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Abstract
A series of 3-aryl coumarin derivatives and 3-phenylazo-4-hydroxycoumarin were evaluated for their monoamine oxidase (MAO) 
A and B inhibitory activity and selectivity by fluorometric enzymological assays. Among 21 coumarin derivatives, compound 21 
(3-phenylazo-4-hydroxycoumarin) displayed a good inhibitory activity (0.12 ± 0.02 µM) and very high selectivity for MAO-B 
(SI > 833.33). The inhibition was determined as mixed-type and not time-dependent. Docking studies, molecular dynamics and 
molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculations were performed to elucidate in vitro results. 
Our results reveal that the insertion of an azo linker between coumarin and phenyl rings in 3-arylcoumarins enhances MAO-B 
selectivity enormously since such a linker leads to the perfect alignment of the coumarin ring in the aromatic cage and the phenyl 
ring in the entrance cavity of MAO-B active site. Hydrogen bond interactions with Cys172 in the active site entrance of MAO-B 
also contributes to the remarkably higher inhibitory activity and selectivity for MAO-B.

Keywords  Enzyme inhibition · Coumarin · Drug design · Monoamine oxidase a/b · Molecular docking · Molecular 
dynamics

Introduction

It has been verified that coumarin derivatives are strong antioxi-
dants and can prevent the formation of reactive oxygen species 
(ROS), which play a critical role in the pathogenesis of neuro-
degenerative diseases. Coumarins such as 3-arylcoumarins pos-
sessing methoxy-, hydroxy-, and acetoxy- groups were shown 
to have antioxidant activities [1–6] and coumarins with various 
substituents have been shown to inhibit monoamine oxidase 
(MAO) enzymes selectively [7–9].

MAO (EC-1.4.3.4) is an enzyme that contains flavin adenine 
dinucleotide (FAD) and is located outside the mitochondrial 
membrane and catalyses the oxidative deamination of biologi-
cal amines. Excessive increase of MAO activity also leads to 
excessive formation of toxic metabolites such as hydrogen per-
oxide, ammonia, which are associated with oxidative stress and 
degeneration of tissues [10]. Due to the role in the oxidation and 

regulation of intracellular concentration of neurotransmitters, 
such as serotonin (5-hydroxytryptamine, 5-HT), norepineph-
rine and dopamine, MAO is an important target in the therapy 
of neurological disorders such as depression and Parkinson 
disease [11]. MAO enzyme has two functional isoenzymes, 
MAO-A and -B, that are differentiated by their distribution 
in tissues, immunological properties, substrate and inhibi-
tor preferences [12, 13]. MAO inhibitors can be examined in 
two groups; reversible and irreversible. Clinical use of non-
selective and irreversible MAO inhibitors, such as hydrazine, 
cyclopropylamine, propargylamine and allylamine deriva-
tives, is restricted [14] due to the risk of cheese effect (exces-
sive tyramine accumulation related to extreme consumption of 
aged cheese), causing sudden elevation of blood pressure and 
cerebral hemorrhage. Therefore, investigations have focused on 
selective and reversible inhibitors with different chemical struc-
tures which act through non-covalent interactions, enabling the 
cleavage of the enzyme-inhibitor complex so that the enzyme 
regains its activity [15].

There are various compounds that are known to selec-
tively and reversibly inhibit MAO isoenzymes. Simoxatone, 
moclobemide and brofaromine reversibly inhibit MAO-
A, whereas safinamide and lazabemide reversibly inhibit 
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MAO-B [16, 17]. Lazabemide was never marketed [18] and 
adverse effects such as nausea, dizziness, sleeplessness and 
low blood pressure were reported with use of safinamide in 
more than 1% in clinical trials [19]. Therefore, discovery of 
novel selective reversible MAO inhibitors is still essential 
today.

In the literature, there are various studies emphasizing the 
high potency of coumarin derivatives for MAO inhibition 
[20–23]. It has been found that substitutions at positions 3 or 
4 of the main structure of the coumarin modulate the MAO-B 
inhibitory effect and MAO-A/B selectivity [9, 16, 20, 24]. 
Among these, 3-arylcoumarins with various substituents in 
the phenyl rings have been proven to be potent and selective 
MAO-B inhibitor [7–9, 25, 26]. Those 3-arylcoumarins in the 
literature mostly possess methyl group at the 6th position of 
the coumarin ring [26–28] and/or they are halogenated either 
on the coumarin ring or the 3-aryl ring [9, 25, 26, 29] or ami-
dated [28].

