REVIEW ARTICLE

Structural depolymerization of titanium(IV) fluoride: basis for the formation of titanium(IV) fluoride complexes

Ruven L. Davidovich¹ · Evgeny A. Goreshnik¹ · Zoran Mazej¹

Received: 13 June 2022 / Accepted: 21 June 2022 / Published online: 5 July 2022 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract

The applicability of the concept of structural depolymerization is demonstrated by the example of titanium(IV) fluoride and its complex salts obtained in the systems CsF/TiF₄/aHF, (Gua)₂CO₃/TiF₄/aHF, (Gua)Cl/TiF₄/aHF, and Im/TiF₄/aHF (aHF, anhydrous hydrogen fluoride; (Gua⁺), guanidinium cation, [C(NH₂)₃]⁺; Im, imidazole). The compositions of the fluoridotitanates(IV) formed in these systems and their crystal structures are considered in terms of the degree of polymerization (ε). The latter is defined as the ratio between the number of bridging fluorine atoms (M – F_b – M) and the number of terminal fluorine atoms (M – F_t) in the [M_nF_{4n+x}]^{x–} (M = Ti; $n \ge 1$) structural fragments. With increasing initial amount of fluoride ion donors (AX = CsF or in situ formed (Gua)F and ImHF) in AF/TiF₄ reactions, the degree of polymerization of the crystal structures of the obtained salts decreases.

Keywords Titanium · Fluoride · Cesium · Guanidinium · Imidazolium · Crystal structure · Depolymerization

Introduction

In [1], the concept of structural depolymerization of metal fluoride compounds is formulated, which is the basis for the formation of complex metal fluorides and the formation of their crystal structures. The experimental basis for the concept of structural depolymerization of metal fluoride compounds is the depolymerizing effect of fluoride ions (F^{-1} (provided by fluoride ion donors AF) on metal fluoride compounds (MF_n) whose structures contain M – F_b – M bridges.

Transition metal fluorides (MF_n) have a polymeric structure with $M - F_b - M$ fluoride bridges in the crystalline state. When a metal fluoride compound MF_n containing

Highlights

- Depolarizing effect of F ions on transition metal fluorides with M-F-M bonds.
- Structural depolymerization—the basis for the formation of fluoride complexes and its structures.
- With increasing molar ratio in AF/TiF₄ reactions, the degree of the polymerization of the obtained salts decreases.

Evgeny A. Goreshnik evgeny.goreshnik@ijs.si $M - F_{b} - M$ bridging bonds is exposed to fluoride ions (F⁻) that have a greater affinity for the metal (M) than the bridging fluorine atoms ($F_{\rm b}$), the M – $F_{\rm b}$ – M bonds in these compounds are broken, and the originally polymeric structures are sequentially depolymerized. Thus, the formation of complex metal fluorides during the interaction of F⁻ ions with binary (MF_n) or more complex fluorides $(A_x M_y F_n)$ can be represented as a process of sequential depolymerization of a metal fluoride compound under the action of fluoride ions. The degree of depolymerization of MF_n depends on the molar ratio of the reacting components. The proposed concept of structural depolymerization of metal fluoride compounds is justified on the basis of an analysis of crystal structures of complete series of zirconium and hafnium fluoride complexes [2, 3] with the same cations and on the basis of experimental data of synthesis fluoride complexes of zirconium and hafnium.

To assess the degree of polymerization of the crystal structure of a compound, the ratio between the number of bridging fluorine atoms (F_b) and the number of terminal fluorine (F_t) atoms in the structural fragment of the compound, denoted by the letter ε , is usually used. For example, for the compound TiF₄, in which each Ti atom is surrounded by four bridging and two terminal F atoms (structural fragment TiF_{2/1}F_{4/2}), the degree of polymerization of the structure is

¹ Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

 $\varepsilon = F_b: F_t = 4:2 = 2$. For $Cs_2[TiF_6]$ with the structural fragment $TiF_{6/1}F_{0/2}$, in whose structure there are no bridging F atoms, $\varepsilon = 0$.

One of the most important provisions of the concept of structural depolymerization of metal fluoride compounds is the decrease in the degree of polymerization of the crystal structure of the compound with increasing amount of the reacting component providing fluoride ions (F^-) in a series of complex fluorides with the same cation. The application of the concept of structural depolymerization [1] of metal fluoride compounds has already been shown in the case of fluoride complexes of zirconium structural depolymerization [4, 5]. Structural depolymerization of uranyl fluoride complexes is discussed in [6].

In 2001, the study was published [7], containing provisions similar to the concept of structural depolymerization of metal fluoride compounds [1]. The authors proposed a practical formalism for the manipulation of solid structures, called "dimensional reduction" [7]. Similar to the concept of structural depolymerization of metal fluoride compounds [1], the proposed dimensional reduction is a general formalism that describes how the framework of a parent compound MX_x is degraded upon reaction with an ionic reagent $A_a X$ to form a child compound $A_{na} M X_{x+n}$ [7] The added X^- anions disrupt the M - X - M bridges in an MX_x parent compound, resulting in a less tightly bound framework. The possibilities of transforming the crystal structures of different types of compounds are formally considered, but the mechanism causing these transformations is not considered or discussed [4].

Recently, a series of papers have been published dealing with the synthesis and study of the crystal structure of new fluoridotitanates(IV) with alkali metal [8], guanidinium [9], and imidazolium [10] cations.

