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Abstract
Tuberculosis (TB), an infectious remains a global health burden till date. Considering immense importance of theoretical 
tools in computer aided-drug designing, the current study focuses on common pharmacophore and QSAR analysis of 38 imi-
dazopyridine analogues as anti-TB agents. Our developed atom-based, field-based, and multilinear regression based-QSAR 
models showed high values for statistical robustness for internal as well as external validations (a correlation coefficient: 
R2 > 0.9, least standard deviations, higher Fischer coefficient, and cross-validation correlation coefficient: Q2 > 0.5). From 
our ZINC-Drug-like analysis, we were retained with 5 hits (VS1-VS-5), among them VS-4 molecule was found to have high 
potency (predicted  pIC50 (μM) value: 7.96 (against MTB H37Rv ATCC 27,294)) with good theoretical properties (high 
softness, and low hardness values). From our designed analogues (S1-S10), analogue S-10 was retained with high potency 
as well as good pharmacokinetics to act as good anti-mycobacterial agent in future.
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Abbreviations
TB  Tuberculosis
QSAR model  Quantitative structure–activity rela-

tionship model
DFT  Density functional theory
MDR-TB  Multi-drug-resistant tuberculosis
XDR-TB  Extensively drug-resistant tuberculosis
3D-QSAR model  3D-quantitative structure–activity 

relationship models
CPH  Common pharmacophore hypothesis
R2  Correlation coefficient
Q2  Cross-validation correlation coefficient

RMSE  Root mean square error
ADMET  Absorption, distribution, metabolism, 

excretion and toxicity properties
MIC  Minimum inhibitory concentration
IC50  Inhibitory concentration
PLS  Partial least squares

Introduction

Tuberculosis (TB), an infectious disease caused by Myco-
bacterium, remains a global health burden since many 
decades [1]. With the emergence of multidrug-resistant 
TB (MDR-TB) and extensively drug-resistant TB (XDR 
TB) strains, these infections have been amplified further 
and became difficult to cure with the conventional anti-TB 
therapy [2]. Moreover, TB has an active association with 
acquired immunodeficiency syndrome (AIDS) [3]. Such sce-
nario of co-infection was accounted for 26% of all AIDS-
associated deaths [2]. The WHO (World Health Organi-
zation) statistics on TB for the year 2020 says that there 
were 1.5 million people died from tuberculosis (including 
214,000 AIDS-related deaths). Current pharmacotherapy for 
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TB includes several drugs which has severe adverse side 
effects. Moreover, these drugs are now become ineffective 
due to resistant strains [4]. Thus, to deal with these issues, 
there is an urgent need to develop new chemical entities 
(NCEs) with unique mechanism of actions.

Imidazopyridine motifs are very crucial in the rational 
drug design and developments of newer drugs [5]. Recently, 
this scaffold has tremendously explored for central nervous 
system (CNS), antidiabetic, antitubercular, antiviral, anti-
cancer agents, etc. [5]. An optimization of imidazopyridine 
heterocyclic system would serve as important medicinal 
chemistry tool to enhance further potency of drug moiety. 
Q203 and ND09759 were two clinical drug candidates, 
which showed strong activity against resistant strains of TB 
(Fig. 1) [1]. The IMB-1402 candidate also showed accept-
able safety parameters (Fig. 1).

From several decades, computer-aided drug design 
(CADD) has been immensely explored and benefited for new 
drug discovery, structural optimization, and the target identi-
fication. Considering large number of supportive literatures 
[6–17], it is very clear that CADD approach facilitates an 
economical, less time-consuming, and successful outputs 
with the help of varieties of algorithms and ideas. Thus, this 
work focuses on incorporation of CADD approach in anti-
TB drug discovery processes using ligand-based as well as 
structure-based drug design techniques. The QSAR approach 
would facilitate medicinal chemists to retrieve exact molecu-
lar characteristics required for biological activity and thus, 
would serve as significant tool in drug designing.

In our present study, we have carried out PHASE 
(Schrödinger, 2021) generated pharmacophore and multiple 
QSAR analysis (Figs. 2, 3, 4, 5, 6, 7; Tables 1, 2, 3, 4, 5, 6, 
7) [17–20]. The generated pharmacophore model signifies 
key specific characteristics required for imidazopyridines 
to act as potent antimycobacterial inhibitors. Our current 
Atom as well as Field based 3D-QSAR models correlates 
key features required with inhibitory potencies of molecules. 
Thus, from these information, one can design more potent 
imidazopyridines. Moreover, with the help of designed 2D- 
and 3D-QSAR models, we come up with newer designed 10 
(S1-S10) imidazopyridines analogues (Table 8) with better 
in silico pharmacokinetics and good predictive potencies. 
From the originally reported best hit (molecule 24), we 
screened ZINC drug like database and retrieved with top 5 
imidazopyridines (Table 9). These hit molecules were then 
analyzed theoretically using DFT approach (Figs. 8, 9, 10). 
From theoretical properties, the best probable hit molecule 
VS-4 is also reported herein (Table 10).