These studies in the literature prompted us to investigate 
the MAO inhibitory activities of a series of 3-arylcoumarins 
with mainly -OCH3, -OH, -OAc substituents at 5, 6, 7, 8 
positions of coumarin rings, and p-, m- positions at 3-aryl 
ring (Scheme 1), which are mostly different than the ones 
reported in the literature. The MAO inhibitory activities of 
these compounds which were previously synthesized in our 
laboratories [30–32] are presented for the first time. Moreover, 
former studies of our group confirmed their strong antioxidant 
activities [1–4]. This motivated us to explore their neuropro-
tective potential as well since dual activity (antioxidant/MAO 

inhibition) is a valuable strategy for the treatment of neurode-
generative diseases.

MAO enzymes have been extensively investigated by 
computational tools owing to the significance of their 
function and being the target of neurodegenerative disor-
ders, [3, 33–49].

Molecular modeling techniques such as docking are 
useful tools to predict and analyze interactions between 
small molecules and their target biomolecules which play 
an essential role in rational drug design. Many docking 
studies have been reported for MAO enzymes so far, 
including various coumarin derivatives [8, 20–22, 50–60]. 
Docking programs are useful tools to evaluate ligands’ 
binding affinities toward a macromolecule. However, 
molecular docking is mostly a static approach and can-
not properly account for the dynamics of biomolecule-
ligand complexes. Molecular dynamics have become a 
very important tool to obtain structural and chemical data 
of dynamic protein, nucleic acid and biomolecule-ligand 
complexes [61, 62]. To accommodate the conformational 
flexibility of the protein, a newer approach, Molecular 
Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) 
has been developed which takes into account dynamics of 
protein–ligand complexes to predict the binding energy 
that is averaged over a trajectory. Moreover, this method 
decomposes the total binding energy into components 
[63].

In this study, twenty-one previously synthesized cou-
marin derivatives [30–32] have been investigated for their 

Scheme 1   Coumarin derivatives used in this study. Compounds 1–20 (left) and 21 (right). See also Table 1 for the description of compounds 
1–20 
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in vitro MAO-A and -B inhibitory potencies. To the best 
of our knowledge, except compounds 7, 10 and 14, MAO 
inhibitory activities of all other compounds are reported for 
the first time. In addition, since compound 21 was detected 
as the best MAO-B inhibitor with high selectivity, in silico 
studies were also carried out on 21 to provide insight into 
its inhibitory activity and selectivity.

Experimental

Materials

MAO-A (hMAO-A)/MAO-B (hMAO-B), DMSO, selegiline, 
rasagiline and iproniazide were purchased from Sigma-
Aldrich (St. Louis, MO, USA) and Amplex Red MAO Assay 
Kit was purchased from Invitrogen (Waltham, MA, USA). 
All starting chemicals were provided from Sigma-Aldrich 
(St Louis, MO, USA) or Merck (Darmstadt, Germany).

In vitro MAO‑A and ‑Binhibition fluorescence assay

The synthesized compounds were investigated for their 
MAO inhibitory activities using recombinant human MAO 
isoforms by an in vitro continuous fluorometric method. The 
inhibitory activity was determined by measuring the pro-
duction of H2O2 from p-tyramine, the common substrate 
for both hMAO-A and hMAO-B, using the Amplex®-Red 
MAO assay kit.

3-arylcoumarin derivatives were dissolved in DMSO to 
prepare a 10 mM stock solution and kept at − 20 °C. 2 μL 
of the coumarin derivatives prepared at different concentra-
tions and 2 μL of known MAO inhibitors (selegiline, ipro-
niazide and rasagiline) as positive controls in DMSO (not 
higher than 1% in each well) and as negative controls; 2 
μL coumarin samples containing 4.5 μL 100 mM pH 7.4 
potassium phosphate buffer instead of hMAO-A/B. 4.5 μL 
hMAO-A/B were added to a black flat-bottomed 96-well 
microtest plate. 93.5 μL reaction buffer were added to each 
well and incubated with stirring for 15 min at 37 °C, in 
the dark fluorimeter chamber. At the end of the incubation 
period, the reaction was started by adding 100 μL substrate 
solution (200 mM Amplex® Red reagent, 1 U/mL horse-
radish peroxidase and 1 mM p-tyramine). The production 
of H2O2 and of resorufin was quantified by a microplate 
reader over a 30 min period at 37 °C, in which the gener-
ated fluorescence increased linearly (FLX800™, Bio-Tek® 
Instruments, Inc., Winooski, VT, USA; excitation/emission: 
545/590 nm). Enzymatic activity was calculated by subtract-
ing the baseline fluorescence intensity from the observed 
fluorescence intensity at the end of 30 min. The reactions 
carried out with hMAO-A and -B isoenzymes were allowed 
to proceed at the same time. To observe the effect of DMSO 