In [8], a systematic study of the reaction between alkali metal fluorides (AF, A = Li, Na, K, Rb, Cs) and titanium(IV) fluoride (TiF₄) in anhydrous hydrogen fluoride (aHF) at ambient temperature and a molar ratio $n(AF):n(TiF_4)$ of 3:1 to 1:3 was carried out. The formation of the following types of compounds was observed: A₂[TiF₆], A₂[TiF₆]·HF, A[TiF₅], A[TiF₅]·HF, A₃[Ti₄F₁₉], A[Ti₂F₉], A[Ti₂F₉]·HF, and A₃[Ti₆F₂₇]. Investigation of their crystal structure showed that they consisted of monomeric $[TiF_6]^{2-}$ anions (0-D), polymeric $([TiF_5]^-)_{\infty}$ chains (1-D), $([Ti_4F_{19}]^{3-})_{\infty}$ columns (1-D), $([Ti_2F_9]^-)_{\infty}$ double chains (1-D), and $([Ti_6F_{27}]^{3-})_{\infty}$ three-dimensional frameworks (3-D).

In [9], the reaction between guanidinium carbonate (and/ or chloride) and TiF₄ in aHF was carried out in the molar ratios $n([C(NH_2)_3]^+):n(TiF_4)$ from 2:1 to 1:4. Five guanidinium fluoridotitanate(IV) salts were isolated and structurally studied: the already known $[C(NH_2)_3]_2[TiF_6]$ and the new complexes $[C(NH_2)_3][Ti_2F_9]$, $[C(NH_2)_3]_4[Ti_4F_{20}]$, $[C(NH_2)_3]_3[Ti_6F_{27}]\cdotSO_2$, and $[C(NH_2)_3]_4[Ti_4F_{20}][TiF_5]_4$. The crystal structures of the synthesized new guanidinium fluoridotitanates(IV) contain oligomeric $[Ti_4F_{20}]^{4-}$ and $[Ti_6F_{27}]^{3-}$, and polymeric $([TiF_5]^-)_{\infty}$ and $([Ti_2F_9]^-)_{\infty}$ anions.

The reactions between imidazole (Im) and TiF₄ in aHF in the molar ratios $n(Im):n(TiF_4)$ ranging from 2:1 to 1:2 resulted in the formation of five fluoridotitanates(IV): $[ImH]_2[TiF_6]\cdot 2HF$, $[ImH]_3[Ti_2F_{11}]$, $[ImH]_4[Ti_4F_{20}]$, $[ImH]_3[Ti_5F_{23}]$, and $[ImH][Ti_2F_9]$ [10]. Their crystal structures were determined by a single-crystal X-ray diffraction method.

In [8], the authors state that, with the exception of compound A₂[TiF₆], whose structure consists of cations A⁺ and octahedral monomeric complex anions $[TiF_6]^{2-}$, all other synthesized alkali metal fluoridotitanates(IV) are formed by condensation of TiF₆ groups. The same is true for the guanidinium and imidazolium fluoridotitanates(IV) [9, 10].

The study of the initial conditions, the formed fluoridotitanate(IV) salts, and the corresponding crystal structures [8-10] allows us to consider the formation of the synthesized fluoride complexes of titanium from the point of view of the concept of structural depolymerization of fluoride metal compounds.

Results and discussion

Structural depolymerization of titanium(IV) fluoride in the system CsF/TiF₄/aHF

The structural depolymerization of titanium(IV) fluoride under the action of F⁻ ions of alkali metal fluorides is considered by the example of the study the structural depolymerization of TiF₄ in the CsF/TiF₄/aHF system. The synthesis of cesium fluoridotitanates(IV) was carried out by the reaction between CsF and TiF₄, which has a polymeric crystal structure [11]. When CsF is added to TiF₄ in aHF or in another aprotic solvent, structural depolymerization of TiF₄ occurs under the action of F⁻ ions, which is illustrated by the breaking of the M – F_b – M bridges in TiF₄. The degree of depolymerization of the TiF₄ structure depends on the initial $n(CsF):n(TiF_4)$ molar ratio of the reacting components.

The crystal structure of TiF₄ contains three crystallographically distinct Ti atoms, each of which is octahedrally surrounded by six F atoms [11]. Each TiF₆ octahedron in the structure is connected to each of the other two TiF₆ octahedra by two *cis*-located equatorial F atoms to form a [Ti₃F₁₅] ring of three vertex-linked octahedra. In addition, each octahedron is connected to two octahedra of the same type by trans-positioned F atoms to form isolated columns. In each TiF₆ octahedron of the TiF₄ structure, two terminal F atoms occur for four bridging F atoms, and the structural fragment is TiF_{2/1}F_{4/2}. The degree of polymerization of the TiF₄ structure is $\varepsilon = 2$ (Table 1).

