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Abstract
In recent years, hypoxic cell radiosensitizers have evolved as potential molecules in the diagnosis of cancer and in clinical
radiotherapy. Nitroimidazole and its sulfonamide analogues are effective radiosensitizers working on hypoxic tumor cells. The
application of QSAR modeling technique has paved an easier way for the prediction of newly developed compounds. In the
present study, we have used 21 nitroimidazole sulfonamide analogues to develop 2D quantitative structure-activity relationship
(QSAR) models and determine their structural features essential for two radiosensitization properties, viz., sensitizer enhance-
ment ratio and survival ratio. The models were developed using the small dataset modeler software (http://teqip.jdvu.ac.in/
QSAR_Tools/DTCLab/), and model validation was performed using various stringent validation criteria. The developed
models are robust, predictive, and should be useful tools to predict the radiosensitization of nitroimidazole sulfonamides.
Furthermore, we have used the “prediction reliability indicator” tool to check the predictive ability of the developed models
using 14 external nitroimidazole sulfonamide derivatives. We have also developed quantitative structure-activity-activity rela-
tionship (QSAAR) models for the two endpoints.
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Introduction

Hypoxia is a principal component of the tumor microenviron-
ment, which is considered to be the pivotal cause of clinical
radioresistance and local failure. Oxygen is considered as the best
radiosensitizer by far; however, metabolic consumption of oxy-
gen limits its diffusion into hypoxic tumor cells [1]. Hypoxia has
a chief role in cancer progression manipulating angiogenesis [2],
vasculogenesis [3], and activation of a glycolytic shift in metab-
olism [4], invasion enhancement, and metastasis [5]. Radiation
therapy is an anchoring treatment for many types of cancer;
however, there is a great challenge to augment radiation damage
to the tumor tissues and reduce side effects to healthy tissues.
Radiosensitizers are promising agents in controlling hypoxia by
enhancing tumor tissue injury through accelerating DNA dam-
age and producing free radicals [6].

Oxygen-mimetic radiosensitizers are potential agents in con-
trolling radiation damage in hypoxic tumor cells.
Nitroheterocyclic compounds such as nitroimidazoles have been
evaluated as oxygen-mimetic agents where electron-rich nitro
group is intended to react with DNA radicals produced by ion-
izing radiation in a similar fashion like oxygen does [6, 7]. DNA
and nitro group adduct leads to DNA strand breaks and subse-
quent cellular apoptosis or lysis. Enhanced radiosensitization af-
ter prolonged exposure of cells to misonidazole was identified by
Hall et al. [8]. However, this was restricted by delayed peripheral
neuropathies when combined with fractionated radiotherapy [9].
Ro 03-8799 (pimonidazole) and SR 2508 (etanidazole) were
used in combination as cell radiosensitizers in the treatment of
high-grade gliomas. It was found that Ro 03-8799 is distributed
extensively in the central nervous system, and SR 2508 could
achieve high tumor concentrations when the blood-brain barrier
is compromised [10]. Yahiro et al. studied effects of the
radiosensitizer doranidazole (PR-350) on the radioresponse of
murine and human tumor cells in vitro and in vivo and observed
that the amount of radiosensitization of tumors induced by
doranidazole is dependent on the oxygenation status of the tu-
mors [11]. A 5-nitroimidazole derivative, nimorazole, has shown
similar radiosensitization properties to misonidazole at clinically
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acceptable dose levels. It is clinically used in head and neck
cancer along with fractionated radiotherapy (FRT) [12].

Recently, a wide range of nitroimidazole sulfonamides has
been identified as potential radiosensitizers against hypoxic
cancer cells [13, 14]. These sulfonamides have been consid-
ered as hypoxia-selective cytotoxins and radiosensitizers, and
their variation in side chains noticeably influence the physico-
chemical properties of the analogues. The compounds might
have lowered aqueous solubility and raised the electron affin-
ity of the nitroimidazole group.