Materials and methods

Softwares

In our current study, the developments of common phar-
macophore hypothesis (CPH) and 3D-QSAR (quantita-
tive structure–activity relationships (QSAR)) models were 
carried out using PHASE module (Schrödinger, LLC, 

Fig. 1  Structures of ND-09759, 
Q203, and IMB-1402
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Fig. 2  (a) Pharmacophore 
model (HHPRR_1) gener-
ated by PHASE. and (b) The 
HHPRR_1 model illustrates 
hydrophobic feature (H4H5; 
green color), positive feature 
(P8; blue), and aromatic rings 
(R10R11, brown color) features. 
All active ligands overlapped on 
the generated model HHPRR
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Fig. 3  Graphical presentation of 
actual versus predicted  pIC50 of 
(a) training and (b) test set mol-
ecules for obtained atom-based 
3D-QSAR model

Fig. 4  A–D Visual representation of atom-based PHASE 3D-QSAR 
model. A Electron withdrawing, B hydrogen bond donor, C hydro-
phobic, D Negative, and E positive ionic, blue color cubes indicate 

positive coefficient or increase in activity and red color cubes indicate 
negative coefficient or decrease in activity

Fig. 5  Graphical presentation 
of actual versus predicted  pIC50 
of (a) training and (b) test set 
molecules for obtained field 
3D-QSAR model
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New York USA, 2021). For GA-MLR (genetic algorithm-
based multilinear models)-based QSAR models, we used 
QSARINS (2.2.2 software). For in silico ADMET analysis 
(absorption, distribution, metabolism, excretion, and toxic-
ity), we utilized “admetSAR” webserver [21].

Dataset, structure drawing, optimization, 
and molecular descriptor calculations

For this work, a dataset of thirty-eight substituted imidazo-
pyridine (38) compounds having a wide chemical space with 
moderate to high anti-mycobacterium activity was selected 
(Table  1) [4]. All 38 imidazopyridine analogues were 
drawn using ChemBioDraw V.12.1. These 2D structures 
were then converted to 3D forms and optimized using the 
MMFF94 force field with the help of software, “TINKER.” 
For QSARINS model development, “Open3DAlign” pro-
gram was used for alignments of all dataset molecules. For 
calculation of molecular descriptors, we used PaDEL and 
ChemDes. As per literature-known process, initially we 
divided our dataset into random splitting into 70%:30% 
(the training set and test set molecules, respectively). For 
the CPH development, we placed 27 compounds in train-
ing set and 11 molecules in the test set. Furthermore, all 
CPH models were assessed for their statistical significances. 
Throughout QSAR model developments (Tables 1–7),  pIC50 
 (pIC50 =  − log10  IC50) values are considered as dependent 
variables.

Pruning of molecular descriptors for GA‑MLR‑based 
QSAR models

It is very crucial to mention that descriptor pruning is 
the key step for the development of QSAR models. As 
“PaDEL” would provide more than > 30,000 molecular 

descriptors, we used objective feature selection module of 
QSARINS ver. 2.2.2 [22–24]. Thus, many descriptors were 
excluded due to high co-linearity (|r|> 0.90) and nearly 
constant (> 95%) values. In continuation with the same, 
we also removed various esoteric descriptors manually. 
Finally, via descriptor pruning step, we were retained with 
600 molecular descriptors (1D, 2D, and 3D).

GA‑MLR‑based QSAR model building

Statistically robust GA-MLR-based QSAR models 
were developed and validated using popular software 
QSARINS ver. 2.2.2. All developed QSARINS-based 
models were assessed for their internal and external 
validations, analysis of their applicability domains 
and Y-randomizations. These validations were carried 
as per the OECD guidelines. Initially, we divided all 
38 molecules into training and test sets. Further, we 
allowed splitting of dataset as per known criteria [1, 7, 
9] or method, i.e., 70%, training:30%, test. respectively. 
In this way, we used training set molecules for model 
building and test set molecules for external validations. 
Moreover, we also allowed multiple splitting so as to 
gain models with good statistical significances. During 
QSARINS utilization, we kept all default functions as 
it is. The  Q2

LOO was selected as a fitness function. We 
observed that the value of  Q2

LOO was increased till 6 
variables and then, after there were only minor incre-
ments in  Q2

LOO. Thus, models with 3–6 variables were 
developed and assessed to check the overfitting issues. 
The best GA-MLR-based QSAR model was analyzed and 
studied further (Table 7). Further information on GA-
MLR-based QSAR model validation is available in the 
supporting information.