Initial molar ratio $n(CsF):n(TiF_4)$	Obtained product ^{<i>a</i>} and cryst. unique TiF_6 units	Structural fragment	ε	Geometry of the anion	Association ^b	Ref.
	$\begin{array}{c} \text{TiF}_4\\ \text{Ti}(1)\text{F}_6\text{Ti}(3)\text{F}_6 \end{array}$	$TiF_{2\prime 1}F_{4\prime 2}$	2	$[\mathrm{Ti}F_4]_{\infty}$, columns built of $[\mathrm{Ti}_3F_{15}]$ trimers	4	[11]
1:3 to 1:2	$\begin{array}{l} Cs[Ti_2F_9]\\Ti(1)F_6 \end{array}$	$TiF_{3/1}F_{3/2}$	1	$([Ti_2F_9]^-)_{\infty}$, double zigzag chain	3	[8, 12]
3:4	$Cs_3[Ti_4F_{19}]$ Ti(1)F ₆ Ti(2)F ₆	$\begin{array}{l} Ti(1)F_{4/1}F_{2/2}\\ Ti(2)F_{3/1}F_{3/2} \end{array}$	$(0.75)^c$ 0.5 1	$([Ti_4F_{19}]^{3-})_{\infty}$, column	2 3	[8]
1:1	Cs[TiF ₅] Ti(1)F ₆	$TiF_{4/1}F_{2/2}$	0.5	$([TiF_5]^-)_{\infty}$, zigzag chain	2	[8]
2:1	$\begin{array}{l} Cs_2[TiF_6]\\Ti(1)F_6 \end{array}$	${\rm Ti}F_{6/1}F_{0/2}$	0	$[\mathrm{TiF}_6]^{2-}$, octahedra	0	[8, 13]

Table 1 Structural depolymerization of TiF_4 in the system CsF/TiF₄/aHF

 a CsTi₂F₉, CsTiF₅, and Cs₂TiF₆ were prepared as pure phases in bulk. Crystallizations with appropriate initial molar ratios of CsF:TiF₄ also yielded only one phase. An exception is Cs₃[Ti₄F₁₉], where attempts to prepare pure phase (by synthesis or crystallization) always resulted in a mixture of three phases, namely, Cs₃[Ti₄F₁₉], Cs[TiF₅] and Cs[Ti₂F₉]. [8, 12]

^bNumber of Ti – F_b bonds in each Ti F_6 unit, where F_b bridges two Ti atoms

^cAn average value

When CsF is added to TiF₄ in aHF at a CsF:TiF₄ molar ratio 1:3 or 1:2, titanium fluoride is partially depolymerized, and the CsTi₂F₉ compound crystallizes from solution (Table 1). The structure of CsTi₂F₉ consists of Cs⁺ cations and complex anions $([Ti_2F_9]^-)_{\infty}$. In the CsTi₂F₉ structure, the octahedral TiF₆ groups connected by *cis*-vertices form polymeric double chain-like anions $([Ti_2F_9]^-)_{\infty}$, with each octahedron sharing its three vertices with three other TiF₆ octahedra (Fig. 1a). Three bridging F atoms and three terminal fluorine atoms coordinate each Ti atom in the CsTi₂F₉ structure. The structural fragment of the crystal structure of $CsTi_2F_9$ is $TiF_{3/1}F_{3/2}$, and the degree of polymerization is $\varepsilon = 1$ (Table 1).

Changing the CsF:TiF₄ ratio in the CsF/TiF₄/aHF system to 3:4 is accompanied by an increase in the degree depolymerization of TiF₄ and leads to the formation of the compound Cs₃[Ti₄F₁₉]. The crystal structure of Cs₃[Ti₄F₁₉] consists of Cs⁺ cations and polymeric double chain anions $([Ti_4F_{19}]^{3-})_{\infty}$ (Fig. 1b) [8]. The structure of Cs₃[Ti₄F₁₉] contains two crystallographically independent Ti atoms

[Ti(1) and Ti(2)], each coordinated by six F atoms. In each of the chains, the Ti(1)F₆ octahedra are connected by common vertices to two adjacent Ti(2)F₆. The Ti(2)F₆ octahedra, in turn, are connected via three common vertices to three octahedra — two Ti(1)F₆ octahedra in the same chain and one Ti(2)F₆ octahedron of the adjacent chain. Thus, in the Ti(1)F₆ octahedra, there are two bridging atoms per four terminal F atoms, the structural fragment is TiF_{4/1}F_{2/2} and $\varepsilon = 0.5$, and in the Ti(2)F₆ octahedra, there are three bridging atoms per three terminal F atoms, structural fragment TiF_{3/1}F_{3/2} ($\varepsilon = 1$). The average degree of polymerization of the Cs₃[Ti₄F₁₀] structure is 0.75 (Table 1).

CsTiF₅, is obtained using an initial molar ratio of CsF:TiF₄ = 1:1 (Table 1). The crystal structure of CsTiF₅ consists of one-dimensional polymeric zigzag chains $([TiF_5]^-)_{\infty}$ (Fig. 1c) formed by vertex-linked TiF₆ octahedra and Cs⁺ cations [8]. Of the six F atoms coordinated to the Ti atom, four are terminal, and two are bridging, and the structural fragment is TiF_{4/1}F_{2/2}. Consequently, the degree of polymerization of the CsTiF₅ structure is $\varepsilon = 0.5$ (Table 1).

The final product of structural depolymerization of TiF₄ under the action of F⁻ ions in the CsF/TiF₄/aHF system is Cs₂TiF₆, which is formed at a molar ratio of CsF:TiF₄ of 2:1 (Table 1). The crystal structure of Cs₂TiF₆ consists of Cs⁺ cations and isolated monomeric octahedral $[TiF_6]^{2-}$ anions (Fig. 1d) in which all fluorine atoms are terminal [8, 13]. The structural fragment of the Cs₂TiF₆ crystal structure is TiF_{6/1}F_{0/2}, and the degree of polymerization of the Cs₂TiF₆ structure is $\varepsilon = 0$ (Table 1).