in the coumarin samples, the same experiment was repeated 
using DMSO instead of distilled water.

Determination of the inhibition mechanism

In order to determine the inhibition mechanism of the cou-
marin derivative exhibiting the highest inhibitory activ-
ity (compound 21), the enzyme activities were determined 
at 3 different inhibitor concentrations (0.05, 0.1 and 0.2 μM) 
and at 8 different substrate concentrations (1, 0.75, 0.5, 0.25, 
0.15, 0.1, 0.075 and 0.050 mM) as described above. Control 
experiments were carried out simultaneously by replacing 
the compounds (coumarin derivatives and reference inhibi-
tors) with appropriate dilutions of DMSO. Km and Vmax val-
ues for the MAO-A and -B enzymes were calculated from 
nonlinear regression analysis of the Michaelis–Menten 
graphs acquired with GraphPad Prism 6.0 software (Graph-
Pad Software, San Diego, CA. USA). Lineweaver- Burk 
plots were used to determine the inhibition mechanism of 
the most potent inhibitor (compound 21) with respect to 
tyramine as a substrate.

Time‑dependent assay for MAO‑B inhibitory activity

In studies of the dependence of inhibition on concentra-
tion and incubation time of compound 21; 3-phenylazo-
4-hydroxycoumarin, which displayed the highest inhibitory 
activity (Table 1), was evaluated at 0.13 μM. The kinetics 
of the interaction between compound 21 and MAO-B were 
further examined by the method of Kitz and Wilson [82]. For 
further confirmation of the reversibility of enzyme inhibi-
tion, four different samples (0.13 μM) of compound 21 were 
prepared, added to MAO-B solution and incubated at differ-
ent time periods for 15, 30, 45 and 60 min and the MAO-B 
activity was determined as described before (Sect. 1.3). 
Results represent the means ± standard deviation (n = 3). 
Linear regression analysis was performed using GraphPad 
Prism 6.0.

Theoretical evaluation of ADME properties

ADME (absorption, distribution, metabolism and excretion) 
model was applied to coumarin derivatives to confirm the 
Lipinski’s rule of five (molecular weight, number of hydro-
gen donors and acceptors, and lipophilicity-expressed as log 
P). Theoretical prediction of ADME properties was evaluated 
with Molinspiration software (www.​molin​spira​tion.​com).

Statistical analysis

IC50 values were determined by nonlinear regression analysis 
of MAO inhibition versus the logarithm (-log) of the tested 

http://www.molinspiration.com
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compound molar concentration and calculated by mean IC50 
value ± SD (standard deviation) using GraphPad Prism 6.0. All 
the experiments were performed in triplicate and the level of 
significance was defined as p < 0.05.

Computational studies

Docking studies

Docking simulations were carried out to obtain the most 
stable complex of compound 21 with MAO-A and MAO-B. 
Toward this end, the coumarin derivative were subjected 
to geometry optimization using M062X functional and 
6-31G(d,p) basis set using Gaussian 09 [83]. The crystal 
structures of MAO-A and MAO-B (PDB ID: 2Z5X and 
2XFN, respectively) were downloaded from Brookhaven 
Protein Data Bank. AutoDock4 v.4.2.6 [68] was employed 
for docking calculation. Grid for docking was described as 
60 × 60 × 60 points with a grid spacing of 0.375 Å by using 
Autogrid4. Center for grid was defined with coordinates 
(x, y, z) 34.176, 31.342, − 14.785 for MAO-A and 55.199, 
150.457, 21.281 for MAO-B, as to center FAD (Flavin 
Adenine Dinucleotide) cofactor in both enzymes. Conforma-
tional space was searched by Lamarckian Genetic Algorithm 
[84], which was implemented in AutoDock4. Maximum 
number of evaluations was set to 2,500,000 and 100 runs 
were performed for both enzymes and each ligand. Prior to 
docking the coumarin compounds, docking procedure was 
validated by docking the co-crystalized ligands (harmine for 
MAO-A and 2-(2-benzofuranyl)-2-imidazoline for MAO-B) 
and calculating the Root Mean Square Deviation (RMSD) 
between the docked pose and the co-crystallized structure as 
0.7558 Å and 0.1044 Å, respectively. All calculations were 
performed on Linux platform.