Computational approaches such as quantitative structure-
activity/property relationships (QSAR/QSPR) [15] are effec-
tive tools in prediction of radiosensitization properties when
experimental data is scarce. The method allows virtual screen-
ing of drug libraries to find suitable drug-target for a particular
disease. QSAR finds an immense application in the prediction
of ADMET (absorption, distribution, metabolism, elimina-
tion, and toxicity) properties of drugs and other biologicals
[16, 17]. A large number of researches have been carried out
with the hope to do some predictions of the ADMET proper-
ties using the structural features of the molecules. QSAR/
QSPR modeling is one such important approach where data
derived from their activity profiles and their different structur-
al features (quantitative molecular descriptors) are used [18].
Radiosensitization is a property of nitroimidazole and
nitroimidazole sulfonamide derivatives and can thus be sub-
jected to QSAR analysis. A well-validated QSAR model
could evaluate and generate radiosensitization data for such
related compounds when experimental data is not available.

The present study explores the features essential to show
radiosensitization properties by nitroimidazole sulfonamide
derivatives using QSAR and quantitative structure activity-
activity relationship (QSAAR) modeling [19]. Two dimen-
sional (2D) descriptors obtained from Dragon and SiRMS
software were utilized during the development of well-
validated models. A small dataset of nitroimidazole sulfon-
amides is used for modeling in the current study where split-
ting of the dataset into training and test sets would cause loss
of chemical information leading to unreliable models. Thus, a
“small dataset modeling” approach has been adopted using the
whole dataset [20], and the developed models were subjected
to leave-many-out cross-validation. Furthermore, a group of
nitroimidazole sulfonamides has been predicted to prove the
validity of the developed models.

Materials and methods

Dataset

In vitro radiosensitization data of selected compounds involv-
ing sensitizer enhancement ratio (drug SER) and survival ratio
(drug SR) was obtained from a previously published research

work [21]. A dataset of 21 compounds given in Table 1 was
selected for 2D QSAR modeling. Sensitizer enhancement ra-
tio (SER) can be defined as the ratio of radiation dose for 1%
survival without or with the drug in a condition where
HCT116 cells (human colorectal carcinoma cell line) were
exposed to the drug at 6–29 Gy radiation for 1 h. Survival
ratio can be explained using the following expression: “SR=
(cell survival with radiation)/(cell survival with drug and with
radiation) interpolated from the radiation dose response curves
at 15 Gy.” During modeling, the drug SER values were used
as provided in the original article but drug SR values were
converted into their logarithmic form (logSR) for analysis.
The compounds were drawn in MarvinSketch software (ver-
sion 14.10.27) [22] with hydrogen bond addition and proper
aromatization and saved as MDL.mol, a suggested format for
further descriptor calculation.

Molecular descriptors

The molecular descriptor is the “final result of a logical and
mathematical procedure, which transforms chemical informa-
tion encoded within a symbolic representation of a molecule
into a useful number or the result of some standardized exper-
iment” [23]. A selected class of 356 2D molecular descriptors
was calculated from Dragon version 7 [24] software. These
comprised E-state indices, connectivity, constitutional, func-
tional, 2D atom pairs, ring, atom-centered fragments, and mo-
lecular property descriptors. Intercorrelated (|r| > 0.95) and
constant (variance < 0.0001) variables and other incompetent
data were removed using a software available at http://dtclab.
webs.com/software-tools prior to model development. This
resulted in 224 Dragon descriptors which were used for
modeling. Furthermore, SiRMS descriptors were calculated
using SiRMS (version 4.1.2.270) [25] tool and used along
with Dragon descriptors during modeling. Simplex
representations of molecular structure (SiRMS) descriptors
are a class of molecular descriptors developed from 1D to
4D molecular structures involving tetratomic fragments of
different simplex descriptors having predefined chirality,
composition, and symmetry [25].