In the CsF/TiF₄/aHF system, structural depolymerization of TiF_4 under the action of F⁻ ions converts the TiF_4 framework structure with the TiF_{2/1}F_{4/2} ($\varepsilon = 2$) structural fragment into the CsTi₂F₉ polymer structure with double chains and the TiF_{3/1}F_{3/2} ($\varepsilon = 1$) structural fragment and then to the $Cs_3[Ti_4F_{19}]$ structure with zigzag double chains in which every second bridge bond between the TiF₆ groups of one polymer chain and the TiF_6 groups of the second chain is missing, with Ti(1)F_{4/1}F_{2/2}~(\varepsilon\!=\!0.5) and Ti(2) $F_{3/1}F_{3/2}$, ($\varepsilon = 1$) (an average degree of polymerization of the $Cs_3[Ti_4F_{19}]$ structure $\varepsilon = 0.75$). The next product of structural depolymerization of TiF_4 is the CsTiF₅ compound, the structure of which contains one-dimensional polymeric zigzag ($[TiF_5]^-$)_∞ chains formed by vertex-linked TiF₆ octahedra with the TiF_{4/1}F_{2/2} structural fragment ($\varepsilon = 0.5$). The final product of the structural depolymerization of TiF_4 in the CsF/TiF₄/aHF system is the Cs₂TiF₆ compound with the structural fragment $TiF_{6/1}F_{0/2}$ and the degree of polymerization $\varepsilon = 0$ (Table 1).

In the series of titanium fluoride compounds TiF_4 -CsTi₂F₉-Cs₃[Ti₄F₁₉]-CsTiF₅-Cs₂TiF₆, the degree of polymerization of the crystal structure of the obtained compounds decreases from $\varepsilon = 2$ (TiF₄) to $\varepsilon = 0$ (Cs₂TiF₆) when

the molar ratio of the reacting components in the CsF/TiF₄/ aHF system changes from 1:3 to 2:1.

Structural depolymerization of titanium(IV) fluoride in the systems $[C(NH_2)_3]_2CO_3$ (and/or $[C(NH_2)_3]CI)/TiF_a/aHF$

The reaction between guanidinium carbonate (and/or chloride) with TiF₄ in aHF was carried out by two methods [9]. In the first method, aHF was added to a mixture of the guanidinium salt and TiF₄ in various molar ratios. In the second method, the required amount of guanidinium salt was preliminarily converted into guanidinium polyhydrogen fluoride [C(NH₂)₃]F·*n*HF by interaction with aHF. The latter was then used for the reaction with TiF₄ in aHF. [C(NH₂)₃]F had a depolymerizing effect on TiF₄, the degree of depolymerization of TiF₄ depending on the initial molar ratio of the reacting components, i.e., n[C(NH₂)₃]⁺:n(TiF₄).

In the system $[C(NH_2)_3]_2CO_3/TiF_4/aHF$ at a molar ratio of $[C(NH_2)_3]^+$:TiF₄ 1:3 and 1:2, the TiF₄ compound undergoes partial depolymerization under the action of F⁻ ions to form $[C(NH_2)_3][Ti_2F_9]$. The crystal structure of $[C(NH_2)_3][Ti_2F_9]$ consists of guanidinium cations $[C(NH_2)_3]^+$ and polymeric anion $([Ti_2F_9]^-)_{\infty}$ structure similar to polymer chains in the $Cs[Ti_2F_9]$ structure (Fig. 1a) [8]. Each titanium atom in the $([Ti_2F_9]^-)_{\infty}$ anion is coordinated by three bridging and three terminal fluorine atoms, forming a TiF_{3/1}F_{3/2} structural fragment. The degree of polymerization of the $[C(NH_2)_3][Ti_2F_9]$ structure is $\varepsilon = 1$ (Table 2).

 $[C(NH_2)_3]_4[Ti_4F_{20}]$ crystallizes from HF solution when less $[C(NH_2)_3]F$ was present in the $[C(NH_2)_3]_2CO_3/TiF_4/$ aHF system. The structure $[C(NH_2)_3]_4[Ti_4F_{20}]$ consists of oligomeric tetrameric $[Ti_4F_{20}]^{4-}$ anions and guanidinium cations [9]. In the tetrameric anion $[Ti_4F_{20}]^4$ (Fig. 2a), two bridging and four terminal F atoms form a structural fragment $TiF_{4/1}F_{2/2}$. The degree of polymerization of $[C(NH_2)_3]_4[Ti_4F_{20}]$ is $\varepsilon = 0.5$.

As in the CsF/TiF₄/aHF system, the final product of TiF₄ structural depolymerization in the $[C(NH_2)_3]_2CO_3/$ TiF₄/aHF system is guanidinium hexafluoridotitanate(IV), $[C(NH_2)_3]_2[TiF_6]$ (Table 2). [9, 14]. The Ti atoms in the $[TiF_6]^{2-}$ anion are coordinated by six F ligands and form distorted octahedra (structural fragment TiF_{6/1}F_{0/2}). The degree of polymerization of the structure $[C(NH_2)_3]_2TiF_6$ is $\varepsilon = 0$ (Table 2).

