phenyl group is prone to 
electron transfer. Correspondingly, the HOMO of CTSS/com-
pound 2 was distributed in the amide group and the LUMO 
was mainly in the aryl group, revealing that the amide group 
was the key factor to generate selectivity for CTSK/S.

In addition, as revealed from molecular electrostatic poten-
tial (MEP) plots (Fig. 14), the amide nitrogen of compound 
1 was surrounded by positive charges, thereby serving as a 
hydrogen bond donor to bind with CTSK, while the second-
ary amino group of compound 2 was a region of high electron 
density and formed hydrogen bond with CTSS. In a nutshell, 
these data further support the conclusion that hydrogen bonds 
between inhibitors and targets are required.

Fig. 14  HOMO–LUMO contours and molecular electrostatic poten-
tial (MEP) surface of the inhibitors calculated through DFT method. 
A CTSK/compound 1. B CTSK/compound 2. C CTSS/compound 1. 

D CTSS/compound 2. MEP surface color ranges from violet to red 
indicating from electropositive to electronegative region
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Conclusion

The current study provides valuable information for under-
standing the selective inhibition mechanism of CTSK/S, reveal-
ing CTSK residues Glu59 and Tyr67, as same as CTSS residue 
Asn67, are key factors contributing to the selectivity of the iso-
forms, which is of great and profound significance for further 
development of highly potent and selective CTS inhibitors.
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