Model development: application of small dataset
modeler

Before development of a QSAR model, the dataset is gener-
ally divided into a training set (calibration) and a test set (val-
idation). Furthermore, a double cross-validation method [26]
of model development involves two nested cross-validation
loops: internal (inner) and external (outer) cross-validation
loops. In the outer loop, the data points are segregated into
two subsets, i.e., training and test sets. The training set is
further employed in the inner loop for model building and
selection purpose. The test set has the sole purpose of model
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validation. However, the present study deals with a small
dataset containing a limited number of data points (21 com-
pounds), and splitting of this dataset into training and test sets
is not desirable. Small dataset modeling (http://teqip.jdvu.ac.
in/QSAR_Tools/DTCLab/) involves the DCV method of
modeling for small datasets without dividing the dataset into
training and test sets [20]. Here, the “modeling set” in the
inner loop is not generated. However, deriving all possible
combinations (k) of the validation set (containing n
compounds) and the calibration set (containing n − r
compounds) is followed. The tool has an option for the user
to define the number of compounds to be kept in the validation
set (r) depending on which the calibration and validation sets
are defined. Calibration set compounds are used for the
generation of genetic algorithm-multiple linear regression
(GA-MLR) [27, 28] models, and the validation sets are uti-
lized for model prediction purpose. A number of internal and
external validation metrics are calculated in the exhaustive
double cross-validation technique for all the selected models.
Additionally, the software also derives partial least squares
(PLS) [29] regression models corresponding to each MLR
model. Furthermore, the selection of best/top model can be
done in any of the five following methods mentioned:

(i) Model (MLR/PLS) with the lowest mean absolute error
or MAE (95%) in the validation set is selected.

(ii) Model (MLR/PLS) with the lowest MAE (95%) in the
modeling set is selected.

(iii) Model (MLR/PLS) with the highest Q2
Leave−many−out

(modeling set).
(iv) Application of consensus modeling by using top rank-

ing models selected based on the MAE (95%) values in
the respective validation sets. Two types of consensus
approaches include (a) simple arithmetic average of pre-
dictions from all the selected top models, and (b)
weighted average of predictions by assigning appropri-
ate weights to the selected topmodels based on themean
absolute error obtained from leave-one-out cross-valida-
tion, MAEcv(95%).

(v) A pool of unique descriptors from the top 3 models with
lowest MAE (95%) of the validation set is used. These
descriptors are used for further model development pur-
pose. In case of MLR, the best subset selection (BSS)
method is used which finds the best combinations of
descriptors out of all the possible combinations of unique
descriptors present in the selected models. In case of PLS
models, the models are formed by all descriptors selected
in the top models through a PLS run.

The approach proposed in small dataset modeler (Fig. 1)
thus ensures the division of small dataset internally within the
DCV algorithm without the actual need of a test set. Thus,