In the system $[C(NH_2)_3]_2CO_3/TiF_4/aHF$, structural depolymerization of TiF₄ under the action of F⁻ ions converts the framework structure of TiF₄ with the structural fragment TiF_{2/1}F_{4/2} (ε =2) into the $[C(NH_2)_3][Ti_2F_9]$ with a polymeric structure of double chains and the structural fragment TiF_{3/1}F_{3/2} (ε =1). The next step is the formation of $[C(NH_2)_3]_4[Ti_4F_{20}]$, whose crystal structure contains oligomeric tetrameric anions $[Ti_4F_{20}]^{4-}$, with the structural

Initial molar ratio $n(\text{Gua})_2\text{CO}_3 \text{ (and/or (Gua))}$ $\text{Cl}):n(\text{TiF}_4)^a$	Obtained product ^b and cryst. unique TiF_6 units	Structural fragment	ε	Geometry of the anion	Association ^c	Ref.
	TiF ₄ Ti(1)F ₆ -Ti(3)F ₆	TiF _{2/1} F _{4/2}	2	$[TiF_4]_{\infty}$, columns built of $[Ti_3F_{15}]$ trimers	4	[11]
(Gua) ₂ CO ₃ :TiF ₄ 1:3, 1:2	$[C(NH_2)_3][Ti_2F_9]$ Ti(1)F ₆	$TiF_{3/1}F_{3/2}$	1	$([Ti_2F_9]^-)_{\infty}$, double zigzag chain	3	[9]
(Gua) ₂ CO ₃ :TiF ₄ 1:2, 1:1, 3:2	$[C(NH_2)_3]_4[Ti_4F_{20}]$ Ti(1)F_6-Ti(2)F_6	$TiF_{4/1}F_{2/2}$	0.5	$[Ti_4F_{20}]^{4-}$, tetramer	2	[9]
(Gua) ₂ CO ₃ :TiF ₄ 1:2 to 2:1	$[C(NH_2)_3]_2[TiF_6]$ Ti(1)F ₆	TiF _{6/1} F _{0/2}	0	$[\text{TiF}_6]^{2-}$, octahedra	0	[9, 14]
(Gua)Cl:TiF ₄ 1:4	$[C(NH_2)_3]_3[Ti_6F_{27}] \cdot SO_2$ Ti(1)F_6-Ti(12)F_6	TiF _{3/1} F _{3/2}	1	$[Ti_6F_{27}]^{3-}$, trigonal prism	3	[<mark>9</mark>]
(Gua)Cl:TiF4	[C(NH ₂) ₃] ₄ [H ₃ O] ₄ [Ti ₄ F ₂₀]-	$TiF_{4/1}F_{2/2}$	$(1)^{d}$	$[Ti_4F_{20}]^{4-}$, tetramer	2	[<mark>9</mark>]
1:4	$[TiF_5]_4$ Ti(3)F_6-Ti(4)F_6 Ti(1)F_6-Ti(2)F_6	$\mathrm{Ti}\mathrm{F}_{4/1}\mathrm{F}_{2/2}$	0.5 0.5	$([TiF_5]^-)_{\infty}$, chain	2	

Table 2 Structural depolymerization of TiF₄ in the systems (Gua)₂CO₃ (and/or (Gua)Cl)/TiF₄/aHF

 $^{a}(Gua^{+}) = guanidinium$

^b[C(NH₂)₃][Ti₂F₉] (bulk and single crystals) and [C(NH₂)₃]₃[Ti₆F₂₇].SO₂ (single crystals) were prepared as pure phases. Attempts to prepare pure [C(NH₂)₃][Ti₂F₉] and [C(NH₂)₃]₄[Ti₄F₂₀] resulted in mixture of [C(NH₂)₃]₂[TiF₆], [C(NH₂)₃][Ti₂F₉], and [C(NH₂)₃]₄[Ti₄F₂₀] [9]

^cNumber of Ti – F_b bonds in each Ti F_6 unit, where F_b bridges two Ti atoms

^dTotal value

fragment TiF_{4/1}F_{2/2} and the degree of polymerization $\varepsilon = 0.5$. The final product of structural depolymerization of TiF₄ is guanidinium hexafluoridotitanate(IV) [C(NH₂)₃]₂[TiF₆] with the structural fragment TiF_{6/1}F_{0/2} and degree of polymerization $\varepsilon = 0$ (Table 2).

In the system $[C(NH_2)_3]Cl/TiF_4/aHF$, virtually, the same compounds are formed as in the system $[C(NH_2)_3]_2CO_3/TiF_4/aHF$ (Table 2) [9]. In the case of large amounts of TiF_4 ($[C(NH_2)_3]Cl:TiF_4$ = is 1:4), the product(s) formed are insoluble in aHF. Crystallization of this insoluble product(s)

from SO₂ solution led to the formation of the solvated phase $[C(NH_2)_3]_3[Ti_6F_{27}]$ ·SO₂. Its Raman spectrum is very similar to the Raman spectrum of the product insoluble in aHF obtained from a mixture of guanidinium salt and TiF₄ at the initial molar ratios of the reagents 1:3 and 1:4. On this basis, the authors of [9] concluded that the insoluble phase in aHF is mainly $[C(NH_2)_3]_3[Ti_6F_{27}]$ or its HF-solvate form. The crystal structure of $[C(NH_2)_3]_3[Ti_6F_{27}]$ ·SO₂ contains two crystallographically independent anions $[Ti_6F_{27}]^{3-}$, reminiscent of the column-like structure of TiF₄. The oligomeric

 $[\text{Ti}_6\text{F}_{27}]^{3-}$ anions are formed by six TiF₆ octahedra: three TiF₆ octahedra, sharing *cis*-corners form a trimeric ring, and the other three octahedra form the same trimeric ring, connected to the first ring by three bridging fluorine atoms, forming a trigonal prismatic geometry (Fig. 2b) [9]. All Ti atoms in the $[\text{Ti}_6\text{F}_{27}]^{3-}$ anion are bonded to three terminal and three bridging F atoms, and the structural fragment of the $[\text{C}(\text{NH}_2)_3]_3[\text{Ti}_6\text{F}_{27}]\cdot\text{SO}_2$ is TiF_{3/1}F_{3/2} ($\varepsilon = 1$).