Fig. 6  Field contour maps 
based on test set compounds. 
A Gaussian electrostatic fields: 
favored electropositive (blue) 
and disfavored electronegative 
(red). B Gaussian hydrogen 
bond acceptor field: favored 
(red) and disfavored (magenta). 
C Gaussian hydrogen bond 
donor field: favored (purple) 
and disfavored (cyan). D Gauss-
ian hydrophobic field: favoured 
(yellow) and disfavored (white). 
E Gaussian steric field: favored 
(green) unfavorable (yellow)
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The CPH studies

For the developments of common pharmacophore hypoth-
eses, we utilized two parts on our dataset molecules (38), 
viz., actives and inactive (Fig. 2). CPH analysis was per-
formed with PHASE (Schrödinger, 2021 release, Inc.). 
The macromodel (OPLS-2005 force field) utility was used 

for minimization of all 38 IMPs (imidazopyridines). Lig-
Prep minimized configurations were allowed to import 
into PHASE workflow at pH 7.4 ± 0.0. Thereafter, we set a 
criterion for splitting of molecules into active and inactive 
sets (Active = MIC (-log) > 5.40 mol/l and inactive = MIC 
(-log) < 4.30  mol/l). Default pharmacophoric features 
includes 6 features (positive (P), aromatic ring (R), negative 

Fig. 7  a Graph of experimental vs predicted  pIC50 values for model 1. b William’s plot for model 1. c Insurbia plot and d Y-scramble plot for 
model 1
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(N), hydrogen bond acceptor (A), hydrogen bond donor (D), 
and hydrophobic (H)). Throughout pharmacophore develop-
ments, we used default definitions of PHASE module keep-
ing box size for pharmacophore to 2 Å. After CPH gen-
erations, top ranked CPH was selected and used further for 
3D-QSAR analysis (grid space = 1 Å and PLS factor = 3).

Flexible ligand alignment and 3D‑QSAR studies

For ligand alignments, we had superimposed all Lig-
Prep minimized 38 ligands (LigPrep, Schrödinger, 
2021). As in atom-based 3D-QSAR, a set of overlap-
ping van der Waals spheres are considered; thus, we fur-
ther carried the QSAR model development with atom-
based 3D-QSAR option (Phase, Schrödinger, 2021) 
(Tables 1–3). Twenty-seven molecules were placed in the 
training set, while 11 molecules were in test set for both 
atom as well as field based-3D-QSAR analysis (Phase, 
Schrödinger, 2021) ((Tables 4–6); Figs. 3–6). The ran-
dom splitting pattern (70%:30%) was used while develop-
ing atom as well as field based-3D-QSAR models. Partial 
least square (PLS) factor was kept as 3 along with grid 
spacing of 1 Å. In Field based 3D-QSAR, Gaussian based 
fields were employed (Fig. 6) [25]. These consists of 
five Gaussian-based field features like Gaussian H bond 
donor, Gaussian H bond acceptor, Gaussian electrostatic, 
Gaussian steric, and Gaussian hydrophobic. The truncate 
steric force field as well as electrostatic force fields were 
kept at 30.0 kcal/mol as per default settings. Moreover, 
variables with std. dev. < 0.01 were subjected to elimi-
nation. In field-based QSAR, Gaussian intensities (as 
descriptors) were considered as independent variables. 
Finally, for both atom-based and field-based 3D-QSAR 
models, visualization of contour maps was carried out 
(Figs. 3–6).

Theoretical method

The density functional theory (DFT) was utilized in order 
to optimize the gas-phase structures of compounds under 
investigations (VS-1-VS-5) [19]. The hybrid B3LYP method 
was used for current DFT calculations. Overall, basis set 
6–311 +  + G** was used while doing B3LYP calculations. 

Table 1  Experimental dataset employed for atom-based 3D-QSAR 
(PLS factor 3) study along with predicted and actual  pIC50 values 
(against MTB H37Rv ATCC 27,294)

Compound ID QSAR set Actual  pIC50 Predicted  pIC50

24 Training 7.42 6.4378
25 Test 6.208 5.63547
26a Test 6.092 5.85956
26b Training 5.815 5.90989
26c Training 6.119 6.37792
26d Training 6.194 6.20677
26e Training 5.857 6.5087
26f Test 6.745 6.7942
26 g Training 7.357 6.95506
26 h Training 7.387 7.50282
26i Training 4.046 3.85054
26 J Test 4.371 5.61723
26 k Test 5.275 4.97233
26L Test 4.325 5.69386
27A Training 5.207 5.58198
27B Training 5.833 5.6755
27C Training 5.879 5.67855
27D Training 4.06 4.24814
27E Training 4.906 4.83818
27F Training 4.976 5.15422
27G Training 4.06 4.05258
28A Training 4.304 4.37344
28B Training 5.001 4.76742
29A Test 5.714 5.30792
29B Training 6.208 6.52477
30A Test 4.02 4.25968
30B Training 4.044 4.24333
30C Test 4.046 4.31918
30D Training 4.362 4.26162
30E Training 4.114 4.29824
30F Test 4.066 4.31047
30G Training 4.337 4.27706
30H Training 4.06 4.19205
30I Training 4.074 4.12127
31 Training 6.18 5.98564
32A Training 4.022 4.16295
32B Training 4.022 3.65859
33 Test 4.044 4.44089