Table 1 Dataset of 21 compounds used for modeling

Serial number Compound number Structure (SMILES) Drug SER Log drug SR

1 1 c1(n(ccn1)CC(COC)O)[N+](=O)[O-] 1.4 0.833

2 2 c1(n(ccn1)CC(=O)NCCO)[N+](=O)[O-] 1.339 0.663

3 4 c1n(c(cn1)[N+](=O)[O-])CCN1CCOCC1 1.8 1.652

4 6 c1(n(ccn1)CS(=O)(=O)NCCCOC)[N+](=O)[O-] 1.2 0.462

5 7 c1(n(ccn1)CS(=O)(=O)NCCCO)[N+](=O)[O-] 1.11 0.255

6 8 c1(n(ccn1)CS(=O)(=O)NCCCN1CCOCC1)[N+](=O)[O-] 1.28 0.591

7 12 c1(n(ccn1)CS(=O)(=O)NN1CCOCC1)[N+](=O)[O-] 1.11 0.301

8 14 c1(n(ccn1)CCS(=O)(=O)NCCCO)[N+](=O)[O-] 1.27 0.623

9 15 c1(n(ccn1)CCS(=O)(=O)NCCCN1CCOCC1)[N+](=O)[O-] 1.357 0.699

10 16 c1n(cc(n1)[N+](=O)[O-])CS(=O)(=O)NCCCOC 1.105 0.114

11 19 c1n(c(cn1)[N+](=O)[O-])CS(=O)(=O)NCCCO 1.81 2.057

12 21 c1n(c(cn1)[N+](=O)[O-])CS(=O)(=O)NCCCN1CCOCC1 1.43 0.914

13 22 c1n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCOC 1.56 1.415

14 24 c1n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCO 1.81 2.212

15 26 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCOC)C 1.34 0.681

16 28 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCO)C 1.176 0.208

17 30 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCCN1CCOCC1)C 1.68 1.447

18 31 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN(C)C)C 1.57 1.173

19 34 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN1CCCC1)C 1.54 1.134

20 35 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NCCCN1CCCCC1)C 1.71 1.380

21 38 c1(n(c(cn1)[N+](=O)[O-])CCS(=O)(=O)NN1CCC(CC1)N(C)C)C 1.67 1.398
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there is no requirement of the dataset division. The small
dataset modeling approach combines data curation, exhaus-
tive double cross-validation, and optimal model approaches
including consensus predictions for model development, par-
ticularly for small datasets.

Statistical validation metrics

A rigorous analysis using multiple approaches of assessment
of the model quality for measurement of the fitness, stability,
robustness, and predictivity of the developed models was car-
ried out. In the present work, we have computed various sta-
tistical parameters like determination coefficient (R2) and

leave-one-out squared correlation coefficient (Q2
LOO ) for in-

ternal validation. We have also calculated the leave-many-out

squared correlation coefficient (Q2
LMO 20%ð Þ ) for the final PLS

models [30]. Furthermore, r2m metrics [31], root mean square
error (RMSE), and mean absolute error (MAE) were also cal-
culated [32].

Results and discussion

2D QSAR models using Dragon and SiRMS descriptors
explaining chemical features required for good drug
radiosensitization (both SER and logSR) are shown in the
following section. There are 4 models developed of which
two are QSAR models and the rest two are QSAAR models.
All the models are three-descriptor PLS models with 2 latent
variables (LVs) showing acceptable values for all validation
metrics as shown in Table 2. The validation metrics included

R2, Q2, Q2
LMO 20%ð Þ, r

2
m LOOð Þ, Δr2m LOOð Þ, SD (95% data; train-

ing), MAE (95% data; training), and RMSE. Furthermore, we

have calculated the Q2
F1 metric for the validation set in each

iteration cycle for each model during the calculation of

Q2
LMO 20%ð Þ (Supplementary Section). The experimental and

predicted values for al l the models are given in
Supplementary files (S1) and the observed versus predicted
plots for all the developed QSAR and QSAAR models are
shown in Fig. 2. The different PLS plots including variable
importance plot [33], loading plot [29], regression coefficient
plot [29], and randomization plot [34] discussed later are
shown in Supplementary files (SM2).

Model 1: modeling drug sensitizer enhancement ratio

SER ¼ 0:931þ 0:452�H−049−0:238� B05 O−S½ �
þ 0:09� F05 C−S½ �

The first descriptor H-049 belongs to atom-centered frag-
ment type, which indicates H atom attached to C3 (sp3)/C2

(sp2)/C3 (sp2)/C3 (sp). The descriptor symbolizes the hydro-
gen of a CH group with the carbon bonded to varying numbers
of heteroatoms in a variety of hybridizations. The descriptor
has a positive contribution towards the response (Fig. 3)
which is well understood from certain higher active com-
pounds in the dataset like compounds 19 (SER = 1.81)
and 24 (SER = 1.81), each of which has two H-049
fragments. On the other hand, compounds like 12
(SER = 1.11) and 16 (SER = 1.105) having only one
such fragments have low SER values.

