
ORIGINAL RESEARCH

Protonation sites and hydrogen bonding in mono-hydrobromide
salts of two N,4-diheteroaryl 2-aminothiazoles

Denise Böck1 & Andreas Beuchel1 & Richard Goddard2
& Adrian Richter1 & Peter Imming1

&

Rüdiger W. Seidel1

Received: 13 November 2020 /Accepted: 11 January 2021
# The Author(s) 2021

Abstract
The synthesis and structural characterization ofN-(6-methoxypyridin-3-yl)-4-(pyridin-2-yl)thiazol-2-aminemono-hydrobromide
monohydrate (3) and N-(6-methoxypyridin-3-yl)-4-(pyrazin-2-yl)thiazol-2-amine mono-hydrobromide 0.35 methanol solvate
(4) are reported. The crystal structures of 3 (monoclinic, space group P21/n, Z = 4) and 4 (monoclinic, space group, C2/c, Z = 8)
feature N,4-diheteroaryl 2-aminothiazoles showing similar molecular conformations but different sites of protonation and thus
distinctly different intermolecular hydrogen bonding patterns. In 3, Namine–H⋯Br−, N+

pyridine–H⋯Owater, and Owater–H⋯Br−

hydrogen bonds link protonated N-(6-methoxypyridin-3-yl)-4-(pyridin-2-yl)thiazol-2-amine and water molecules and bromide
anions into a three-dimensional hydrogen-bonded network, whereas intermolecular N+

methoxypyridine–H⋯Npyrazine hydrogen
bonds result in hydrogen-bonded zigzag chains of protonated N-(6-methoxypyridin-3-yl)-4-(pyrazin-2-yl)thiazol-2-amine mol-
ecules in 4.

Keywords 2-Aminothiazoles . Hydrobromides . Hantzsch reaction . Hydrogen bonding . Crystal structure . DFT calculation

Introduction

The 2-aminothiazole unit is a synthetically versatile building
block, which has been widely used in medicinal chemistry. A
number of active pharmaceutical ingredients containing a 2-
aminothiazole moiety with different pharmacological proper-
ties are on the market. They include, for example, the third-
generation cephalosporin anti-infective cefdinir, the β3 adren-
ergic agonist mirabegron, the tyrosine kinase inhibitor
dasatinib, and the recently approved phosphatidylinositol-3-
kinase (PI3K) inhibitor alpelisib. Antiproliferative, antidiabet-
ic, antihypertensive, and anti-inflammatory properties as well
as antiviral, antitubercular, antifungal, antileishmanial, and

antiprion activities of 2-aminothiazoles have been reported
[1].

Antileishmanial properties of N,4-diaryl substituted 2-
aminothiazoles have been studied based on a hit in a screening
of 200,000 compounds [2], and growth inhibition of other mi-
croorganisms including plasmodia [3] and mycobacteria [4] by
this compound class has also been described. A series of N,4-
diaryl 2-aminothiazoles with activity against Mycobacterium
tuberculosis were subject of a structure-activity relationship
(SAR) study reported by Meissner et al. [5]. Makam and
Kannan evaluated N,4-diaryl substituted 2-aminothiazoles for
inhibitory potential againstM. tuberculosis, H37Rv, and reported
minimum inhibitory concentration (MIC) values of 6.25–
12.50μM[6]. In view of these results,N,4-diheteroaryl substitut-
ed 2-aminothiazoles attracted our interest in the course of our
studies on new antimycobacterial agents. Recently, we have ex-
plored the structural chemistry of freebase N,4-diheteroaryl 2-
aminothiazoles with a 4-methylpyridin-2-yl group bound to
the amino group at the 2-position of the thiazole core [7, 8].

Herein, we report the synthesis and structural characteriza-
tion of two N,4-diheteroaryl 2-aminothiazole hydrobromides.
Bromide is among the anions that are currently available for
salt formation of active pharmaceutical ingredients [9], and a
number of hydrobromide drugs, for example, the antitussive
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dextromethorphan hydrobromide, are widely used. To the best
of our knowledge and based on the search of the Cambridge
Structural Database (CSD) [10] viaWebCSD in October 2020
[11], hydrobromide salts of N,4-diaryl 2-aminothiazoles have
not been structurally characterized so far. The structure of a
related 4-phenyl-2-(2-phenylhydrazinyl)thiazol-3-ium bro-
mide was, however, reported very recently [12]. Structural
insight into molecular conformations, preferred sites of pro-
tonation, and hydrogen bonding patterns in pharmaceutical
salt forms is important for drug design and formulation
development.