Table 2  The partial least square (PLS) statistics for atom-based 3D-QSAR models

R2 value of a correlation coefficient, F variance ratio, P significance level of the variation ratio, RMSE root mean square error, Pearson R corre-
lation between predicted and observed activity for test set, Q2 value of cross-validation correlation coefficient for predicted activity

# Factors SD R2 R2 CV R2 Scramble Stability F P RMSE Q2 Pearson 
R

1 0.742 0.5957 0.218 0.5467 0.856 36.8 2.42E − 06 0.6 0.6348 0.8044
2 0.4571 0.8527 0.1079 0.7466 0.379 69.5 1.04E − 10 0.6 0.6378 0.806
3 0.3239 0.9291 0.0927 0.8414 0.195 100.5 2.31E − 13 0.63 0.5906 0.7972
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The harmonic vibrational frequencies (HVF) were also cal-
culated at same theoretical levels, after retaining of the con-
verged geometries. The Gaussian 09 program was used for 
geometry optimizations and HVF analyses. Moreover, the 
quantum chemical descriptors derived from the conceptual 
DFT were calculated for the respective molecule.

In silico ADMET predictions

The “admetSAR” tool was employed to calculate ADMET 
properties of newer hydrazones (S1-S10). For current study, 
we also investigated toxicity analysis (carcinogenicities, 
Ames test toxicities, and CYPs enzyme–substrate/inhibi-
tory assessments).

Results and discussion

CPH analysis, virtual screening, and 3D‑QSAR

PHASE-generated pharmacophores usually consists of 
6 features, which are hydrogen bond donor (D), and aro-
matic ring (R), hydrogen bond acceptor (A), hydropho-
bic group (H), negatively ionizable (N), and positively 
ionizable (P) (Fig. 2). Firstly, we aligned all ligands by 
utilizing the flexible ligand alignment with the shape-
based alignment method. Ligands were classified into 
actives, inactive and intermediates. Finally, 5-point phar-
macophore HHPRR_1 (2 hydrophobic (green), 1 positive 
(blue), and 2 aromatic (orange circles)) hypothesis was 
generated and selected based on ranking among 15 gen-
erated CPH models. CPH with HHPRR_1 feature was 
then visualized with excluded volumes to see features 
which should not clash in that region. We finally, super-
imposed dataset molecules (actives) with HHPRR_1 for 
visualization.

With the help of 3D structure of experimentally most 
active molecule, 24, we further used “Swiss similarity”-
based ligand-based virtual screening (combined approach). 
From virtual screening of ZINC drug like hits, out of > 120 
hits, we selected top 5 hits (VS 1–5) for further theoreti-
cal analysis and calculations of their QSAR based activity 
predictions. Moreover, we have also designed new series 
of IMPs (S1-S10) and also predicted their probable QSAR 
based potencies.

Table 3  The atom-type fraction 
statistics for the developed 
atom-based 3D-QSAR models

# Factors H-bond donor Hydrophobic/non-
polar

Negative ionic Positive ionic Electron- 
withdrawing

1 0.069 0.617 0.028 0.065 0.221
2 0.076 0.582 0.042 0.084 0.216
3 0.081 0.583 0.048 0.088 0.201

Table 4  Experimental dataset employed for field-based 3D-QSAR 
(PLS factor 3) study along with predicted and actual  pIC50 (µM) val-
ues (against MTB H37Rv ATCC 27,294)

Ligand name QSAR set Activity # Factors Predicted activity

24 Test 7.42 1 2 3 5.99453
25 Training 6.208 1 2 3 6.31762
26a Training 6.092 1 2 3 5.54217
26b Training 5.815 1 2 3 5.58003
26c Test 6.119 1 2 3 6.15684
26d Training 6.194 1 2 3 6.21468
26e Training 5.857 1 2 3 6.29691
26f Test 6.745 1 2 3 6.45212
26 g Training 7.357 1 2 3 6.703
26 h Training 7.387 1 2 3 7.22026
26i Training 4.046 1 2 3 4.50203
26 J Test 4.371 1 2 3 6.18193
26 k Test 5.275 1 2 3 5.40394
26L Training 4.325 1 2 3 4.49476
27A Training 5.207 1 2 3 5.57999
27B Test 5.833 1 2 3 5.04592
27C Training 5.879 1 2 3 5.64188
27D Training 4.06 1 2 3 3.96404
27E Training 4.906 1 2 3 5.25027
27F Training 4.976 1 2 3 5.55222
27G Test 4.06 1 2 3 4.85971
28A Training 4.304 1 2 3 4.35371
28B Training 5.001 1 2 3 4.49471
29A Training 5.714 1 2 3 5.84571
29B Training 6.208 1 2 3 6.14623
30A Training 4.02 1 2 3 4.10262
30B Training 4.044 1 2 3 4.11884
30C Training 4.046 1 2 3 4.10064
30D Training 4.362 1 2 3 4.17826
30E Training 4.114 1 2 3 4.35093
30F Test 4.066 1 2 3 4.12009
30G Test 4.337 1 2 3 4.41236
30H Training 4.06 1 2 3 3.90418
30I Training 4.074 1 2 3 4.04521
31 Training 6.18 1 2 3 6.23863
32A Training 4.022 1 2 3 3.53022
32B Test 4.022 1 2 3 4.51867
33 Training 4.044 1 2 3 4.23191
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Atom based‑ and field‑based 3D‑QSAR studies 
(statistical validations)

