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Abstract
The degradation mechanisms of 3-nitro-1,2,4-triazol-5-one (NTO) in the bulk water were explored at the density functional
theory (DFT) level using the M06-2X functional and the 6-311G(d,p) basis set; the effect of bulk water solution was considered
using the conductor-like polarizable continuum model (CPCM) approach. The initial dissociation step of NTO may be triggered
by UV light, radicals, and heat. Our computed results suggest that radical-induced reactions should be suitable for the initial
degradation of NTO in water. The follow-up further degradation illustrated that the product fragments may include urazole, NO,
NO2, HONO, CO2, di-imide, and N2. It was revealed that hydroxide ions can accelerate the degradation of NTO in water.
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Introduction

The 5-nitro-1,2-dihydro-1,2,4-triazol-3-one or 3-nitro-1,2,4-
triazol-5-one (NTO) is an insensitive energetic material which
was first reported in 1905 [1] and was first studied by Lee et al.
[2] as an explosive. NTO is thermally stable as a pure ingre-
dient and is a potential insensitive explosive ingredient in
insensitive explosive formulations [3]. NTO can form amine
and metal salts, which have potential to be used in propulsion
systems as an energetic combustion catalyst and for primary
and secondary explosives [3]. NTO can be reduced to their
amine derivatives by microbial isolates [3–6]. It can be
decomposed by X-ray, UV, laser, and photochemical irradia-
tion [7, 8]. Oxley et al. [9] explored the thermal decomposition
on NTO and NTO/TNT system. Thermal decomposition of
NTO undergoes through C-N homolysis either by direct scis-
sion of C-NO2 bond, especially at high temperature, or by
initial transfer of hydrogen and subsequent C-NO2H cleavage.
At low temperatures, the rate-determining step in NTO
thermolysis is related to hydrogen transfer to the nitro group

followed by subsequent loss of HONO. It has also been sug-
gested that triazol (TO) is not an intermediate in the principal
NTO decomposition pathway [9]. In the presence of iron/
copper (Fe-Cu) bimetal particles, a nitro-to-amino pathway
that may lead to partial mineralization of NTO is proposed
and aminotriazolone was detected [10]. Heating the crystal
of [Pb(NTO)2·(H2O)], the ligand water is dissociated first
and NO2 group is favored to leave [11]. Three types of intra-
molecular proton migration and the direct scission of C-NO2

were proposed to be the initial steps for the unimolecular
decomposition of NTO, and radical induced C-NO2 scission
was considered to be the dominant path at higher temperatures
[12]. Theoretical studies suggested several proposed initial
decomposition mechanisms of NTO, and the C-NO2 bond
homolysis was proposed to be the most probable initial step
for unimolecular decomposition of NTO [13].

Density functional theory with dispersion-correction
(DFT-D) was applied to investigate the effects of vacancy
and pressure on the structure and initial decomposition of
crystalline 5-nitro-2,4-dihydro-3H-1,2,4-trazole-3-one (beta-
NTO) [14]. Initial decomposition process of NTO dimer was
found to have a potential energy barrier of 87.8 kcal/mol at
B3LYP/6-31G(d,p) level to be decomposed to form CO2. The
reaction of NTO dimer formed nitroso-TO, CO2, N2, HONO,
and HCN in that order, and CO2 is produced through a cluster
of NTO in the gas phase [15]. The ab initio molecular dynam-
ics method was used to explore a priori elucidation of the
mechanism in unimolecular decomposition of NTO. The

* Manoj K. Shukla
Manoj.K.Shukla@usace.army.mil

1 HX5 LLC, Vicksburg, MS 39180, USA
2 Present address: Jackson State University, Jackson, MS 39217, USA
3 US Army Engineer Research and Development Center,

Environmental Laboratory, Vicksburg, MS 39180, USA

https://doi.org/10.1007/s11224-021-01795-x

/ Published online: 25 May 2021

Structural Chemistry (2021) 32:1357–1363

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-021-01795-x&domain=pdf
http://orcid.org/0000-0002-7560-1172
mailto:Manoj.K.Shukla@usace.army.mil


results demonstrated that C-NO2 homolysis is the dominant
channel at high temperatures. At lower temperature, the dis-
sociation channels initiated by hydrogen migrations would be
activated first and followed by ring opening and HONO loss.
The NTO ring could also be ruptured in the two C-N bonds
connected to the carbonyl carbon [16].