Experimental section

General

Starting materials were purchased from Sigma-Aldrich and
used as received. Solvents were of analytical grade. The syn-
thesis of 2-bromo-1-(pyridin-2-yl)ethanone hydrobromide
was published by others [13].

Physical methods

Melting points (uncorrected) were determined on a Boëtius
hot-stage microscope (VEB Kombinat NAGEMA, Dresden,
GDR). NMR spectra were recorded at room temperature on an
Agilent Technologies VNMRS 400 and a Varian INOVA 500
NMR spectrometer. The residual solvent signal of DMSO-d6
(δH = 2.50 ppm) was used to reference the spectra (s = singlet,
bs = broad singlet, d = doublet, dd = doublet of doublets, td =
triplet of doublets). APCI mass spectrometry was carried out
on an Advion Expression compact mass spectrometer. High-
resolution ESI mass spectra were measured on a Bruker
Daltonics Apex III FT-ICR mass spectrometer.

Synthesis and crystallization

N-((6-Methoxypyridin-3-yl)carbamothioyl)benzamide (1) [14]
2.90 g (23.4 mmol) of 2-methoxy-5-aminopyridine were dis-
solved in 70 mL of acetone and benzoyl isothiocyanate
(3.3 mL, 24.5 mmol) was added dropwise with stirring. The
reaction mixture was warmed to 40 °C for 10 min, before the
solvent was removed under reduced pressure. The crude prod-
uct was recrystallized from acetone. Yield 4.44 g (15.5 mmol,
66%). 1H NMR (400 MHz, DMSO-d6) δ = 12.30 (s, 1H),
11.66 (s, 1H), 8.28 (d, J = 2.7 Hz, 1H), 7.98 (m, 2H), 7.93
(dd, J = 8.8, 2.7 Hz, 1H), 7.74–7.62 (m, 1H), 7.55 (m, 2H),
6.88 (d, J = 8.8 Hz, 1H), 3.87 (s, 3H) ppm; MS (APCI): m/z
[M +H]+ calcd. for C14H14N3O2S

+: 288; found 288.

1-(6-Methoxypyridin-3-yl)thiourea (2) [14, 15] Compound 1
(4.44 g, 15.5 mmol) was suspended in 15 mL of methanol

and 1.2 mL of 40% aqueous NaOH (17.2 mmol) was added.
The solution turned clear and was heated to reflux for 1 h.
Subsequently, the solvent was removed under reduced pres-
sure. The product was washed with water and dried in a vac-
uum desiccator over P2O5. Yield: 1.61 g (8.8 mmol, 57%). 1H
NMR (400 MHz, DMSO-d6) δ = 9.50 (bs, 1H), 8.05 (d, J =
2.7 Hz, 1H), 7.70 (dd, J = 8.8, 2.7 Hz, 1H), 7.49 (bs, 2H), 6.79
(d, J = 8.8 Hz, 1H), 3.83 (s, 3H) ppm; MS (APCI): m/z [M +
H]+ calcd. for C7H10N3OS

+: 184; found: 184.

N-(6-methoxypyridin-3-yl)-4-(pyridin-2-yl)thiazol-2-amine
mono-hydrobromide monohydrate (3) 2-Bromo-1-(pyridine-
2-yl)ethanone hydrobromide (696 mg, 2.48 mmol) and
418 mg (2.28 mmol) of 2 were dissolved in 20 mL of ethanol,
and triethylamine (0.1 mL) was added. The reaction mixture
was heated to reflux for 2 h and subsequently the solvent was
removed under reduced pressure. The crude product was re-
crystallized from methanol. Yield 550 mg (1.44 mmol, 63%);
m.p. 152–154 °C. 1H NMR (500 MHz, DMSO-d6) δ = 10.59
(s, 1H), 8.76 (dd, J = 2.9, 0.7 Hz, 1H), 8.75 (dt, J = 5.6 Hz,
1.2 Hz, 1H), 8.50–8.43 (m, 2H), 8.14 (s, 1H), 8.08 (dd, J =
8.8, 2.9 Hz, 1H), 7.81 (td, J = 5.6 Hz, 1H), 6.87 (dd, J = 8.8,
0.7 Hz, 1H), 3.85 (s, 3H) ppm; HRMS (ESI): m/z [M +H]+

calcd. for C14H13N4OS
+ 285.0805; found: 285.0800.