The next descriptor is B05[O-S], which is a 2D atom pair
descriptor demonstrating the presence or absence of oxygen
and sulfur atoms at the topological distance 5. The negative
contribution explains that presence of oxygen and sulfur

Fig. 1 The approach adopted to
develop QSAR models for small-
sized dataset using small dataset
modeler
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atoms at the topological distance 5 will lower the SER values
(Fig. 3) as observed in compounds 7 (SER = 1.11) and 16
(SER = 1.105). On the other hand, in compounds like 4
(SER = 1.835) and 30 (SER = 1.687), the absence of such
fragment does not lower the SER value.

The descriptor F05[C-S], another 2D atom pair descriptor,
denotes the frequency of C-S at the topological distance 5. The
positive contribution of the descriptor indicates that higher fre-
quency of the C-S fragment at the topological distance 5 will
increase the SER value (Fig. 3) as seen in compounds 30
(F05[C-S] = 3, SER= 1.68) and 38 (F05[C-S] = 3, SER= 1.67).

Model 2: modeling drug survival ratio (logSR)

logSR ¼ 1:965−1:08

� S A chgð Þ=A B B D=1 4s; 3 4s=4−1:073

� C−033−0:108� F07 C−C½ �

S_A(chg)/A_B_B_D/1_4s,3_4s/4 represents a four atomic
fragment labeled by partial charges, and its negative regres-
sion coefficient indicates that it reduces the radiosensitization
property with the presence of such fragment (shown in Fig. 4).
In compounds like 26 and 28, presence of such fragment re-
duces the radiosensitization (logSR = 0.681 and 0.208).

C-033 is an atom-centered fragment descriptor repre-
sented by R–CH..X fragment. “R” denotes any group
linked through carbon, “- -“ represents an aromatic
bond as in benzene or delocalized bonds such as the
N-O bond in a nitro group, “..” represents aromatic
single bonds as the C-N bond in pyrrole, and “X” is
any electronegative atom (O, N, S, P, Se, halogens)
[35]. The negative coefficient indicates that presence
of this type of fragment lowers logSR (Fig. 4) values
as observed in compounds 6 (C-033 = 1, logSR = 0.462)
and 7 (C-033 = 1, logSR = 0.255).

F07[C-C] is a 2D atom pair descriptor, which signifies the
frequency of the C-C fragment at the topological distance 7.
The negative coefficient indicates that a higher value of the
descriptor may decrease the radiosensitization (logSR value)
(Fig. 4). This is observed in compounds like 12 and 8 where
F07[C-C] are high (6 and 5 respectively) and their logSR
values are low (0.301 and 0.591 respectively).

Quantitative structure activity-activity relationship
models

Quantitative structure activity-activity relationship
(QSAAR) models are mathematical expressions correlat-
ing two biological endpoints, here SER and logSR, with
the aim to extrapolate any one explicit activity endpointTa
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when the experimental data is not available. This ad-
vanced technique can overcome the additional cost of
manifold experimental procedures. In the present study,
we have developed two QSAAR models, one taking
SER as the endpoint and logSR as an independent var-
iable and another taking logSR as the endpoint and SER
as an independent variable. It was found that these two
endpoints had positive correlation between themselves
explaining that increase in experimental values of any
of the endpoints would increase the other endpoint
values and vice versa.

Model 3: QSAAR modeling of SER

SER ¼ 1:084þ 0:018� F03 C−C½ � þ 0:363

� logSR−0:001� T N ::Oð Þ

Model 3 is a PLS model with 2 latent variables and shows
acceptable values of the validation metrics. Here, logSR has
been used as an independent variable to produce a QSAAR
model for drug SER. Thus, for any compound, if survival ratio

Fig. 3 Features increasing or
decreasing SER values as
explained in model 1

Fig. 2 Scatter plots for QSAR
and QSAAR models
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(SR) value is known, the SER value can be extrapolated using
model 3. This reduces time and experimental expenses. In the
model, logSR shows a positive regression coefficient; hence, a
higher value of logSR will increase SER values as observed in
compounds like 19 (logSR = 2.212, SER = 1.81) and 24
(logSR = 2.057, SER = 1.81).