The lase-induced decomposition of a solid sample of
NTO shows that the early unimolecular reactions include
loss of NO2 and nitro-nitrite rearrangement followed by loss
of NO [17]. To determine the early stages of thermal decom-
position of NTO under rapid heating conditions, thin films
of NTO were treated by a pulsed infrared laser. The first
observed product of the decomposition is CO2 and no proof
was found for formation of NO2 or HONO. It shows that the
CO2 reaction product is formed by bimolecular oxygenation
of the carbonyl group by the nitro group of an adjacent NTO
molecule, which is contrasted with proposed mechanisms
based upon slow heating experiments [18]. The mineraliza-
tion of 14C-labelled NTO was monitored by the remediation
method based upon photochemical decomposition and
Fenton oxidat ion of NTO. No signif icant photo-
degradation of NTO was detected in the absence of the cat-
alyst [19]. Laser ionization mass spectrometry was used to
detect the degradation fragments of NTO. It is proposed that
the degradation is dominated by nitro-nitrite rearrangement
and NO loss as the shear-induced decomposition [20].
Electron paramagnetic resonance spectroscopy (EPR) and
high-performance liquid chromatography (HPLC) were
used to detect the decomposition of neat NTO and mixed
systems containing NTO in acetone and NTO in TNT
through thermochemical and photochemical conditions.
Neat thermochemical decomposition of NTO involves a
solid-phase global auto-catalytic reaction scheme, which
both initiation and propagation reactions contribute to the
overall loss of the starting material of NTO. Both room-
temperature photochemical decomposition of NTO and
higher temperature (370 K) thermochemical decomposi-
tions show the NTO nitro group/hydrogen abstraction reac-
tions and the nitrogen-hydrogen bond cleavage plays an
important role in the loss of NTO [21].

There are different pathways proposed for the mechanisms
of the initial degradation steps of NTO. Photolysis, radicals, or
thermo-chemical processes may decompose NTO. To further
understand the initial steps and the follow-up pathways for
NTO degradation in water at room temperature, theoretical
calculations at the M06-2X/6-311G(d,p) level with CPCM
model were performed to illustrate the detailed mechanisms
of the NTO degradation in the present work. Computed results
show that the degradation fragments of NTO may include
urazole, NO, NO2, HONO, CO2, di-imide, and N2.

Computational methods

Minnesota density functional M06-2X [22] was applied
in exploring the pathways for the NTO decomposition
with the standard 6-311G(d,p) basis set [23, 24]. The
force constants were determined analytically in the anal-
ysis of harmonic vibrational frequencies for all of the
complexes. An intrinsic reaction coordinate (IRC) anal-
ysis was carried out to ensure that each transition state
links to the corresponding reactants and products (both
as local minima on the potential energy surface). Thus,
the mechanisms of the thermal chemical processes of
the decomposition of the corresponding compounds are
detailed to every elementary reaction steps. The
conductor-like polarizable continuum model (CPCM)
[25, 26] was employed to simulate the entire reactions
in water solvent (with a dielectric constant of 78.4). The
Gaussian-09 package of programs [27] was used for all
computations.

Results and discussions

NTO is a weak acid with pKa 3.76 [28]. Hence, NTO
can exist as a neutral or anionic form depending upon
the pH of the solution. Several isomers of neutral and
anionic forms of NTO were optimized at M06-2X/6-
311G(d,p) level in the bulk water using the CPCM ap-
proach. The most stable forms of neutral and anionic
form of NTO are shown in Fig. 1 and have been used
for further investigation.