Table 1–6 depict statistical analysis of developed atom-based as 
well as field-based 3D-QSAR models. Our detailed common 
pharmacophoric hypothesis revealed that hydrophobic features 
as well as ring features are important for biological activity. Our 
generated plots for the training set and test set correlations with 
biological activity depicted acceptable 3D-QSAR equations 
(Fig. 3). In our current analysis of atom-based 3D-QSAR, 27 
molecules were placed in training set and 11 molecules in the  
test set (a correlation coefficient: R2 = 0.9291, standard deviations, 
SD = 0.3239, Fischer coefficient, F = 100.5, cross-validation  
correlation coefficient: Q2 = 0.5906, RMSE = 0.63, Pearson  
R = 0.7972, P = 2.31E − 13). For the field-based 3D-QSAR, we 
were also retained with acceptable set of parameters as like atom-
based QSAR (a correlation coefficient: R2 = 0.9161, standard  
deviations, SD = 0.3293, Fischer coefficient, F = 87.3, cross- 
validation correlation coefficient: Q2 = 0.5039, RMSE = 0.83, 
Pearson R = 0.7149, P = 4.73E − 13). Higher values for R2, Q2, and  
F values signifies statistical robustness of developed 3D-QSAR 
models. Further, these models were subjected to contour map 
analysis for more information of structural characteristics.

Visualizations of 3D‑QSAR models

Analysis of atom‑based 3D‑QSAR models

From our developed PHASE-generated atom-based 
3D-QSAR models, we only selected the best one with higher 
statistical robustness. Thus, contributions of various features 
were analysed by QSAR visualization. The blue occlusion 
maps or contours signifies increment in biological activity 

(BA). However, red occlusion maps or contours suggests 
decrease in BA. Figure 4, represents various contour maps 
for different features of atom-based QSAR visualizations 
observed for molecule 24.

From our best generated atom-based 3D-QSAR, it was clear 
that electron withdrawing substitutions or groups besides a 
2,6-dimethylimidazo[1,2-a]pyridine feature would increase in 
biological activity as represented majority by blue occlusion 
maps (BA). However, replacement or substitutions over amidic 
oxygen has been represented by red occlusion maps indicat-
ing slight decrease in BA. Hydrogen bond donating features 
over 2,6-dimethylimidazo[1,2-a]pyridine are well tolerated 
and usually would tend to increase in BA as represented with 
blue contours. It has also been seen that hydrophobic groups 
or substitutions over 2,6-dimethylimidazo[1,2-a]pyridine and 
1-bromo-4-methoxybenzene feature are significantly increasing 
biological activities. This has been represented with large number 
of blue occlusion maps. Red contours for negative feature over 
1-bromo-4-methoxybenzene feature indicates decrement in BA; 
however, positive ionic features show blue maps over the region 
of imidazo[1,2-a]pyridine feature. The statistical parameters and 
atom fractions for the developed atom-based QSAR models are 
tabulated in Tables 2 and 3.

Analysis of field‑based 3D‑QSAR models

In order to study Gaussian field-based 3D-QSAR models, we 
superimposed all dataset molecules over the best developed 
field-based 3D-QSAR model (Fig. 6). It has been observed 
that Gaussian electrostatic fields over amidic feature attached 
to 2,6-dimethylimidazo[1,2-a]pyridine prominently showed red 
occlusion maps indicating disfavored substitutions, while some 
of substitutions associated with 2,6-dimethylimidazo[1,2-a] 
pyridine feature indicated blue occlusions (favored pattern). 