Molecular dynamics simulations

The best MAO-B in vitro selective inhibitor analogue com-
pound 21 complexes with MAO-A and MAO-B were indi-
vidually subjected to MM/PBSA calculations. Toward this 
end, MD simulations were carried out with GROMACS 5.0 
package [85].

Both enzymes were defined with CHARMM36 force-
field and the ligand (compound 21) was parameterized 
by CGenff. Each complex was solvated in TIP3P water 
[86, 87] using a periodic cubic box with dimensions of 
11.0 nm × 11.0 nm × 11.0 nm to ensure the structure would 
remain in the box throughout the simulation. A chloride ion 
was added for a neutralized system. LINCS [88] algorithm 
was employed for constraining bond lengths. Langevin ther-
mostat was used at 300 K. Particle Mesh Ewald (PME) [89] 

was employed for long-range electrostatic interactions. Each 
complex was first minimized by using steepest descent algo-
rithm with GROMACS 5.0 package [85]. Minimization was 
complete as the maximum force of 10 kJ/mol was reached. 
Berendsen’s barostat [90] was used to relax the density at 
a pressure of 1 atm. Both complexes were then subjected 
to 30 ns MD simulations in explicit water. The simulation 
time-step was set to 2 fs and data were recorded every 10 ps.

MM/PBSA calculations

The MM/PBSA method, which was originally defined by 
Kollman et al. [91], employs the equation below to calculate 
the binding free energy of the protein–ligand complex:

Where Gcomplex refers to the free energy of the complex, 
Greceptor and Gligand are the free energy of the receptor and 
the ligand, respectively.

MM/PBSA is a convenient method to evaluate the bind-
ing and the energies, since both enzymes (PDB ID: 2Z5X 
and 2XFN) are mostly located in the cytoplasmic region, 
except for an alpha helix that is in the transmembrane region 
of the mitochondria [70, 71]. MM/PBSA calculations were 
performed using g_mmpbsa method [63]. The grid spacing 
was set to 0.5 Å. The solute dielectric constant (ε) was set 
to 2. The ionic strength was set to default value (0.15 M).

Cluster analysis

Cluster analysis was performed to obtain representative 
structures of MAO-A and MAO-B complexes with com-
pound 21. For this purpose, gmx cluster was employed 
which is implemented in GROMACS. GROMOS method 
[92] was selected as the clustering algorithm, which chooses 
the conformation with the highest number of neighbors as 
the center of the first cluster within a cut-off range. The cut-
off value was kept at the default value of 0.1 nm.

Results and discussion

In vitro MAO‑A and ‑B inhibition fluorescence assay 
and structure–activity relationship

In vitro studies were carried out to investigate the MAO 
inhibitory activity of 21 coumarin derivatives as shown in 
Table 1. Compounds were tested against both human MAO 
isoforms using a continuous fluorometric assay to determine 
the inhibitory activities.

ΔGbind = Gcomplex − (Greceptor + Gligand)