N-(6-Methoxypyridin-3-yl)-4-(pyrazin-2-yl)thiazol-2-amine
mono-hydrobromide 0.35 methanol solvate (4) Compound 4
was prepared in analogy to 3 from 2 (453 mg, 2.47 mmol) and
2-bromo-1-(pyrazine-2-yl) ethanone hydrobromide [16] (note
that the compound is not denoted as hydrobromide therein),
which was synthesized from acetylpyrazine (305 mg,
2.50 mmol) using 2-pyrrolidone hydrotribromide (1.36 g,
2.74 mmol) as reagent and used in situ without purification.
Yield (based on 2): 344 mg (0.91 mmol, 37%); m.p. 195–
197 °C. 1H NMR (500 MHz, DMSO-d6) δ = 10.49 (s, 1H),
9.18 (d, J = 1.5 Hz, 1H), 8.65 (dd, J = 2.6, 1.5 Hz, 1H), 8.63
(d, J = 2.8 Hz, 1H), 8.58 (d, J = 2.5 Hz, 1H), 8.19 (dd, J = 9.0,
2.8 Hz, 1H), 7.68 (s, 1H), 6.97 (d, J = 9.0 Hz, 1H), 3.88 (s,
3H), 3.16 (s, solvate methanol) ppm; HRMS (ESI): m/z [M +
H]+ calcd. for C13H12N4OS

+ 286.0758; found: 286.0753.

X-ray crystallography

The X-ray intensity data for 3 were measured on a Bruker
AXS Apex II diffractometer and those for 4 on an Enraf-
Nonius KappaCCD diffractometer, both equipped with a
FR591 rotating anode radiation source. Data reductions were
performed using the SAINT software [17] for 3 and EvalCCD
[18] for 4. In both cases, face-indexed absorption corrections
were carried out using SADABS [19]. The crystal structures
were solved with SHELXT-2018/1 [20] and refined with
SHELXL-2018/3 [21]. The methanol molecule of crystalliza-
tion in 4 is disordered about a crystallographic twofold
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rotation axis, and the occupancy was refined freely to yield
0.70(1), using isotropic displacement parameters for the car-
bon and oxygen atoms. Carbon-bound hydrogen atoms were
placed in geometrically calculated positions with Caromatic–
H = 0.95 Å and Cmethyl–H= 0.98 Å and refined with the ap-
propriate riding model. Methyl groups (apart from methanol)
were allowed to rotate to match the underlying electron den-
sity maxima. Hydrogen atoms attached to nitrogen were lo-
calized in difference electron density maps and refined with
the N–H bond lengths restrained to a target value of 0.88(2) Å.
Uiso(H) = 1.2 Ueq(C, N, O) (1.5 for methyl groups) was

applied for all hydrogen atoms. We note that the highest dif-
ference electron density peak of 1.90 eÅ−3 in 4 is located
0.65 Å from Br1. Crystal data and refinement details for 3
and 4 are summarized in Table 1. Structure pictures were
generated with Diamond [22].

Computational methods

DFT calculations were undertaken using the program ORCA
(version 4.2) [23] with a B3LYP hybrid functional (20% HF
exchange) [24, 25] using a def2-TZVPP basis set [26].
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Scheme 1 Synthesis of N,4-diheteroaryl 2-aminothiazole hydrobromides 3 and 4 from 2 and the respective α-bromoketone hydrobromide. Solvent
molecules of crystallization are not included.