Table 5  The partial least square (PLS) statistics for field-based 3D-QSAR models

R2 value of a correlation coefficient, F variance ratio, P significance level of the variation ratio, RMSE root mean square error, Pearson R corre-
lation between predicted and observed activity for test set, Q2 value of cross-validation correlation coefficient for predicted activity

# Factors SD R2 R2 CV R2 Scramble Stability F P RMSE Q2 Pearson 
R

1 0.7054 0.5828 0.2912 0.3794 0.913 36.3 2.30E − 06 0.98 0.3079 0.5551
2 0.4992 0.7991 0.1954 0.5908 0.613 49.7 1.93E − 09 0.94 0.3697 0.622
3 0.3293 0.9161 0.1264 0.6834 0.339 87.3 4.73E − 13 0.83 0.5039 0.7149

Table 6  The field type fraction 
statistics for the developed field-
based 3D-QSAR models

# Factors Gaussian steric Gaussian  
electrostatic

Gaussian 
hydrophobic

Gaussian H-bond 
acceptor

Gaussian 
H-bond 
donor

1 0.526 0.073 0.194 0.112 0.095
2 0.459 0.093 0.201 0.13 0.117
3 0.421 0.091 0.225 0.144 0.118
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Gaussian hydrogen bond acceptor field feature depicted  
prominent favored (red) and disfavored (magenta) occlusions 
immediate to portion attached with 2,6-dimethylimidazo[1,2-a] 
pyridine, which indicated intermediate effects on BA. Purple 
colored occlusions for the Gaussian hydrogen bond donor 
field indicated acceptable substitutions over a chemical bridge 
between 2,6-dimethylimidazo[1,2-a]pyridine moiety and 
1-bromo-4-methoxybenzene ring feature. Gaussian hydrophobic  
field feature prominently depicted white occlusions over a 
chemical bridge between 2,6-dimethylimidazo[1,2-a]pyridine 
moiety and 1-bromo-4-methoxybenzene ring feature, thus  
indicating disfavored nature of substitutions with respect to BA. 
Green colored occlusions for the Gaussian Steric field feature 
over 1-bromo-4-methoxybenzene ring feature simply indicates 
tolerable steric features. The statistical parameters and field 
fractions for the developed field-based models are tabulated in 
Tables 5 and 6.

The analysis and interpretation of QSARINS model

For our present study, we used a small number of dataset mol-
ecules; from our previous study, it was cleared that QSAR mod-
elling can be performed if there is a sufficient chemical space 
covered by analogues. It is also important to note that our cur-
rently developed model satisfies OECD (The Organisation for 
Economic Co-operation and Development) criteria (Table 7). 
Moreover, robust statistical validation parameters are also sat-
isfying standard criteria (high values of Golbraikh and Tropsha 
criteria and CCCex). Thus, both internal and external validation 
parameters have been recorded for currently developed model 
and found to be statistically robust (see supplementary infor-
mation) (Fig. 7). Further information on applicability domain 
analysis and model selection basis has been attached in sup-
plementary information.

From our analysis, we finalized our best developed mod-
els as shown below:

Multivariate model

Appendix A. Model 1 (70% training: 30% test set, 5 
parametric)

Appendix B.  pIC50 = 10.0372 (± 3.8874) + 0.0517 
( ±  0 . 0 1 2 6 ) * A ATS 8 v  +  2 3 . 0 6 5 4  ( ±  1 . 8 8 9 8 )  * 
MATS2s-8.8033 (± 2.7514) * SaaaC + 1.34 (± 0.1022) * 
minHBint3-1.8587 (± 0.4181) * IC2

QSAR model interpretation

From our detailed analysis for QSARINS based model, it 
was observed that positive increments in the autocorrelation 

Table 7  Statistical parameters for developed QSAR model 1

The statistical quality and strength of a GA-MLR-based QSAR model 
was determined on the basis of (a) internal validation based on leave-
one-out (LOO) and leave-many-out (LMO) procedure (i.e., cross-
validation (CV)); (b) using external validation; (c) Y-randomization 
(or Y-scrambling), and (d) fulfilling of respective threshold value for 
the statistical parameters: R2

tr ≥ 0.6, Q2
loo ≥ 0.5, Q2

LMO ≥ 0.6, R2 > Q2, 
R2

ex ≥ 0.6, RMSEtr < RMSEcv, ΔK ≥ 0.05, CCC  ≥ 0.80, r2
m ≥ 0.6, 

(1 − r2/ro
2) < 0.1, 0.9 ≤ k ≤ 1.1 or (1 − r2/r’o2) < 0.1, 0.9 ≤ k’ ≤ 1.1, 

|ro
2 − r’o2|< 0.3 with RMSE and MAE close to zero

Statistical parameter Model 1

Fitting
R2

tr 0.9525
R2

adj 0.9411
R2

tr—R2
adj 0.0113

LOF 0.1484
Kxx 0.4239
ΔK 0.0547
RMSEtr 0.2426
MAEtr 0.1701
RSStr 1.5885
CCC tr 0.9757
s 0.2750
F 84.2967
Internal validation
R2

cv (Q2
loo) 0.9190

R2-R2
cv 0.0335

RMSEcv 0.3168
MAEcv 0.2239
PRESScv 2.7096
CCC cv 0.9585
Q2

LMO 0.9084
R2

Yscr 0.1930
Q2

Yscr  − 0.3579
External validation
RMSEex 1.4240
MAEex 1.1972
PRESSext 22.3052
R2

ex 0.4000
Q2-F1  − 0.9155
Q2-F2  − 0.9158
Q2-F3  − 0.6358
CCC ex 0.0046
Calc. external data regr. angle from diagonal  − 44.7°
R2-ExPy (predictions by LOO) 0.9194
R’o2 0.9151
k’ 0.9980
r’2

 m 0.8592
Ro

2 0.9191
k 0.9983
r2

m 0.0003
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Table 8  A dataset of newer imidazopyridine hydrazone derivatives S1–S10 (10) analogues used in the current study
C

om
pd

.
Chemical Structures pIC50

(µM) 
values 
(against 
MTB 
H37Rv 
ATCC 
27294)* C

om
pd

.