The descriptor F03[C-C] is a 2D atom pair descriptor sig-
nifying the frequency of C-C fragments at the topological
distance 3. This makes a positive contribution to the endpoint,
thus indicating that with an increase in the F03[C-C] descrip-
tor value, SER value will also increase as seen in compounds
30 (F03[C-C] = 14, SER = 1.68) and 35 (F03[C-C] = 13,
SER = 1.71). Another 2D atom pair descriptor T(N..O) ap-
pears in the model signifying the sum of topological distances
between N..O. This descriptor has a negative influence on the
SER values indicating that the total distance between nitrogen
and oxygen should be low for higher SER values as in com-
pound 4 (T(N..O) = 51, SER = 1.8). Compounds with higher
T(N..O) values will have lower SER values as observed in
compounds 8 (T(N..O) = 130, SER = 1.28) and 12
(T(N..O) = 106, SER = 1.11). Features increasing and de-
creasing SER values are shown in Fig. 5.

Model 4: QSAAR modeling of logSR

logSR ¼ −3:364þ 2:735� SER−0:028� F03 C−C½ �
þ 0:125� nO

In model 4, SER has been used as an independent variable for
modeling logSR. SER makes a positive contribution to logSR,
proving the authenticity of the previously developedmodel 3 and
this can be explained by the same compounds 19 and 24.

F03[C-C] is a 2D atom pair descriptor symbolizing the
frequency of the C-C fragment at the topological distance 3.
The descriptor shows a negative regression coefficient, thus
signifying that with an increase in F03[C-C] values, logSR
value will decrease and vice versa. It is observed that in com-
pounds 15 and 34, the F03[C-C] values are high (10 and 11
respectively) and their logSR values are low (log SR = 0.699
and 1.134 respectively). The opposite is observed in com-
pounds 19 (F03[C-C] = 2, logSR = 2.057) and 24 (F03[C-
C] = 4, logSR = 2.212) having lower values for F03[C-C].
Descriptor nO is a constitutional descriptor meaning the

Fig. 4 Factors decreasing logSR
values as explained in model 2

Fig. 5 Features increasing or
decreasing SER value as
explained in model 3
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number of oxygen atoms present in a molecule. The positive
regression coefficient indicates that presence of oxygen atoms
is beneficial for the in vitro radiosensitization (logSR). In
compounds like 19 (logSR = 2.057) and 24 (logSR = 2.212),
higher number of oxygen (nO = 5) contributes to a higher
value of logSR. Features increasing and decreasing logSR
value are shown in Fig. 6.

Plot interpretation

(i) Variable importance plot (VIP)—AVIP can provide with a
better knowledge about the descriptors and their contribu-
tion in controlling the radiosensitization properties of
nitroimidazole sulfonamides. The plot signifies the order
of contribution of each descriptor appearing in the model.
The most and least important descriptors can be identified
using this plot. A variable with VIP score > 1 indicates the
descriptor has higher statistical significance as compared to
the one with a lower VIP value [33]. The VIP plot showing

the descriptors from higher to lower significance is given in
the Supplementary Section S2 (Figs. S1–S4).

(ii) Loading plot—The loading plot defines the relationship
between X variables and Y variables [29]. The plot was
developed using the two latent variables for all the four
models. The plot describes the impact of the different
variables. Descriptors that are grouped together have
similar meanings and similar effects on the response,
whereas descriptors with different meanings are situated
at a considerable distance from each other. Descriptors
which are situated far from the plot origin have greater
impact on the response. The loading plots of the four
models are given in the Supplementary Section S2
(Figs. S5–S8).

(iii) Regression coefficient plot—The regression coefficient
plot [29] gives knowledge about the positive or negative
contribution of the descriptors towards the activity (SER
or logSR) of the compounds. Descriptors having a pos-
itive regression coefficient indicate that with an increase

Fig. 6 Features increasing or
decreasing logSR value as
explained in model 4

Fig. 7 DModX applicability domain plot of model 1 and model 2 Fig. 8 DModX applicability domain of model 3 and model 4
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in the descriptor values, the SER and logSR increase.
On the other hand, a negative regression coefficient in-
dicates that with an increase in the descriptor val-
ue, the SER and logSR decrease. The regression
coefficient plots are given in Supplementary
Section S2 (Figs. S9–S12).

