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Abstract
Based on our approach of theoretical modeling of the fullerenemolecule electronic structures, an analysis of themolecular structures of
isolated pentagon rule (IPR) isomer 450 (D5) of fullerene C100 and IPR isomer 1771 (D2) of fullerene C108 has been carried out. For the
first time, the data about the distributions of single, double, and delocalized π-bonds in studied isomer molecules as well as their
molecular formulas are presented. It is revealed that isomer 450 (D5) of fullerene C100 contains two substructures from condensed
phenalenyl-radicals at the poles of the molecule (i.e., has an open electronic shell), whereas isomer 1771 (D2) of fullerene C108 has a
closed electronic shell and contains substructure from condensed coronenes at the equator of the molecule. Their stabilities are
evaluated in accordance with local strains in the molecules and/or the presence of radical substructures.
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Introduction

The study of higher fullerenes is quite complicated due to their
very low abundance in the fullerene soot and the presence of
hundreds of topologically possible isomers with rather lower
symmetries that obey the isolated pentagon rule (IPR). IPR
suggests that the fullerenemolecule with abutting pentagons is
unstable [1, 2]. Theoretical investigations of the structures of
large fullerenes and their isomers become necessary to ana-
lyze experimental results, to determine the structure and sta-
bility of isomers, and to predict new structures. Among the
other higher fullerenes Cn (n > 60), the theoretical information
on C100 and C108 fullerenes is very limited.

For C100, 450 possible molecular geometries satisfy the
IPR [3]. However, to date, there is no C100 isomers that have
been isolated and characterized as an empty cage; they only
have been registered by mass spectrometry. According to the-
oretical calculations, isomer 449 (D2) is the most stable one
followed by isomers 18 (C2), 173 (C1), 174 (C2), 425 (C1),
440 (C2), 442 (C2), in different orders depending on the used
theoretical level [4–8]. Besides, considerable temperature

effects on the stability are found so that not only the ground-
state 449 (D2) isomer but also several other structures (18
(C2), 426 (C1), 425 (C1), 442 (C2), 148 (C1)) are significantly
populated within a wide temperature interval [5].
Nevertheless, several isomers of fullerene C100 have been
identified as various derivatives (exohedral and endohedral).

For the first time, C100 was confirmed experimentally as an
exohedral C100Cl12 with a molecule of unstable isomer 1 (D5d)
with a nanotubular shape [9]. Isomers 18 (C2), 425 (C1), and
417 (C2v) of C100 were also obtained as chloro derivatives
whose structures were identified by X-ray analysis [10].
Isomers 425 (C1) and 18 (C2) were also identified as C1–
C100(425)Cl22 and C2–C100(18)Cl28/30 compounds, respec-
tively, with retained IPR cage connectivities. In contrast, iso-
mer 417 (C2v) has been isolated as Cs–C100Cl28 which loses a
C2 fragment, resulting in the nonclassical C1–C98Cl26 with a
heptagon in the carbon cage. The computations showed that
this isomer originates presumably from isomer 603 (C1) of
fullerene C102, which undergoes the skeletal transformations,
including chloride formation, C2 elimination, and SW trans-
formation [11]. A rather stable isomer 18 (C2) was also indi-
rectly confirmed as the most probable starting fullerene,
whose skeletal transformations lead to obtaining of the non-
classical exohedral C96Cl20 and C94Cl22 with three and one
heptagons, respectively [12, 13].

In contrast to the empty C100 fullerenes, endohedral deriv-
atives demonstrate completely different relative stabilities.
Thus, IPR isomer 450 (D5) was theoretically predicted to be
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the most energetically advantageous C100 cage for the fuller-
enes with endohedral atoms able to donate up to six electrons
to the carbon cage. [8, 14, 15] These theoretical findings were
later confirmed when La2@C100(450) had been isolated and
established by X-ray analysis [16]. It should be noted that this
isomer is one of the most unstable and theoretical calculations
predict for it extremely low HOMO-LUMO gap close to zero
[5]. The isomer 450 (D5) was also found in the crystal struc-
ture of endohedral carbide cluster metallofullerene
La2C2@C100 [17]. Yang and Dunsch reported the preparation
of Dy2@C100 with two metal atoms inside the fullerene cage
[18]. They suggested that the most possible hosts are present-
ed by the most stable empty-cage isomers of C100 [18].
However, they ignored the charge transfer between the encap-
sulated metal atoms and the fullerene cage. The role of the
latter has been emphasized by Valencia, Rodríguez-Fortea,
and Poblet, who found that the isomer 450 (D5) was an un-
usually promising candidate [19]. It was also revealed that this
cage provides maximal separation between the pentagons,
representing the sites of negative charge localization in the
fullerene anions [20, 21].