1720	 Structural Chemistry (2023) 34:1715–1729

1 3

As it is shown in Table 1, 3-aryl coumarins display MAO 
inhibitory activity in the micromolar range. Majority of the com-
pounds show inhibitions below 10 µM IC50 values. The striking 
feature is that all hydroxy substituted coumarins, except for com-
pound 15, demonstrate the highest MAO inhibitory activities. 
Hydroxy compounds (1, 3, 5, 7, 9–12, 14–16, 20) exhibit rela-
tively low IC50 values in a range of 1.56 – 3.95 µM for MAO-A 
and 0.91 – 3.14 µM for MAO-B. Thus, in general, hydroxy sub-
stitution enhances the activity, presumably by its hydrogen bond 
donor feature. On the contrary, acetoxy substitution decreases the 
inhibitory effect such that compounds 2, 4, 6, 8, 17, 18, 19 exhibit 
weaker inhibitory effect. For example, replacement of hydroxyl 
groups in compound 1 (R2 = R3 = OH, R1´ = R2´ = OCH3) 
with the acetoxy groups in compound 4 (R2 = R3 = OAc, 
R1´ = R2´ = OCH3) lowered the inhibitory activity fourfold. Simi-
larly, the same fourfold decrease in the activity of compound 8 
(R1 = R2 = OAc, R1´ = R2´ = OCH3) is also observed, in regard to 
compound 7 (R1 = R2 = OH, R1´ = R2´ = OCH3).

Among the twenty 3-aryl coumarins, compound 10, with p- 
nitro substituent, displays the best inhibitory activity with 0.91 µM 
value for MAO-B and the highest S.I value, however still lacking 
the desired selectivity. This is the only 3-aryl coumarin deriva-
tive bearing a nitrogen atom at position 3 among the studied 
compounds. This observation prompted us to test the inhibitory 
activity with another nitrogen containing coumarin derivative. 
Therefore, we further determined the MAO inhibitory activity of 
3-phenylazo-4-hydroxycoumarin (compound 21), which was pre-
viously synthesized in our laboratory [30]. Interestingly, this com-
pound turned out to be the best MAO-B inhibitor (IC50 = 0.13 µM) 
together with a remarkable selectivity (SI > 833.33). Although syn-
thesis and several applications of 3-phenylazo-4-hydroxycoumarin  
(21) are documented in the literature [66, 67], to the best of our 
knowledge, its inhibitory activity to MAO isoforms has not been 
reported yet. The presence of azo moiety in compound 21 might 
be partially responsible for the superior inhibitory activity and 
selectivity toward MAO-B. Further detailed experimental and in 
silico studies for compound 21 are presented below.

Evaluation of inhibition mechanism and kinetics

The mechanism of inhibition of the coumarin deriva-
tive; compound 21, which displayed the highest MAO-B 
inhibitory activity and selectivity, was evaluated. Based on 
dose–response inhibition, three concentrations of the inhibi-
tors were selected, two below and one above IC50 value for 
the inhibition. The enzyme kinetics data are presented as 
double reciprocal Lineweaver–Burk plots (Fig. 1). Binding 
of compound 21 with MAO-B increase the Km value (the 
Michaelis–Menten constant). As the concentration of the 
inhibitor increases, Km value apparently increases and Vmax 

(maximum enzyme activity) decreases, indicating that the 
inhibitor favors binding to the enzyme substrate complex. 
The kinetic mechanism results are consistent with mixed-
type inhibition mechanism of MAO-B. Ki and Vmax values 
were determined as 0.0315 µM and 26.58 nM/min/mg of 
protein.

Analysis of time‑dependent enzyme inhibition

The recombinant MAO-B was incubated for different times 
with compound 21. The activity of enzyme was determined 
and the percentage of enzyme inhibition was plotted against 
the pre-incubation time to determine the time dependence 
of inhibition. The inhibition of MAO-B by compound 21 
was not dependent on the pre-incubation time (Fig. 2) and 
this supports our findings that the inhibition mechanism is 
reversible.

Computational results

Docking

Since compound 21 exhibited the best selectivity according 
to the experimental results (Table 1), we focused our com-
putational studies on this compound. Docking studies were 
carried out to calculate binding energy and explore the bind-
ing mechanism for the most promising derivative, compound 
21, by using Autodock4 [68]. Docking scores and estimated 
inhibition constants are displayed in Table 2.

The results are in qualitative agreement with experi-
mental findings such that compound 21 was predicted to be 
MAO-B selective.

We further examined ligand-enzyme complexes of com-
pound 21 employing MD simulations and calculated the 
binding energies using MM/PBSA method which is expected 
to produce more realistic results since the protein dynamics 
is also taken into account.

MD simulations

Simulations were run to perform MM/PBSA calculations 
and to obtain time-averaged energy terms. Prior to simula-
tions of MAO-A and MAO-B complexes with compound 21, 
both enzymes were subjected to 30 ns MD simulations as 
in holoenzyme form. Later, both complexes obtained from 
docking were undergone 30 ns simulations. Time depend-
ence of RMSD of both holoenzymes in absence and presence 
of ligands were plotted (Fig. 3). According to the graphs, it 
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was observed that ligand complexation has increased the 
stability of MAO-B enzyme, whereas fluctuations have been 
observed for MAO-A enzyme-ligand complex with remark-
ably larger RMSD values.