Long-term crystallization from a CH₃CN solution of a phase insoluble in aHF, formed in the system $[C(NH_2)_3]$ Cl/TiF₄/aHF at a molar ratio of $[C(NH_2)_3]Cl:TiF_4 = 1:4$, resulted in few crystals of $[C(NH_2)_3]_4[H_3O]_4[Ti_4F_{20}][TiF_5]_4$ [9].The crystal structure of $[C(NH_2)_3]_4[H_3O]_4[Ti_4F_{20}][TiF_5]_4$ consists of $[C(NH_2)_3]^+$ and H_3O^+ cations as well as tetrameric $[Ti_4F_{20}]^{4-}$ and polymeric chain-like $([TiF_5]^-)_{\infty}$ anions (Fig. 2, c, 1) [9]. The structure of the tetrameric anion is similar to that in the structure of $[C(NH_2)_3]_4[Ti_4F_{20}]$ described above. The second anion in the structure of $[C(NH_2)_3]_4[H_3O]_4[Ti_4F_{20}][TiF_5]_4$ is a polymeric chain-like $([TiF_5]^-)_{\infty}$, consisting of *cis*-linked TiF₆ octahedra (Fig. 2, c, 2).

Structural depolymerization of titanium(IV) fluoride in the $Im/TiF_a/aHF$ system

The reaction between imidazole (Im) and TiF_4 in aHF in the molar ratios of 2:1 to 1:2 resulted in the formation of five fluoridotitanates(IV): $[\text{ImH}]_2[\text{TiF}_6]\cdot 2\text{HF}$, $[\text{ImH}]_3[\text{Ti}_2\text{F}_{11}]$, $[\text{ImH}]_4[\text{Ti}_4\text{F}_{20}]$, $[\text{ImH}]_3[\text{Ti}_5\text{F}_{23}]$, and $[\text{ImH} [\text{Ti}_2\text{F}_9]$ [10].

Fig.3 Fragments of crystal structures of imidazolium fluoridotitanates(IV): $(ImH)_3[Ti_5F_{23}] a, (ImH)_3[Ti_2F_{11}] b$

In the system Im/TiF₄/aHF, in the molar ratios Im:TiF₄ 1:2 and 2:3, structural depolymerization of TiF₄ takes place under the action of F⁻ ions of ImHF, and the [ImH][Ti₂F₉] salt crystallizes from solution. Its structure consists of ImH⁺ cations and $([Ti_2F_9]^-)_{\infty}$ anions with a double-chain geometry structure similar to polymer chains in the Cs[Ti₂F₉] and C(NH₂)₃][Ti₂F₉] structure (Fig. 1a) [8]. The structural fragment is TiF_{3/1}F_{3/2}, and the degree of polymerization is $\varepsilon = 1$ (Table 3).

With larger amount of imidazole, the depolymerization of TiF₄ increases yielding [ImH]₃[Ti₅F₂₃], [ImH]₄[Ti₄F₂₀], (ImH)₃[Ti₂F₁₁], and (ImH)₂[TiF₆]·2HF. The former contains pentameric $[Ti_5F_{23}]^{3-}$ anion with a unique geometry consisting of five octahedral TiF₆ groups (Fig. 3a) [10].

Table 3 Structural depolymerization of TiF_4 in the system Im/ TiF_4 /aHF

Initial molar ratio $n(\text{Im})^a:n(\text{TiF}_4)$	Obtained product ^{b} and cryst. unique TiF ₆ units	Structural fragment	ε	Geometry of the anion	Association ^c	Ref.
	TiF ₄ Ti(1)F ₆ -Ti(3)F ₆	$TiF_{2/1}F_{4/2}$	2	$[TiF_4]_{\infty}$, columns built of $[Ti_3F_{15}]$ trimers	4	[11]
1:2, 2:3	(ImH)[Ti ₂ F ₉] Ti(1)F ₆	TiF _{3/1} F _{3/2}	1	$([Ti_2F_9]^-)_{\infty}$, double zigzag chain	3	[10]
3:5, 2:3, 1:1	$(ImH)_{3}[Ti_{5}F_{23}]$ Ti(2)F ₆ -Ti(5)F ₆ Ti(1)F ₆	$\begin{array}{l} TiF_{3/1}F_{3/2}\\ TiF_{4/1}F_{2/2} \end{array}$	$(0.9)^d$ 1 0.5	$[\mathrm{Ti}_5\mathrm{F}_{23}]^{3-}$, pentamer	3 2	[10]
2:3, 1:1	[ImH] ₄ [Ti ₄ F ₂₀] Ti(1)F ₆ -Ti(2)F ₆	$TiF_{4/1}F_{2/2}$	0.5	$[\mathrm{Ti}_4\mathrm{F}_{20}]^{4-}$, tetramer	2	[<mark>10</mark>]
2:1	$(ImH)_{3}[Ti_{2}F_{11}]$ Ti(1)F ₆ -Ti(3)F ₆	$TiF_{5/1}F_{1/2}$	0.2	$[\text{Ti}_2\text{F}_{11}]^{3-}$, dimer	1	[<mark>10</mark>]
2:1	(ImH)₂[TiF ₆]·2HF Ti(1)F ₆	TiF _{6/1} F _{0/2}	0	$[\mathrm{TiF}_6]^{2-}$, octahedra	0	[<mark>10</mark>]