Even fewer studies are devoted to fullerene C108. For C108,
1799 possible molecular geometries satisfy the IPR [3].
Similar to fullerene C100, to date among them, no C108 isomers
have been isolated and characterized as an empty cage.
According to theoretical calculations, isomer 1771 (D2) is
one of the most stable (with a significant HOMO−LUMO
gap) among 1799 IPR isomers; thus, this isomer is likely to
coexist in the soot and hard to separate experimentally [7].
The most stable isomer is followed by isomers 1643 (C1),
1687 (C1), 1644 (C2), 1648 (C1), 1686 (C2), 1025 (C1),
1646 (C1), 1779 (C2), 1769 (C1), 1062 (C1), 1078 (D3), 574
(C1), 1735 (S4), 1765 (C2), 206 (D3h), in different orders de-
pending on the used theoretical level [6, 7].

Nevertheless, several isomers of fullerene C108 have been
identified as various derivatives (exohedral and endohedral).
The most stable isomer 1771 (D2) is identified as chloro de-
rivative C108Cl12 by single-crystal X-ray analysis with the use
of synchrotron radiation resulted in the structure determina-
tion and represents so far the largest pristine fullerenes with
known cages [22]. Isomer 1660 (C1) has been very recently
characterized by X-ray diffraction as endohedral carbide
metallofullerenes Y2C2@C108 representing the largest
metallofullerene that have been characterized by crystallogra-
phy to date [23]. This giant species have been studied theoret-
ically using the density functional theory (DFT), and even the
MP2 technique, in order to supply further structure and stabil-
ity data [24].

Thus, from 450 and 1799 IPR isomers for fullerenes C100

and C108, respectively, no one isomer has been isolated and
characterized as an empty cage so far. Nevertheless, several
isomers of them have been stabilized and identified as various
exohedral and endohedral derivatives. In this report, we

present the study of the molecular structures of IPR isomer
450 (D5) of C100 fullerene that is one of the most unstable
isomers but stabilized as endohedral fullerenes La2@C100,
La2C2@C100, and, presumably, Dy2@C100 and IPR isomer
1771 (D2) of C108 fullerene that is one of the most stable to
establish their structures, reasons of instability, and their sta-
bilization as various derivatives.

Methodology

Previously, we have developed an approach for studying the
higher fullerenes that provides a complete structural formula
of fullerene with the distribution of single, double, and π-
delocalized bonds prior to the quantum-chemical calculations.
We considered the substructures existing in the most stable
fullerene molecules, for example, corannulene in C60 or
indacene substructures in C70, as a factor which does not re-
duce the molecular stability of any fullerene. On the contrary,
the presence of large substructures consisting only of hexa-
gons is the reason for significant local strains in fullerene
molecule, and radical substructures are the reasons of the in-
stability of such fullerenes. In fact, the analysis of all IPR
molecular structures of higher fullerenes, such as C72, C74,
C76, C80, C82, C84, C86 [25–29 and references therein], and
some small fullerenes, such as C40 and C50 [30–32], con-
firmed this assumption.

The distribution of bonds in researched IPR isomers was
carried out in accordance with the following rules: (i) penta-
gons consist only of single bonds, while in hexagons there is
an alternation of single and double bonds; (ii) according to
symmetry requirement, the hexagon with delocalized pi-
bonds can be implemented; (iii) the distribution of the bonds
should not lower the fullerene molecular symmetry; (iv)
corannulene and indacene substructures, characteristic for
the most stable fullerene C60 and C70, are preferred.

The molecular structures of the investigated IPR isomers
were fully optimized using DFT B3LYP functional [33, 34]
with the 6-31G basis. At the first step, geometry optimization
was performed without symmetry constraints. The calcula-
tions showed that in all cases, except for singlet and quintet
configurations of isomer 450 (D5) of fullerene C100, the equi-
librium geometries corresponded to the topological molecular
symmetry of each isomer. Therefore, subsequent optimiza-
tions were carried out with the corresponding symmetry con-
straints. The standard keywords in the Gaussian package were
used in optimization processes. To improve energies, geome-
try optimizations were followed by single-point calculations at
the 6-31G* level. The calculations showed a good agreement
between the results obtained for all used basis sets.