Initial degradation step of NTO

In the environment, several aspects such as solar radiation,
heat, or reactive species in water may affect stability of
NTO. While NTO can be degraded through X-ray, UV, laser,
and photochemical irradiation [4, 7, 8], no significant photo-
degradation of NTO was detected in the absence of the cata-
lyst [19]. Hence, we will focus on the NTO degradations
caused by the factors of hydroxide ion, hydroxyl radical, and
heat in the present study.

NTO degradation initiated by hydroxyl radical

Le Campion et al. [18] studied the photocatalytic degra-
dation of NTO in aqueous suspension of TiO2 and pro-
posed a degradation mechanism of NTO by hydroxyl rad-
icals. When hydroxyl radical attacks the carbon C5 of the
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five member ring of neutral NTO, the near attacking (NA)
complex (R1_A in Route R1, Fig. 2) was formed with the
atomic distance of O-C5 as 2.579 Å and the bond length
of C5-N7 is measured as 1.449 Å. The transition state
(R1_TS) of the step revealed that the C5-N7 bond was
slightly stretched to 1.459 Å while the hydroxyl radical
moved closer to C5 (2.087 Å). The energy barrier was
estimated to be 3.6 kcal/mol which implies a fast reaction
step. The yielded product (R1_B) is the complex of the
hydroxyurazole and the leaving nitro group whose nitro-
gen is about 1.62 Å away from the C5, and it is about 39
kcal/mol lower in energy than that of the reactant.

For the NTO anion, the reaction pathway (Route R2, Fig.
2) is similar to that of NTO neutral molecule in route R1.
Hydroxyl radical attached to C5 of NTOwhile the nitro group
was ruptured from the five-member ring simultaneously. The
energy barriers for Route R2 were calculated to be 3.9
kcal/mol. Given the low energy barriers for both the neutral
and anionic NTO, hydroxyl radical makes the dissociation of
NTO a viable process.

NTO degradation initiated by water and hydroxide
ion

We also investigated the catalytic role of water and hydroxide
ion on the degradation of NTO in the water solution. With the
help of one water molecule, it is predicted that 45.8 kcal/mol
and 45.2 kcal/mol of energy barriers need to be overcome to
form nitrous acid (HONO) and hydroxyurazole from the de-
composition of the neutral (Route T1, Fig. 3) and anionic
NTO molecules (Route T2, Fig. 3), respectively. This illus-
trates that the water hydrolysis of NTO is difficult to occur due
to the high energy barrier.

However, the energy barrier is predicted to be significantly
reduced to 5.7 kcal/mol when the reaction was assisted by
hydroxide ion to form the NO2

− and hydroxyurazole anion
(Route T3, Fig. 3). This reveals that the NTO anion may be
decomposed in the alkaline solutions. Thus, based upon data
shown in Figs. 2 and 3, it is evident that at room temperature,
the hydroxyl radical will play dominant role in the degradation
of NTO in the water solution.

NTO neutral molecule                               NTO anion

Fig. 1 Structure of NTO
molecule and NTO anion with the
labels used in the discussion

Route R1 Route R2

Fig. 2 Reaction coordinates of NTO degradationwith hydroxyl radical. Route R1 is for NTO neutral molecule and Route R2 is for NTO anionmolecule.
(M06-2X/6-311G(d,p) level with CPCM; energy differences in kcal/mol with zero-point energy correction)
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Further degradation of urazole

The dione tautomeric form is the most stable among all tauto-
mers of urazole, and this form can be easily formed from
hydroxylurazole discussed in Figs. 2 and 3 through intramo-
lecular proton transfer as studied by Erdogan and Ism [29].
The dione tautomeric form will be only discussed for the fur-
ther discussion of urazole. Urazole does not absorb UV/Vis
light reaching on the earth surface. Therefore, it is expected
that further degradation would be motivated by either the ther-
mal or chemical processes. Water can react with urazole to
break the five-membered ring. As shown in Route TU1 (Fig.
4), the energy barriers are around 52 kcal/mol for the reactions
between water and urazole. This illustrated that the energy
barriers are too high for the degradation to proceed at room
temperature. Hence, without any additional assistance (such
as heat, pressure, etc.), this pathway will not be favored for the
urazole decomposition.