(iv) Randomization plot—Model randomization is done to
ensure that the model is not the result of any chance
correlation [34]. The statistical significance of the model
is determined by a randomization model. During the
model randomization, multiple models are generated
by shuffling different combinations of X or Y variables
(here Y variable) based on the fit of the reorderedmodel.
Here, we have used 100 permutations for eachmodel for
randommodel generation. A model not generated out of

chance correlation should have poor statistics (R2
y inter-

cept should not exceed 0.3 and Q2
y intercept should not

exceed 0.05). The randomization plots given in Figs.
S12–S16 show that the developed models are non-
random and robust and are suitable for prediction.

Applicability domain

Applicability domain (AD) explains the prediction reliability
of a particular model. It is the “chemical space from which a
model is derived and where a prediction is considered to be
reliable” [36]. AD evaluation was done using DModX (dis-
tance to model) in the X-space using SIMCA 16.0.2 software
(https://landing.umetrics.com/downloads-simca). The AD

plots are given in Figs. 7 and 8. It is found that there is no
outlier in any of the four models developed at 95% confidence
level (D-crit = 0.009999).

Prediction dataset

AQSARmodel helps in the prediction of external datasets based
on their molecular features, thereby reducing the experiment
costs and animal handling. To study the predictive power of
the developed models, we have used 14 compounds whose
SER and logSR values have been predicted. These 14 com-
pounds were selected from Table 1 of the source article [21].
This table contained about 36 nitroimidazole sulfonamides out
of which 21 compounds were used for QSAR and QSAAR
modeling and rest 14 compounds were used as an external set
for prediction. Furthermore, we have analyzed the prediction
quality and domain of applicability using the prediction reliability
indicator tool [37]. The prediction status and domain of applica-
bility are given in Table 3. Prediction was possible for model 1
(M1), model 2 (M2), and model 3 (M3). In M1 and M2, the
predicted SER and predicted logSR valueswere calculated for 14
compounds. In case of M3 (QSAAR-SER), SR15 values were
obtained from source article [21] and the values were converted
to logarithmic form and used as an independent variable for the
calculation of predicted SER values. Prediction for model M4
was not possible since experimental SER values for the predic-
tion compounds are not available. During prediction with model
M1, three compounds had bad/unreliable predictions. This is due
to the difference between the mean of the training set response
and predicted value of the query compound being considerably
higher. However, these compounds fall inside the AD of the

Fig. 9 Overview of the present
work involving the development
of QSAR and QSAAR model
using small dataset modeler
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model. In case of M2, one compound (compound no. 25) is
outside AD; however, it shows moderate prediction quality.
During prediction with model M3, all the compounds
are found to have “moderate” prediction quality and
are inside the model AD.

Conclusion

This study aims at developing 2D QSAR models with the
notion to investigate the essential features in nitroimidazole
sulfonamide analogues to show radiosensitization properties
with respect to sensitizer enhancement ratio and survival ratio
endpoints. The different descriptors obtained give an idea
about the position of the features and type of chemical groups
required to enhance or hinder these properties. Moreover,
QSAAR modeling helps in correlating two endpoints (SER
and logSR) and suggests how to extrapolate an endpoint if the
experimental information is unavailable. The current study
emphasizes on the application of the “small dataset modeler”
software when the dataset is small and splitting of dataset is
not worthy. Furthermore, the newly developed models were
used for prediction of 14 compounds and their prediction re-
liability was checked. These developed QSAR and QSAAR
models are able to predict newly developed nitroimidazole
sulfonamide derivatives with known structural features. The
complete overview of the work is explained in Fig. 9.
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