The isomer 450 (D5) of fullerene C100 was considered with
the open-shell electronic structure; the quantum-chemical cal-
culations were carried out in triplet, quintet, and septet
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configurations using unrestricted Kohn-Sham methodology.
To ensure the calculated structures correspond to minima,
vibrational analyses were performed at the same level of the-
ory. The tests of the stability of wave functions were carried
out. All calculations were performed using the GAUSSIAN16
program [35].

Results and discussion

Analysis of bond distribution in the isomer 450 (D5) of fuller-
ene C100 (Fig. 1, left) revealed that it contains two substruc-
tures with five condensed phenalenyl-radicals at the poles of
the molecule that we named as othrene (Fig. 1, right).
Phenalenyl substructure is known as a radical because all three
bonds that radiate from the central carbon atom of this sub-
structure must be equivalent according to molecular symme-
try. Therefore, the carbon atom located on the third-order
symmetry axis is considered to have one unpaired electron.
This situation is similar to radical-fullerene C74 (D3h) [27, 36]
which has two phenalenyl-radical substructures on the C3 axis

of a molecule passing through the central carbon atom.
Interestingly, two similar substructures with five condensed
phenalenyl-radicals (othrene substructures) at the poles of
the molecule were previously found in the IPR isomer
31923 (D5h) of C80 fullerene [37]. It was shown that this
IPR isomer cannot be isolated experimentally due to its radical
nature [37]. Noteworthy is the presence of the equatorial belt
from 20 condensed hexagons. So, according to an analysis of
bond distribution, the isomer 450 (D5) of fullerene C100 has an
open-shell electronic structure.

The isomer 1771 (D2) of fullerene C108 (Fig. 2, left) con-
tains four corannulene and four s-indacene substructures that
are stable like in C70 (D5h) fullerene. Additionally, analysis of
bond distribution allowed to reveal two substructures with two
condensed coronene at the equator of the molecule (Fig. 2,
right). The pair of coronene substructures of C72 is the reason
for high local strains because this substructure tends to be
planar, whereas a fullerene cage is close to spherical [25,
26]. However, it seems quite evident that the presence of
coronene substructures becomes less critical when molecular
size increases. Nevertheless, in our opinion, the presence of a

Fig. 1 Schlegel diagram of the
IPR isomer 450 (D5) of fullerene
C100 (left) and substructure from
five condensed phenalenyl-
radicals—othrene (right)

Fig. 2 Schlegel diagram of the
IPR isomer 1771 (D2) of the
fullerene C108 (left) and
substructure from two condensed
coronenes (right)
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flat substructure with two condensed coronenes should intro-
duce local strain even into a large molecule. In addition, both
substructures of the “fused” coronenes are connected by two
pairs of hexagons forming a belt consisting of 28 hexagons,
which also introduces significant local strain. Thus, an analy-
sis of bond distribution shows that this isomer has a closed
shell without any radical centers with unpaired electrons, and
the instability of this isomer is supposedly associated with
high local strain.

DFT calculations predict the lowest energy for the triplet
configuration of isomer 450 (D5) of fullerene C100, whereas
isomer 1771 (D2) of the fullerene C108 has a closed electronic
shell (Table 1). It agrees with our tentative structural estima-
tions. A symmetry-lowering distortion for singlet and quintet
electronic configurations of isomer 450 (D5) of fullerene C100

was founded. For triplet and septet configurations with 2 and 6
unpaired electrons, respectively, the D5 symmetry is main-
tained; therefore, further, only these configurations were
analyzed.

The open shell nature of isomer 450 (D5) of fullerene C100

is additionally confirmed by the tests of the wave function
stability. For the singlet states, computations predict RHF-
to-UHF instability, suggesting the existence of state with low-
er energy. The wave functions of triplet, quintet, and septet
states are stable under the considered perturbations.

The preliminary assumed bond distributions according to
the developed approach are confirmed in DFT calculations:
calculated bond lengths correspond to single, double, and
delocalized pi-bonds plotted on Schlegel diagrams and are
also in agreement with the well-known experimental values
for most stable C60 and C70 fullerenes [38, 39] (Table 2 and
Table S1 in Supporting Information).