Moreover, RMSD was calculated for compound 21, with 
a least square fit to protein backbone for both MAO-A and 
MAO-B (Fig. 4). RMSD range of MAO-B (0.1–0.2 nm) 
is smaller than that of MAO-A (0.2–0.35 nm) except for 

Fig. 1   Kinetic characteristics of inhibition of human MAO-B with compound 21 

Fig. 2   Time-dependent inhibi-
tion of recombinant human 
MAO-B by compound 21 
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the leap at around 15th ns, which justifies that compound 
21 forms a more stable complex with MAO-B than with 
MAO-A.

RMSF  The RMSF (root mean square fluctuations) is an 
assessment of displacement of atoms respective to the ref-
erence structure, averaged over the number of atoms [69]. 
RMSF was calculated to examine the fluctuations in the pro-
tein for MAO-A and MAO-B (Fig. 5).

Figure 5 shows fluctuations for each residue of MAO-A 
and MAO-B. For both of the enzymes, the most notice-
able thing is the high fluctuation observed for the residues 
around 480–500 and 460–500 for MAO-A and MAO-B, 
respectively. These residues correspond to the C-terminal 
helix buried in the mitochondrial outer membrane [70, 
71]. For MAO-A, fluctuations are observed where a helix 
turn takes place. This is reasonable considering that those 
residues are in the vicinity of surface of the protein and 
are more exposed to water, thus more flexible. For MAO-
B, more incidents of decrease in fluctuation are observed 
in the presence of ligand relative to the holoenzyme. This 
may arise from the ligand binding’s contribution to overall 
stabilization of the macromolecule. It can be interpreted 
from Fig. 5 that, presence of ligand in both enzymes cut 
down the fluctuations. However, displaying more fluc-
tuations in the holo form, MAO-B was stabilized to a 
greater extent compared to MAO-A upon ligand binding. 
In general, ligand shows higher conformational stability 
in MAO-B relative to MAO-A which is revealed by the 
smaller RMSF values (about 0.1 nm) in MAO-B than in 
MAO-A (0.2 nm).

MM/PBSA calculations

MM/PBSA calculations were run to examine energy com-
ponents that constitute the total energy of binding. Table 3 
shows the energy terms that contribute to the stability of 
the protein structures of MAO-A and MAO-B and binding 
energy of compound 21.

According to Table  3, binding of compound 21 to 
MAO-A is electrostatically favored over MAO-B. How-
ever, polar solvation energy that contributes to binding of 
compound 21 to MAO-B is lower than that of MAO-A, 
resulting in a higher affinity (lower binding energy). Polar 
solvation energy stands for the electrostatic interactions 
between the continuum solvent and the solute [72]. The 
difference in polar solvation energy between MAO-A and 
MAO-B (~ 2.27 kcal/mol), can be due to the binding site 
of MAO-A, e.g. having less polar groups such as Val210, 
Cys323, Ile335, Val93 with respect to their corresponding 
amino acids Thr201, Thr314, Tyr326, Glu84 in MAO-B 
[73]. Binding energy calculated over simulation is shown Ta
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in Fig. 6. When different energy components were analyzed 
in Table 3, it is observed that van der Waals energy (EVDW) 
is the main energy term that contributes to the total binding 
energy, and it is substantially more negative than any other 
energy component. It appears that polar solvation energy 

(Gpol) is responsible for the difference in total binding ener-
gies of compound 21 with MAO-A and MAO-B.