^a(Im)=imidazole

 b (ImH)₃[Ti₂F₁₁] was prepared as a pure phase. Attempts to prepare pure [ImH]₄[Ti4F₂₀] and [ImH]₃[Ti₅F₂₃] salts failed. The former was contaminated with small amounts of [ImH]₃[Ti₅F₂₃] and the latter with small amounts of (ImH)[Ti₂F₉]. At isolation at room temperature, (ImH)₂[TiF₆]·2HF released HF, and it was converted to (ImH)₂[TiF₆]. [10]

^cNumber of Ti – F_{b} bonds in each Ti F_{6} unit, where F_{b} bridges two Ti atoms

^dAn average value

In $[Ti_5F_{23}]^{3-}$, each of the four octahedra shares two *cis*vertices with the neighboring octahedron, forming a tetrameric ring. The fifth octahedron TiF₆ shares three vertices with three octahedra of the tetrameric ring, forming the Ti₅F₂₃ pentamer (Fig. 3a). The structural fragments of Ti(2)-Ti(5) atoms are TiF_{3/1}F_{3/2} (ε = 1), and the structural fragment of Ti(1) atom is TiF_{4/1}F_{2/2}, (ε = 0.5) (numbering of Ti atoms according to [10]). The average degree of polymerization of the structure [ImH]₃[Ti₅F₂₃] is ε = 0.9.

The crystal structures of $(ImH)_4[Ti_4F_{20}]$ salt (Table 3) consist of $[Ti_4F_{20}]^{4-}$ anions (Fig. 2a) and ImH⁺ cations interacting via hydrogen bonds [10]; the structural fragment is $TiF_{4/1}F_{2/2}$. The degree of polymerization of the $(ImH)_4[Ti_4F_{20}]$ structure is $\varepsilon = 0.5$ (Table 3). The $(ImH)_4[Ti_4F_{20}]$ compound can also be considered as a product of structural depolymerization of $[ImH]_3[Ti_5F_{23}]$. Under the action of F⁻ ions, the Ti – F_b – Ti bridges in the pentameric $[Ti_5F_{23}]^{3-}$ anion are broken, giving rise to the tetrameric anion $[Ti_4F_{20}]^{4-}$, which forms the basis of the crystal structure $(ImH)_4[Ti_4F_{20}]$.

Dimeric anions $[Ti_2F_{11}]^{3-}$ (Fig. 3b), consisting of two octahedral TiF₆ groups sharing a common vertex, are present in the crystal structure of $[ImH]_3[Ti_2F_{11}]$, which crystallizes in the Im/TiF₄/aHF system at a molar ratio Im:TiF₄ = 2:1 [10]. In contrast to $(C_5H_5NH)_2(H_3O)[Ti_2F_{11}] \cdot H_2O$ [12], whose structure contains only a crystallographically unique $[Ti_2F_{11}]^{3-}$ anion, the $[ImH]_3[Ti_2F_{11}]$ structure contains three crystallographically independent Ti_2F_{11} groups with different conformations and coordination domains. The structural fragment of the $[ImH]_3[Ti_2F_{11}]$ crystal structure is $TiF_{5/1}F_{1/2}$, and the degree of polymerization of the structure is $\varepsilon = 0.2$. The $[ImH]_3[Ti_2F_{11}]$ compound can also be obtained by depolymerization of $(ImH)_4[Ti_4F_{20}]$ under the action of F^- ions, which leads to the rupture of some of the trans-located bridging bonds between TiF₆ groups in the Ti_4F_{20} tetramer.

In the Im/TiF₄/aHF system with a molar ratio of Im:TiF₄=2:1, the compound [ImH]₂[TiF₆]·2HF crystallizes. The structure of [ImH]₂[TiF₆]·2HF is formed from imidazolium cations [ImH]⁺, octahedral [TiF₆]²⁻ anions, and two HF molecules [10]. The structural fragment of the compound [ImH]₂[TiF₆]·2HF is TiF_{6/1}F_{0/2}, and the degree of polymerization is $\varepsilon = 0$. The [ImH]₂[TiF₆] salt can also be obtained as a result of the structural depolymerization of [ImH]₃[Ti₂F₁₁] in HF solution under the action of F⁻ ions by breaking the Ti-F_b-Ti bridge in the Ti₂F₁₁ group.

Conclusions

The structural depolymerization of TiF₄, which is the basis for the formation of the crystal structure of fluoride complexes of titanium(IV), was studied in the systems CsF/TiF₄/ aHF, $[C(NH_2)_3]_2CO_3$ (and/or $[C(NH_2)_3]Cl)/TiF_4/aHF$, and Im/TiF₄/aHF. The compositions of fluoridotitanates(IV) formed in these systems and their crystal structures are considered in terms of the degree of polymerization (ε). With increasing initial amount of fluoride ion donors (AF=CsF or in (Gua)F and ImHF formed in situ) in AF/TiF₄ reactions, the degree of polymerization of the crystal structures of the obtained salts decreases. In all systems studied, the final products of TiF₄ structural depolymerization are A₂[TiF₆] salts. The Ti atoms in the [TiF₆]²⁻ anion are coordinated by six F ligands and form octahedra. The corresponding structural fragment is TiF_{6/1}F_{0/2}, and the degree of polymerization (ε =2) is present in the crystal structure of TiF₄ with structure fragments TiF_{2/1}F_{4/2}.