Table 1 Crystal data and
refinement details for 3 and 4 3 4

Empirical formula C14H15BrN4O2S C13.35H13.41BrN5O1.35S

Mr 383.27 377.50

T (K) 100(2) 100(2)

λ (Å) 1.54178 0.71073

Crystal system Monoclinic Monoclinic

Space group P21/n C2/c

a (Å) 9.6904(4) 17.4497(4)

b (Å) 17.6873(8) 12.2030(5)

c (Å) 9.9215(4) 15.3912(8)

β (°) 117.286(2) 116.998(4)

V (Å3) 1511.30(11) 2920.2(2)

Z 4 8

ρcalc (g cm−3) 1.684 1.717

μ (mm−1) 5.118 2.968

F(000) 776 1523

Crystal size (mm) 0.152×0.101×0.080 0.110×0.090×0.050

θ range (°) 5.00–72.28 2.91–33.18

Reflections collected/unique 56,808/2956 36,295/5581

Rint 0.0611 0.0804

Observed reflections [I>2σ(I)] 2670 3747

Data/restraints/parameters 2956/4/212 5581/2/206

Goodness-of-fit on F2 1.168 1.040

R1 [I>2σ(I)] 0.0322 0.0517

wR2 (all data) 0.0855 0.1136

Δρmax, Δρmin (eÅ
−3) 0.62, −1.19 1.90, −2.01
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Optimization of the structures used the BFGSmethod from an
initial Hessian according to Almoef’s model with a very tight
self-consistent field convergence threshold [27]. Calculations
were made on the free cations of 3 and 4 as well as their
corresponding free bases. Avogadro was used as a model ed-
itor and visualization tool [28]. The results of the DFT calcu-
lations are summarized in the Supplementary Material. The
optimized structures exhibited no negative frequencies.
Natural atomic charges were calculated using NBO analysis
[29]. Structure overlay pictures were drawn with Mercury
[30].

Results and discussion

The N,4-diheteroaryl 2-aminothiazole mono-hydrobromide
salts investigated in this study were prepared using the
Hantzsch thiazole synthesis [31, 32], as summarized in
Scheme 1. Reactions of 2-bromo-1-(pyridine-2-yl)ethanone
mono-hydrobromide and 2-bromo-1-(pyrazine-2-yl) ethanone
mono-hydrobromide with 2 in ethanol afforded 3 and 4 after
recrystallization from methanol. The compounds were struc-
turally characterized by X-ray crystallography. Figure 1 de-
picts the molecular structures in the solid state.

In both 3 and 4, the structure of the central five-membered
1,3-thiazole heterocycle is as expected [33]. TheN-(pyridin-3-

yl)thiazol-2-amine unit adopts the same conformation in 3 and
4 with the sulfur atom and the pivot atom of the pyridine ring
C9 in an antiperiplanar arrangement around the C2–N2 bond.
A molecular conformation with a similar orientation of the
two aryl rings was observed previously in some crystal struc-
tures of N,4-diaryl 2-aminothiazoles [34–36]. The thiazole
and pyridine rings in 3 and 4 are not entirely coplanar. The
angle between the respective mean planes is 10.43(7)° in 3
and 12.6(1)° in 4. The mean planes of the heteroaryl rings

Table 2 Hydrogen bonds for 3 and 4

D–H⋯A d(D–H) d(H⋯A) d(D⋯A) <(DHA)

3a

N2–H2⋯Br1 0.863(17) 2.467(18) 3.3226(18) 171(2)

N4–H4⋯O2 0.858(17) 1.94(2) 2.704(2) 147(2)

O2–H2A⋯Br1a 0.830(17) 2.483(18) 3.3128(17) 179(3)

O2–H2B⋯Br1b 0.829(18) 2.531(18) 3.3539(17) 173(3)

C14–H14⋯N1c 0.95 2.43 3.368(3) 168

4b

N1–H1⋯N5a 0.884(18) 1.931(19) 2.808(3) 171(3)