Chemical Structures pIC50 (µM) 
values (against 
MTB H37Rv 
ATCC 27294)

1.
N

N O

HN N
O

N N
N

Br
N
H

H3C

O

NO2

12.55

6.
N

N O

HN N
O

N N
N

N
H

H3C

O

NO2

13.139
2.

N

N O
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O

N N
N

Cl
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O

NO2

12.53
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N

N O
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O

N N
N

Cl
N
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O

NO2

Cl

12.745
3.

N

N O

HN N
O

N N
N

H
N
H

H3C

O

NO2

12.52

8.
N

N O

HN N
O

N N
N

N
H

H3C

O

NO2

Cl

12.531
4.

N

N O

HN N
O

N N
N

N
H

H3C

O

NO2

12.53

9.
N

N O

HN N
O

N N
N

N
H

H3C

O

NO2

12.83
5.

N

N O

HN N
O

N N
N

F
N
H

H3C

O

NO2

11.954

10.
N

N O

HN N
O

N N
N

N
H

H3C

O

NO2

NO2

Predicted potent analogue 13.64

Predicted  pEC50 values are based on model 1 QSARINS equation

Table 9  A dataset of virtually screened and theoretically studied imidazopyridine derivatives 1–5 (5) analogues used in the current study

ZI
N

C
 

C
om

pd
.

Chemical Structures pIC50 (µM) 
values 
(against MTB 
H37Rv ATCC 
27294)*

C
om

pd
.

Chemical Structures pIC50 (µM) values 
(against MTB 
H37Rv ATCC 
27294)

1.

O

O

N O

N

N 2.670160
613

4.

N

N

HN

O

O
Cl

Predicted potent analogue 7.9605
2.

N

N

HN

O

O

7.949446
266

5.

N

N

N

O

OH3C

3.128135536
3.

N

NO

N

O

CH3

5.944399
335

Predicted  pEC50 values are based on model 1 QSARINS equation
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factor matters with biological activity. Similar trends have been 
observed for increase in descriptor values of MATS2s (Moran 
autocorrelation—lag 2/weighted by I-state), SaaaC (atom-
type electrotopological state descriptor, i.e., sum of atom-type 
E-state:::C:), and minHBint3 (atom-type electrotopological state/
minimum E-state descriptors of strength for potential hydrogen 
bonds of path length 3). However, there is decrement in biologi-
cal activity as there would be decrease in descriptor values of 
information content index (neighborhood symmetry of 2-order) 
(IC2).

Considering limitations of our developed model, we 
believe that with the use of large pool of descriptors and 
large number of dataset molecules, this model can be further 
developed and used for designing and prediction of newer 
analogues of imidazopyridines as anti-TB agents. The MLR 
model was then applied to molecules VS 1–5 and S1-S10 
(Tables 8 and 9).

The DFT studies of the virtually screened ZINC 
drug‑like hits/compounds

Calculations of theoretical properties (the (FMO approach)

One must take into considerations several aspects of the frontier 
molecular orbital theory (FMO), especially HOMO and LUMO 
(the highest occupied and lowest unoccupied molecular orbit-
als) [19]. For electrophilic and nucleophilic sites determinations, 
one must consider LUMO and HOMO orbitals, respectively. 
The FMOs of the title compounds (VS-1 to VS-5) were studied 
in this study (Table 10). As depicted in Fig. 9, the transition 
from HOMO to LUMO for VS-3 and VS-5 belong to the   π* 
transition while that for VS-1, 2, and 4 is a charge transfer. The 
B3LYP-converged geometries of the studied compounds were 
summarized in Fig. 8.

The energy of the highest-occupied molecular orbital 
 (EHOMO), the energy of the lowest-unoccupied molecular 
orbital  (ELUMO), dipole moment (D), and the qunatum chem-
ical descriptors including the chemical potential (μ), chemi-
cal hardness (η), softness (S), and electrophilicity index (ω) 
calculated by the following equations:

where I and A are the ionization energy and electron affinity 
of a species, respectively. 26.