However, the calculations revealed some deviations of the
bond lengths from those expected during the bond distribution
analysis by the developed approach: in particular, instead of
some double bonds, the calculation shows the bond lengths,
which should be classified as single (see max values of double
bonds in Table 2 and Table S1 in Supporting Information).
The analysis shows these discrepancies concern the bonds in
the equatorial belt from 20 and 28 condensed hexagons in
isomer 450 (D5) of fullerene C100 and isomer 1771 (D2) of
fullerene C108, respectively. It should be mentioned that such
bond length distribution was found for the nanotubes [40, 41].
This circumstance should probably be considered when ana-
lyzing large fullerene molecules with fragments where penta-
gons are completely absent.

Previously, it has been shown that high distortion of fuller-
ene cage, i.e., high nonplanarity of hexagons and pentagons
causing a local strain in a fullerene molecule, is directly con-
nected with its thermodynamic instability [26, 37, 42–46].
The most stable fullerene C60 molecule contains all planar
hexagons and pentagons [38], whereas in the C70 molecule
some distortions of hexagons and pentagons appear, with
highest nonplanarity in hexagons with delocalized π-bond
[47]. Such distortions of higher fullerene molecules are prob-
ably caused by the compensation of π-delocalization of hexa-
gons embedded in a sphere-like fullerene cage. The analysis
of molecular geometries of the fullerenes under study shows
that there are no flat hexagons and pentagons in their struc-
tures (Fig. 3, Table 3). In contrast to C70, maximum distortions
are observed in hexagons with bond alternation (see Table 3).
This suggests the presence of substantial local molecular
strains in both studied fullerene molecules. The analysis of
the localization of the most distorted cycles (with the

Table 1 Relative energies (ΔE, kcal/mol) and HOMO-LUMO gaps
(eV) of isomer 450 (D5) of fullerene C100 and isomer 1771 (D2) of
fullerene C108

Isomer no. E HOMO-LUMO

6-31G 6-31G* 6-31G 6-31G*

C100, 450 (D5) singlet (С2)
triplet
quintet (C2)
septet

0.87
0.00
10.95
21.87

0.57
0.00
10.01
20.82

0.67
0.70
0.25
0.24

0.67
0.70
0.28
0.28

C108, 1771 (D2) singlet
triplet

0.00
20.38

0.00
20.38

1.61
0.15

1.58
0.13

Table 2 The shortest and the
longest bond lengths (Å) of
isomer 450 (D5) of fullerene C100

and isomer 1771 (D2) of fullerene
C108

Isomer no. Single Double Delocalized

Min Max Min Max Min Max

C60 [38]

C70*

1.458

1.463

1.401

1.375

-

1.418

C100, 450 (D5) triplet

septet

1.4210

1.4262

1.4737

1.4655

1.3914

1.3979

1.4503

1.4489

1.4178

1.4156

1.4534

1.4419

C108, 1771 (D2) singlet 1.4285 1.4766 1.3681 1.4510 1.4082 1.4377

*Calculated by us basing on X-ray data [39]
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maximum dihedral angles in a cycle) shows that they contain
the elongated double bonds (see Fig. 3, depicted by bold).

A comparative analysis of dihedral angles between cycles
(between hexagons, between pentagon and hexagon) in stud-
ied fullerenes and strained molecules of isomers 1 (D2), 2
(C2), and 20 (Td) of fullerene C84 [42, 44, 48] shows that
dihedral angles in these molecules are comparable (Table 4)
that also indicates the presence of significant local strains in
the molecules of studied fullerenes.

The spin density in the triplet and septet configurations
of isomer 450 (D5) of fullerene C100 is mainly concentrat-
ed on atoms of central pentagons of othrene radical sub-
s t ruc tures (Fig . 4 and Table S2 in Suppor t ing
Information). Analysis of DFT results revealed that con-
figuration with 6 unpaired electrons (septet) is most pre-
ferred that is rationalized by the fact that part of the spin
density in triplet configuration is outside of the othrene
substructures, whereas in septet configuration the spin
density is concentrated in the othrene substructures. The
spin density distribution predetermines the position of the
metal atom(s) inside the possibly synthesized in the future
endohedral derivative or the order of radical addition in
reactions of synthesis of exohedral derivatives. Really,
DFT calculations of dimetallofullerenes M2@C100 (M =
La, Y, Sc, Dy) show that metal atoms in these endohedral
dimetallofullerenes are located near poles of molecules

[14, 15, 17]. Authors explain such metal atom’s positions
by the longest metal-metal distances to minimize the elec-
trostatic repulsion between them [15]. However, in our
opinion, the positions of metal atoms are determined by
the initial structure of the fullerene with the presence of
radical centers at the poles of the molecule and the corre-
sponding distribution of spin density.