It is observed that binding energies (∆Gbind) obtained from 
MM/PBSA (Table 3) are highly negative compared to docking 
binding energies (Table 2). This discrepancy is a known issue 

Fig. 3   RMSD comparison 
of proteins obtained from 
simulations with compound 
21 (complex, red) and without 
ligand (holoenzyme, black) for 
MAO-A and MAO-B

Fig. 4   Time dependence of 
RMSD computed for 21 in 
MAO-A complex (black) and in 
MAO-B complex (red)
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Fig. 6   Binding energy (kcal/
mol) of compound 21 over 
time with MAO-A (black) and 
MAO-B (red)

Fig. 5   RMSF graphs for MAO-A (left) and MAO-B (right). Black plots represent fluctuations in the absence of ligand. Red plots represent fluc-
tuations in the presence of ligands

Table 3   Energy terms and Ki for 
MAO-A and MAO-B binding 
to compound 21 calculated by 
MM/PBSA

Energy terms MAO-A MAO-B

van der Waals energy (EVDW) (kcal/mol)  −37.456 ± 2.064  −37.766 ± 1.910
Electrostatic energy (Eelec) (kcal/mol)  −4.255 ± 1.653  −3.673 ± 1.405
Polar solvation energy (Gpol) (kcal/mol) 25.833 ± 2.767 23.559 ± 2.609
SASA energy (kcal/mol)  −3.879 ± 0.176  −3.775 ± 0.176
Binding energy (ΔGbind) (kcal/mol)  −19.756 ± 2.113  −21.656 ± 2.567
Calculated Ki (µM) 3.25 × 10−9 0.13 × 10−9

Selectivity index (SI) - 25
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in the literature and there exists plenty of MM/PBSA studies 
reporting extremely more negative ΔG binding values com-
pared to the docking results [74–76], because they are com-
pletely different computational approaches related to static (in 
case of docking) and dynamic (in case of MM/PBSA) aspects 
of binding process. Therefore, it is not appropriate to make a 
direct comparison based on the absolute values of ∆Gbind and 
Ki values. Instead, a qualitative comparison of the SI values can 
be made. SI obtained from MM/PBSA (25) is notably larger 
than that from docking (6) revealing that the former method 
shows better performance in approaching the experimental 
result. However, it is difficult to make a direct comparison on 
the absolute value of SI between the calculated and the experi-
mental results because of the complications arising from the 
mixed-type inhibition kinetics of compound 21. In the litera-
ture, results from MM/PBSA analyses have been reported to be 
correlated with the experimental results [77, 78] although a few 
contrasting cases have also been presented [72, 79].

Cluster analysis

Cluster analysis was employed by using GROMACS tool 
gmx cluster. Data obtained from cluster analysis is shown in 
Table 4. The noticeable difference in total number of clusters 
between two complexes may account for relatively stable 
nature of MAO-B complex with compound 21.

We also examined the representative average structures 
from the most populated clusters of both complexes and 
their interactions with compound 21 (Fig. 7).

Interactions of compound 21 with MAO‑A and MAO‑B

Interactions of compound 21 with MAO-A and MAO-B were 
observed by using Discovery Studio 4.5 [80]. Figure 7 displays 
the interactions in the representative average structures of the most 
populated cluster for compound 21 in complex with MAO-A and 
MAO-B. Compound 21 was observed to bind to the active site for 
both MAO-A and MAO-B based on mainly hydrophobic interac-
tions (π-π stacking and π-alkyl). The striking difference is the two 
H-bonding type interactions between Cys172 and the hydroxyl 
group of compound 21 in MAO-B while such interactions are not 
observed in MAO-A since there is no cysteine residue in its active 
site. This provides significant insight into selectivity of compound 
21 toward MAO-B. It is important to note that this interaction 
type was not observed in the binding orientation obtained from 
docking calculations revealing better performance of MD over 

Table 4   Results of clustering MAO-A and MAO-B complexes with 
compound 21 

Complex Total number 
of clusters

Total number of 
members in the most 
populated cluster

RMSD of 
the middle 
structure

MAO-A + 21 114 234 0.087
MAO-B + 21 28 1086 0.089

Fig. 7   Binding mode and interactions of compound 21 in the active site of MAO-A and MAO-B
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docking methodology due to dynamic nature of binding. Fur-
thermore, compound 21 makes closer interactions with the sur-
rounding residues in the long and narrow binding site of MAO-B. 
It is known that MAO-B active site has two cavities; entrance 
cavity near Ileu199 and the aromatic cage constituting two tyros-
ines (398 and 435) in the re-face of FAD. The flexibility of the 
azo linker allows the ligand to fit perfectly the double-pocket 
active site of MAO-B. As Fig. 7 displays, as coumarin moiety of 
21 binds to the aromatic cage, phenyl substituent fits well to the 
entrance cavity with hydrophobic interactions. This occurrence is 
supported by a study of Lee et al., who showed a linker between 
two aromatic rings in 2-aryl-1,3,4-oxadiazin-5(6H)-one, enhanced 
the binding and selectivity of ligand to MAO-B [81]. Thus, our 
results verify that, in 3-arylcoumarin skeleton, insertion of a linker 
azo group between the coumarin and aromatic rings contributes 
both potency and selectivity remarkably.