Furthermore, the ionization energy (I) and the electron affinity 
(A) of a species could be calculated by applying the Koopmans’ 
theory [19] (I = -EHOMO and A = -ELUMO) and the quantum chem-
ical descriptors were calculated and summarized in the Table 10. 
It is pertinent to note that both chemical hardness and global 
softness values are comparable with the stability and reactivity 
of molecules. A Smaller (greater) the value of hardness (softness) 
a molecule has, the more reactive it should be. From Table 10, it 
was observed that VS-4 exhibited the lowest value of chemical 
hardness and highest value of global softness among the studied 
compounds, therefore, it is chemically more reactive and less sta-
ble than all other compounds. Moreover, from previous literature 
analyses, one can compare electrophilicity index (ω) with the 

(1)� =
I + A

2

(2)� =
I − A

2

(3)S =
1

2�

(4)� =
�
2

2�

Fig. 8  The B3LYP-optimized 
geometries of 1 ~ 5 (bond 
lengths in Å) (VS-1–5)
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Fig. 9  The HOMO and LUMO 
of the studied compounds 
VS-1 to VS-5 (1–5) (the 
isovalue = 0.02 a.u.)
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Fig. 10  The MEP of the studied 
compounds VS-1 to VS-5 (1–5) 
(the isovalue = 0.0004 a.u)
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toxicity of molecules. From Table 10, it was observed that VS-1 
showed the lowest value of electrophilicity index (ω) among the 
tested compounds, which indicates that it should have the lowest 
toxicity among all the studied compounds.

MEPs

It has been seen that molecular electrostatic potentials 
(MEPs) can be successfully used for measuring the interac-
tion strengths of the nearby charges, nuclei and electrons, 
etc. These plots give us visual representations and provide 
information on the charge distributions [26]. In general, 
red color contours denote the lowest electrostatic potential 
value, while blue indicates the highest electrostatic poten-
tial value. From Fig. 10, it has been seen that oxygen atoms 
in studied compound are responsible for the nucleophilic 
attacks (as they have larger electronegativities).

Theoretical prediction of ADMET properties

Calculations of ADMET properties are very crucial to optimize 
lead molecules. Although, in silico methodologies have known 
limitations, still these methods can successfully use to predict 
pharmacokinetic properties before actual experiments. For our 
current study, we have accessed these properties via in-silico 
methods for virtually screened ZINC Druglike hits (VS1-5) 
and newly designed S1-S10 molecules (the “admetSAR” tool). 
Virtually screened hits were obeyed drug like characteristics. It 
was observed that designed molecules S1-S10 followed a class 
III acute oral toxicity. Moreover, eye erosion, HERG and cor-
rosion properties were found to be negative. Our predicted hit 
molecule, S10 was found to be good in-silico pharmacokinetic 
properties, thus we would recommend molecule S10 for further 
in vitro analysis for future scope on this work.

Conclusion

In summary, a dataset of thirty-eight substituted imidazo[1,2-a] 
pyridine-3-carboxamide (38) compounds was used to develop 
a common pharmacophore hypothesis, atom-based as well 
as field-based 3D-QSAR analysis. Moreover, same dataset 
has been explored for GA-MLR QSAR model developments. 
From pharmacophoric hypothesis, HHPRR we understood that 

hydrophobicity and ring functionality are key important features. 
For both atom-based (a correlation coefficient: R2 = 0.9291, 
standard deviations, SD = 0.3239, Fischer coefficient, 
F = 100.5, cross-validation correlation coefficient: Q2 = 0.5906, 
RMSE = 0.63, Pearson R = 0.7972, P = 2.31E − 13) and field-
based (a correlation coefficient: R2 = 0.9161, standard deviations,  
SD = 0.3293, Fischer coefficient, F = 87.3, cross-validation 
correlation coefficient: Q2 = 0.5039, RMSE = 0.83, Pearson 
R = 0.7149, P = 4.73E − 13) 3D-QSAR analysis, we were retained 
with higher values for both internal as well as external validation 
parameters. Thus, by utilizing CPH and 3D-QSAR visualization 
along with GA-MLR-based QSAR model, one can design newer 
analogues with better predictivity for biological activity and thus, 
would act as a reliable tool. Moreover, from our ZINC drug- 
like screening for actual experimental hit molecule, we retained 
with VS 1–5 hits which were further screened for their DFT 
properties. We also designed a new series of IMP-hydrazone 
molecules (S1-S10) and studied for in-silico ADMET analysis.

From the analysis of in-silico ADMET analysis for both 
VS1-5 and S1-S10, molecule S10 were found to be more potent 
(predicted  pIC50 (μM) value: 13.64 (against MTB H37Rv ATCC 
27,294)) as well as good ADMET properties. Henceforth, the 
designed analogue S10 and virtually screened VS-4 molecules  
(predicted  pIC50 (μM) value: 7.96 (against MTB H37Rv 
ATCC 27,294)) would be proposed forward as potent anti- 
mycobacterial agents from our combined theoretical analysis.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11224- 022- 01879-2.
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