N2–H2⋯Br1 0.874(18) 2.355(18) 3.228(2) 177(3)

a Symmetry codes: (a) x− 1/2, −y + 1/2, z – 1/2; (b) –x + 3/2, y + 1/2, −z +
3/2; (c) x – 3/2, −y + 1/2, z – 1/2
b Symmetry code: (a) x + 1/2, −y + 1/2, z + 1/2
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Fig. 1 Asymmetric units of 3
(top) and 4 (bottom).
Displacement ellipsoids are
drawn at the 50% probability
level. Hydrogen atoms are shown
by small spheres of arbitrary
radius. Namine–H⋯Br− and
N+

pyridine–H···Owater hydrogen
bonds are represented by dashed
lines
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attached to C4 of the 1,3-thiazole ring are tilted out of its mean
plane by only 1.88(6)° in 3 and 6.8(1)° in 4. Both mono-
hydrobromide salts have in common a hydrogen bond formed
by the secondary amino group to the bromide anion (Table 2).
Moreover, the S1⋯·Br1 short contacts of 3.5891(7) and
3.8344(8) Å as well as the C5–S1⋯Br angles of 177.96(8)
and 170.84(9)° in 3 and 4, respectively, provide structural
evidence for chalcogen bonding [37, 38]. This arrangement
appears not to be unusual. A survey of the CSD (version 5.41
with August 2020 updates) revealed that of 24 crystal struc-
tures containing the 2-aminothiazole unit and a bromide an-
ion, where coordinates were available, 17 structures exhibited

a short (< 4.0 Å) S⋯Br distance and C–S⋯Br angles in the
range of 152–175° (see Supplementary Material).

The protonation sites in both 3 and 4 were identified in
difference electron density maps. The observed respective
C–N–C bond angles in the six-membered heterocycles
(Table S1 in the Supplementary Material) corroborate the as-
signments made. The C12–N4–C11 and C6–N1–C10 bond
angles at the protonated N4 in 3 and N1 in 4, respectively,
are significantly larger than 120°. In contrast, the C–N–C
bond angles at the unprotonated pyridine and pyrazine nitro-
gen atoms are within 116–117° and thus significantly smaller
than 120°. In 3, the pyridine ring attached to C4 of the 1,3-
thiazole ring is protonated, whereas the 2-methoxypyridine
ring bonded to the amino group remains unprotonated. Since
pyrazine is a weaker base than pyridine, protonation of the 2-
methoxypyridine ring is preferred to protonation of the pyr-
azine ring in 4 as expected.

It is worth noting that in the crystal structure of 3, the
bromide anion is involved in a hydrogen bond with H2 at
the amine nitrogen atom; although H4 attached to the
pyridinium nitrogen atom, the site of protonation of the free
base exhibits the larger natural charge in the cation calculated
by DFT methods and subsequent NBO analysis (Table 3).
Similarly, in the crystal structure of 4, the bromide anion is
involved in a hydrogen bond with H2; although H1 attached
to the methoxypyridinium nitrogen atom, here the site of pro-
tonation has the larger natural charge in the calculated cation.
Natural atomic charge or the site of protonation of the free
base does therefore not appear to be an indicator of why the
bromide anion is hydrogen-bonded to the amine H atom. In
the crystal structures of both 3 and 4, the Namine–H⋯Br angles

Fig. 2 Structure overlays of the
thiazole units of the DFT-
optimized structures of the cations
(green) and free bases (orange) of
3 (top) and 4 (bottom). Sulfur and
nitrogen atoms are highlighted
with yellow and blue, respectively

Table 3 Selected natural atomic charges (e) for calculated free cations
and free bases of 3 and 4

Atom numbera 3 (cation) 4 (cation) 3 (free base) 4 (free base)

Positive

S1 0.43867 0.42585 0.34563 0.34574

H1 – 0.44402 – –

H2 0.41178 0.41185 0.39616 0.39634

H4 0.46263 – – –

Negative

N1 −0.47051 −0.42745 −0.47122 −0.47341
N2 −0.55164 −0.52947 −0.54077 −0.53978
N3 −0.53797 −0.48917 −0.49794 −0.47084
N4 −0.42127 −0.37532 −0.41571 −0.36370
N5 – −0.36709 – −0.37629

aAtom labelling scheme corresponding to the crystal structures
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are close to 180° (Table 2), indicating that the main interaction
is with the amine H atom, although it is worth noting that the
second highest positively charged atom in both cases is the
sulfur atom (3 cation 0.43867 e and 4 cation 0.42585 e). In
contrast, the amine nitrogen atom is the atom with the most
negative natural atomic charge of all atoms in the calculated
free cations of 3 (− 0.55164 e) and 4 (− 0.52947 e). For the
calculated free bases, the largest positive natural atomic
charge resides on the amine H atom (3 free base 0.39616 e
and 4 free base 0.39634 e) closely followed by the sulfur atom
(3 free base 0.34563 e, 4 free base 0.34574 e), whereas the
atom with the most negative natural atomic charge is the
amine nitrogen atom in both cases (3 free base − 0.54077 e,
4 free base − 0.53978 e), as for the calculated cations.