Analysis of the chlorination pattern of C108-1771(C2)Cl12
shows that 12 chlorine atoms are unequally distributed on the
C108 cage [22]. Usually, the most stable addition patterns
of the derivatives with 12 atoms or groups are character-
ized by their uniform distribution on the fullerene cages
[22]. Authors explain such deviations from the general
rule by the formation of stabilizing substructures on the
carbon cages such as benzenoid rings or isolated C=C
bonds. Our combined analysis of the initial molecule
structure and experimental data on the chlorine addend
distribution [22] reveals that 8 of 12 addends attached by
pairs to all four hexagons with delocalized π-bonds (Fig.
5). Such an attachment is most advantageous from the
point of view of minimal rearrangement of the entire
electronic system of the molecule. So, analysis of chlo-
rination pattern confirmed our earlier conclusion [49]
about the preference of hexagons with delocalized π-
bonds as the most feasible positions of addend in
radiсal addition reaction.

Table 3 Maximal dihedral angles
(degree) in isomer 450 (D5) of
fullerene C100 and isomer 1771
(D2) of fullerene C108

Isomer no. In hexagons with In pentagons

bond alternation delocalized π-bonds

C100, 450 (D5) triplet

septet

16.77 (10)

17.07 (10)

6.66 (10)

6.82 (10)

1.32 (10)

1.55 (10)

C108, 1771 (D2) singlet 17.19 (4) 11.71 (4) 8.27 (4)

*Numbers in parentheses represent the number of equivalent cycles according to the isomer symmetry

Fig. 3 Schlegel diagrams with
maximal dihedral angles (degree)
in cycles in isomer 450 (D5) of
fullerene C100 (left) and isomer
1771 (D2) of the fullerene C108

(right)
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Thus, the instabilities of the studied fullerenes are
caused by the significant local strains due to the presence
of substructures consisting of condensed hexagons for
both researched fullerenes and additionally by open-
shell electronic structure for isomer 450 (D5) of fullerene
C100. It means they should be unstable and probably
could not be obtained as empty molecules. However,
they can be stabilized in polymeric form and as
exohedral or endohedral derivatives. It is shown that ap-
plication of the developed approach in combination with
quantum chemical calculations can be successfully used
for determining the structure of molecules of higher ful-
lerenes with the number of carbon atoms greater than 90
which is useful to obtain such information by experimen-
tal methods.

Conclusions

An analysis of the molecular structures of IPR isomer 450 (D5)
of fullerene C100 and IPR isomer 1771 (D2) of fullerene C108

was carried out. The data about the distributions of single, dou-
ble, and delocalized π-bonds in studied isomer molecules as
well as their molecular formulas are presented for the first time.
It is revealed that isomer 450 (D5) of fullerene C100 contains
two substructures from condensed phenalenyl-radicals at the
poles of the molecule (i.e., has an open electronic shell), where-
as isomer 1771 (D2) of fullerene C108 has a closed electronic
shell and contains a substructure from condensed coronenes at
the equator of the molecule. Their stabilities are evaluated in
accordance with local strains in the molecules and/or the pres-
ence of radical substructures. The most probable positions of
addends in the products of radical addition are shown.

Table 4 Dihedral angles between hexagons (HH) and between
pentagon and hexagon (PH) in isomer 450 (D5) of fullerene C100 and
isomer 1771 (D2) of fullerene C108 and locally strained molecules of
isomers 1 (D2), 2 (C2), and 20 (Td) of fullerene C84

Isomer no. HH PH

C100, 450 (D5) triplet 140.49a

174.04
144.12
152.18

C100, 450 (D5) septet 140.11
174.25

144.41
152.25

C108, 1771 (D2) singlet 138.64
174.45

136.19
154.05

Fullerene C84
b

Isomer 1 (D2) 127.05
173.66

124.27
161.89

Isomer 2 (C2) 128.69
170.84

125.31
161.75

Isomer 20 (Td) 138.23
156.33

133.19
157.72

aMinimum and maximum values, respectively
b From Ref. [42, 44, 48]

Fig. 4 The spin density
distribution (marked by bold
circles in accordance with their
values from 0.03 to 0.14) in the
triplet (left) and septet (right)
configurations of isomer 450 (D5)
of fullerene C100; regions with
maximum spin densities are
depicted by yellow

Fig. 5 The initial structure of isomer 1771 (D2) of fullerene C108 together
with the position of addends in C108-1771(C2)Cl12 according to [22]
(black circles denote the positions of attached Cl atoms)
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