In conclusion, it should be noted that the proposed concept of structural depolymerization of metal fluoride compounds [1, 4] was considered in [15] as applied to the formation of fluoride glasses. In [16], the structure of fluorindate glasses is discussed on the position of structural depolymerization of "octahedral structures." In particular, it is indicated that the sequential addition of mono- and divalent metal fluorides to InF₃, the structure of which is formed from InF₆ octahedral groups linked by vertices, takes place, as in the concept of structural depolymerization of metal fluoride compounds, sequential structural depolymerization: framework (InF₃) – layer (InF₄⁻)_∞ – (InF₅²⁻)_∞ chain – isolated [InF₆]³⁻ octahedra.

Author contribution Zoran Mazej syntheses, Evgeny Goreshnik structure determination, and Ruven Davidovich conclusions and writing.

Funding E. G. and Z. M. acknowledge financial support from the Slovenian Research Agency (research core funding No. P1–0045; Inorganic Chemistry and Technology).

Data availability Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare no competing interests.

References

- Davidovich RL (1986) Depolarizing action of fluoride ions on transition metal fluorides. Koord Khim 12:281–282 (in Russian)
- Davidovich RL (1998) Stereochemistry of complex fluorides of zirconium and hafnium. Koord Khim 24:803–821 (in Russian). Russ J Coord Chem 24:751–768
- Davidovich RL (1999) Stereochemistry of mixed-ligand fluorinecontaining complex compounds of zirconium and hafnium, Koord Khim 25:243–255 (in Russian). (Russ J Coord Chem 25:225–236)
- 4. Davidovich RL (1990) Structural depolymerization and systematics of crystal structures of fluorozirconates, In Problemy

kristallokhimii 1990 (Problems of crystal chemistry 1990) / ed. M.A. Poraj-Koshits. M.: Nauka 48–81 (in Russian)

- Davidovich RL, Sergienko VI (2016) Structural chemistry of complex fluorides of titanium (IV), zirconium (IV) and hafnium (IV), Vladivostok: Dalnauka, 176 p (in Russian)
- Davidovich RL (1998) Structural depolymerization of complex uranyl fluorides. Russ J Coord Chem 24:192–195
- Tulsky EG, Long JR (2001) Dimensional reduction: a practical formalism for manipulating solid structures. Chem Mater 13:1149–1166. https://doi.org/10.1021/cm0007858
- Shlyapnikov IM, Goreshnik EA, Mazej Z (2018) Increasing structural dimensionality of alkali metal fluoridotitanates(IV). Inorg Chem 54:1976–1987. https://doi.org/10.1021/acs.inorgchem. 7b02890
- 9. Shlyapnikov IM, Goreshnik ES, Mazej Z (2018) Guanidinium perfluoridotitanate(IV) compounds: structural determination of an oligomeric $[Ti_6F_{27}]^{3-}$ anion, and an example of a mixed-anion salt containing two different fluoridotitanate(IV) anions. Eur J Inorg Chem 5246–5257. https://doi.org/10.1002/ejic.201801207
- Shlyapnikov IM, Mercier HPA, Goreshnik EA, Schrobilgen GJ, Mazej Z (2013) Crystal structures and Raman spectra of imidazolium poly[perfluorotitanate(IV)] salts containing the [TiF₆]²⁻, ([Ti₂F₉]⁻)_∞, [Ti₂F₁₁]³⁻, and the new [Ti₄F₂₀]⁴⁻ and [Ti₅F₂₃]³⁻ anions. Inorg Chem 52:8315-8326. https://doi.org/10.1021/ic302468j

- Bialowons H, Müller M, Müller BG (1995) Titantetrafluorid eine überraschend einfache kolumnarstruktur. Z Anorg Allg Chem 621:1227–1231
- 12. Mazej Z, Goreshnik E (2009) Poly[perfluorotitanate(IV)] salts of $[H_3O]^+$, Cs^+ , $[Me_4N]_+$, and $[Ph_4P]^+$ and about the existence of an isolated $[Ti_2F_9]^-$ anion in the solid state. Inorg Chem 48:6918–6923
- Popov YD, Kavun VY, Gerasimenko AV, Sergienko VI, Antokhina TF (2002) Crystal structures of LiCsTiF₆ and Cs₂TiF₆ and internal mobility of complex anions. Koord Khim 28:19–24 (in Russian). Russ J Coord Chem 28:21–26. https://doi.org/10.1023/A:1013707619394
- Calov U, Schneider M, Leibnitz P (1991) Guanidinium hexafluorometallate von titan, silicium, germanium und zinn. Guanidiniumpentafluorooxoniobat und guanidiniumtetrafluorodioxowolframat. Z Anorg Allg Chem 604:77–83
- Fedorov PP (1997) Crystallochemical aspects of fluoride-glass formation. Crystallogr Rep 42:1064–1075
- Fedorov PP, Zakalyukin RM, Ignat'eva LN, Bouznik VM (2000) Fluoroindate glasses. Russ Chem Revs 69:705–716. https://doi. org/10.1070/RC2000v069n08ABEH000582.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.