Similar to the NTO degradation, hydroxyl radicals are
also possible to take part in the urazole degradation. It
was observed that there are three steps for the hydroxyl
radicals to break the urazole. The hydroxyl radical will
first attack the carbon of the triazol ring and rupture the
ring to form intermediate RU1_B (Route RU1 in Fig. 4).

The energy barrier is estimated to be 17.6 kcal/mol.
Secondly, the intermediate RU1_B can further produce a
carbon dioxide CO2 and lead to intermediate RU2_B
(NH2CON2H2) with assistance of one water molecule
with energy barriers of 15.3 kcal/mol (Route RU2 in
Fig. 4). Further degradation reaction of intermediate
RU2_B was followed through reaction with hydroxyl rad-
ical (Route RU3 in Fig. 4). The hydroxyl radical attacks
the carbon of RU2_B and forms intermediate RU3_B
through transition state RU3_TS1 with energy barrier of
33.7 kcal/mol. The C-N bond in RU3_B undergoes disso-
ciation through an energy barrier of 6.3 kcal/mol and
leads to the formation of intermediates of carbamic acid
NH2COOH and di-imide NHNH. Di-imide is not very
stable and can easily lead to formation of N2 and hydra-
zine NH2NH2 through the thermal process with energy
barrier of only 3 kcal/mol as shown in Route T4 in Fig. 4.

Further degradation of nitrous acid HONO

In the presence of high temperature, NTO may be dissociated
to produce intermediate nitrous acid HONO (Route T1, Fig.
3), which can be further degraded. The decomposition reac-
tion takes place between twoHONOmolecules by elimination

Route T1

Route T2 Route T3

Fig. 3 Reaction coordinates of
NTO degradation with water
(Route T1 and T2) and hydroxide
ion (Route 3). Route T1 is for
NTO neutral molecule and Route
T2 and T3 are for anionic NTO
molecule. (M06-2X/6-311G(d,p)
level with CPCM; energy
differences in kcal/mol with zero-
point energy correction)
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of a water. As shown in Route T5 (Fig. 5), with the assistance
of one water molecule, the two HONO were bonded by three
hydrogen bonds with atomic distances from 1.588 Å to 2.253
Å as the near attacking compound T5_A. The hydrogen H1 of
the second HONO attacked the oxygen O2 of the hydroxide
group from the first HONO to form the transition state struc-
ture T5_TS. The bond length of N11-O11 was stretched from
1.183 Å in T5_A to 1.235 Å in T5_TS while the bond length
of N11-O22 was shortened from 1.337 Å in T5_A to 1.261 Å
in T5_TS. The OH (O2H site) from the first HONO and H1
from the second HONO formed a water molecule and yielded

a NO and a NO2 simultaneously. The energy barriers were
calculated to be 14.7 kcal/mol, which suggests that HONO
is not stable in water and can be easily decomposed at the
room temperature.

Conclusions

In the present study, the degradation pathways of unimolecule
3-nitro-1,2,4-triazol-5-one (NTO) in water solution were ex-
plored at the DFT level. Our results suggest that the initial

Fig. 4 Reaction coordinates for
urazole degradation. Route TU1
is for the thermal degradation
with water. Routes RU1, RU2,
and RU3 are for radical induced
degradations. Route T4 is for
thermal degradation of di-imide.
(M06-2X/6-311G(d,p) level with
CPCM; energy differences in
kcal/mol with zero-point energy
correction)

1361Struct Chem (2021) 32:1357–1363



degradation step of NTO is more likely to go through the
hydroxyl radical reaction pathway. Further dissociation of
the intermediates of the initial degradation appears to favor
the thermal and radical reaction pathways; the presence of
hydroxide ions is expected to speed up the degradation pro-
cess. The investigated pathways suggested that the fragments
of the NTO degradation may contain urazole, NO, NO2,
HONO, CO2, di-imide, and N2.
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