Theoretical evaluation of ADME properties

ADME properties of all coumarin derivatives were predicted 
by using Molinspiration software (www.​molin​spira​tion.​com). 
Table 5 shows ADME properties and the number of violations 
of Lipinski rules. It was observed that none of the compounds 
violated Lipinski’s rule of five.

Conclusions

In this study, a series of 3-substituted coumarin derivatives 
were investigated for their MAO inhibitory activities in vitro 
for the first time. The most potent coumarin derivative has been 
determined as compound 21 (3-phenylazo-4-hydroxycoumarin) 
(MAO-A: 25.01 ± 1.35% (inhibition at 100 µM); MAO-B IC50: 
0.12 ± 0.02 µM, selectivity index: > 833.33). The inhibition 
mechanism of this compound has been identified as mixed inhi-
bition. From these results, it may be concluded that compound 
21 selectively and reversibly inhibited MAO-B at remarkably 
low concentrations. Binding affinities calculated by AutoDock4 
adequately predicted the MAO-B selectivity of this compound. 
However, since docking approach cannot deal with dynamical 
nature of ligand-enzyme complexes, compound 21 was further 
investigated using MD and MM/PBSA which resulted in higher 
selectivity toward MAO-B when compared to the Autodock4 
results. Our computational results provide mechanistic insight 
into the underlying aspects of this selectivity. The predomi-
nant selectivity of compound 21 toward MAO-B was found to 
be arising from hydrogen bonding interactions with Cys172 
residue which is absent in MAO-A. In addition, the azo group 
between two aromatic rings served as a linker which provided 
the molecule a more compatible shape with that of the binding 

Table 5   Calculated ADME 
properties

logP, octanol/water partition coefficient; TPSA, Topological Polar surface Area; n–OH, number of hydro-
gen bond acceptors; n-OHNH, number of hydrogen bond donors. The data was acquired using Molinspira-
tion calculation software

Compound Log P Molecular weight TPSA n–OH 
acceptors

n-OHNH 
donors

Volume Lipinki’s 
rule  
violations

1 2.391 314.293 89.135 6 2 267.122 0
2 1.997 398.367 101.289 8 0 340.145 0
3 2.391 314.293 89.135 6 2 267.122 0
4 1.997 398.367 101.289 8 0 340.145 0
5 1.776 286.239 111.123 6 4 232.066 0
6 2.501 370.357 84.218 7 0 321.162 0
7 2.62 314.293 89.135 6 2 267.122 0
8 2.194 398.367 101.289 8 0 340.145 0
9 3.398 268.268 70.667 4 2 232.592 0
10 2.932 299.238 116.491 7 2 239.365 0
11 2.974 254.241 70.667 4 2 216.031 0
12 3.422 268.268 70.667 4 2 232.592 0
13 2.61 344.36 63.24 6 0 308.39 0
14 2.005 286.239 111.123 6 4 232.066 0
15 2.574 344.319 98.369 7 2 292.668 0
16 2.376 344.319 98.369 7 2 292.668 0
17 1.382 454.387 135.431 10 0 378.112 0
18 1.981 428.393 110.523 9 0 365.691 0
19 2.376 428.363 110.523 9 0 365.691 0
20 1.974 286.239 111.123 6 4 232.066 0
21 3.843 266.256 75.167 5 1 227.117 0

http://www.molinspiration.com
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pocket of MAO-B. This might also account for the higher 
inhibitory activity for MAO-B. Moreover, theoretical ADME 
predictions showed that compound 21 complies with Lipinski’s 
rule of five. Thus, in order to increase the MAO-B selectivity 
and potency of 3-arylcoumarins, insertion of the azo or simi-
lar linkers between the coumarin and aromatic rings can be 
adopted as a new strategy. We propose 3-arylazocoumarin as a 
new promising scaffold for selective MAO-B inhibition which 
deserves further investigation to improve its pharmacodynamic 
and pharmacokinetic properties.
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