In 4, the methoxy group in ortho-position to N1 is rotated
by approximately 180° compared with 3, which appears to be
associated with the protonation state of N1. This observation

is mirrored in the DFT-optimized structures of the free cations
and free bases of 3 and 4 (Fig. 2), whereby the methoxy group
in the ortho-position to N1 only points away from N1 when it
is protonated (cation of 4).

As shown in Fig. 3, Namine–H⋯Br−, N+
pyridine–H⋯Owater,

and Owater–H⋯Br− hydrogen bonds dominate the supramo-
lecular structure of 3 in the solid state. Two solvate water
molecules and two bromide anions form a centrosymmetric
R2
4 8ð Þ hydrogen bond motif [39], which is surrounded by

protonated N-(6-methoxypyridin-3-yl)-4-(pyridin-2-
yl)thiazol-2-amine molecules. The protonated pyridin-2-yl
group forms a hydrogen bond to the solvate water molecule
and, as mentioned above, the amino group to a bromide anion,
affording a three-dimensional hydrogen-bonded structure. In
addition, the unprotonated pyridine nitrogen atom N1 appears
to accept a weak C–H⋯N hydrogen bond from C14 of an
adjacent molecule (Figure S1 in the Supplementary

Fig. 4 N+
methoxypyridine–H⋯Npyrazine hydrogen-bonded zigzag chain in the crystal structure of 4, viewed towards the (−101) plane. Carbon-bound

hydrogen atoms and disordered methanol solvent molecules of crystallization are omitted for clarity. Symmetry code: (a) x + 1/2, −y + 1/2, z + 1/2

Fig. 3 Part of the crystal structure
of 3. Namine–H···Br

–, N+
pyridine–

H⋯Owater and Owater–H⋯Br−

hydrogen bonds (dashed lines),
viewed down the a axis direction.
Carbon-bound hydrogen atoms
are omitted for clarity. Symmetry
codes: (a) x – 1/2, −y + 1/2, z – 1/
2; (b) –x + 3/2, y + 1/2, −z + 3/2
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Material). The centroid-centroid distance between face-to-
face stacked methoxypyridine rings and thiazole rings is
3.51 Å. The hydrogen bonding scheme in 4 is distinctly dif-
ferent from that in 3. In 4, protonated N-(6-methoxypyridin-3-
yl)-4-(pyrazin-2-yl)thiazol-2-amine molecules are joined via
N+–H⋯N hydrogen bonds between the protonated
methoxypyridine ring and the pyrazine nitrogen atom N5 of
an adjacent molecule, resulting in zigzag chains extending in
the [101] direction in the crystal (Fig. 4). The second pyrazine
nitrogen atom remains without a hydrogen bond donor in the
crystal structure. The disordered solvate methanol molecule is
also not involved in significant hydrogen bonding interac-
tions. Geometric parameters of hydrogen bonds in 3 and 4,
as summarized in Table 2, are within expected ranges [40].

Conclusions

We have prepared the two related N,4-diheteroaryl 2-
aminothiazoles 3 and 4 using the Hantzsch thiazole synthesis
and structurally characterized their mono-hydrobromide salts.
TheN,4-diheteroaryl 2-aminothiazole cations exhibit similar mo-
lecular conformations in the solid state but different sites of pro-
tonation. The intermolecular hydrogen bonding patterns in the
crystal structures are markedly different. Despite the different
solid-state supramolecular structures, a similar Namine–
H⋯Br−⋯S association is encountered in both 3 and 4, indicat-
ing a preferred interaction of these groups, even though the site of
protonation of the free base is elsewhere. With regard to the
hitherto limited knowledge of N,4-diheteroaryl 2-aminothiazole
mono-hydrobromide salts, structural information gained from the
present study should be conducive for further investigations of
this compound class in medicinal chemistry.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11224-021-01730-0.
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