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Abstract
The interplay among two important noncovalent interactions involving aromatic ring is studied by means of density functional
theory (DFT) calculations on complexes of methyl salicylate with Mn+, Fe2+, Co+, Ni2+, Cu+, and Zn2+ cations. The energetic,
geometrical, spectroscopic, topological, and molecular orbital descriptors are applied to evaluate the strength of the cation-π and
intramolecular hydrogen bond (IMHB) interactions. These outcomes are compared with the parent molecule of methyl salicylate
and the corresponding results of benzene (BEN) complexes with the cited cations as a set of reference points. Based on the
energetic conclusions, for the double-charge cations, the simultaneous presence of these interactions enhances the strength of the
cation-π, while for the mono-charge cations, the reverse process is observed. On the other hand, for both type of the cations
(mono- and double-charge), the coupling of noncovalent interactions reduces the strength of the IMHB in the studied systems.
The computations in this study are discussed with the Bader theory of atoms in molecules (AIM), the natural bond orbital (NBO)
analysis, and the frontier molecular orbital (FMO) theory.
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Introduction

Methyl salicylate (MS) is known chemically as
2-(methoxycarbonyl) phenol, which has the empirical
formula C8H803. It is employed as the major component
of a fully definable essential oil (oil of wintergreen).
MS may be characterized as a colorless, yellowish, or
reddish, oily liquid with the distinct odor and taste of
wintergreen or gaultheria. It is used in cosmetics as
warming-up agent and also applied in perfumery as a
modifier in blossom fragrance and as a mild antiseptic
in oral hygiene products [1]. MS has anti-inflammatory

properties [2]. For acute joint and muscular pain, MS is
used as a rubefacient and analgesic in deep heating
liniments [3]. It relieves musculoskeletal pain in the
muscles, joints, and tendons by causing irritation and
reddening of the skin due to dilated capillaries and in-
creased blood flow [4]. No studies have been performed
with the primary purpose of determining the carcinoge-
nicity of MS.

Noncovalent interactions (NCIs) such as hydrogen bond,
cation-π, anion-π, and other weak forces govern the organi-
zation of multicomponent supramolecular assemblies
[5–10].The hydrogen bond (HB), as a popular form of NCIs,
is a unique interaction whose importance is great in chemical
and bio-chemical reactions including life processes [11]. It is
an attractive interaction between a proton donor X–H and a
proton acceptor Y in the same or in a different molecule (X-
H···Y). According to the conventional definition, H atom is
bonded to electronegative atoms such as N, O, and F. Y is
either an electronegative region or a region of electron excess
[11–16]. Among various types of interactions, the influence of
π-electron delocalization on HB interactions plays a special
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role [11, 12]. This effect is called resonance-assisted hydrogen
bonds (RAHBs) [17]. It seems that for stronger RAHBs, the
delocalization becomes more important, and the electrostatic
interaction energy is less significant than for weaker. This may
be a common characteristic of HBs.

The cation-π interaction, as another ensemble of NCIs,
implies the electrostatic attraction between ionic species
and the induced dipole of the aromatic moiety [18]. The
magnitude of the cation-π interaction is proposed to de-
pend on the nature of both the aromatic and cationic
groups involved. The cation-π interaction is in general
dominated by electrostatic and cation-induced polariza-
tion [19]. Dispersive and hydrophobic forces are thought
to act in support of this type of association [20]. The
significance of cation-π interactions in the design of or-
ganic nanotubes, ionophores, and models for biological
receptors has been clearly demonstrated [21–26].

The interplay between the NCIs that are ubiquitous in bio-
logical systems may be important in many areas of the supra-
molecular chemistry, molecular recognition, catalysis, and
crystal engineering [27, 28]. The importance of NCIs involv-
ing aromatic systems and the interplay among them can lead
to synergetic effects. In the last decades, the different studies
have been performed on the interplay effects between the HB
and cation-π interactions. For the first time, the mutual effect
of intermolecular HB and cation-π interactions in several
model systems has been extensively studied by Frontera
et al. [29–31], and the synergetic effects were observed. In
2008, Vijay et al. reported the strong cooperativity between
cation-π interaction involving alkali and alkaline earth metal
ions, π-π, and HB interactions [32]. Also, the interplay be-
tween cation-π and HB interactions was studied in different
systems with quantum chemical calculations by Li et al. [33].
Hence, the interplay between these interactions in the present
study can be important and might help to understand some
biological processes.

In the present letter, it should be mentioned that the inves-
tigated cations are selected to have closed-shell electronic
configuration. In fact, the cations are preferred to be mono-
or divalent, because higher oxidation states could lead to very
disparate results. Metal ions play a key role in wide ranging
biological processes, such as the regulation of enzyme, stabi-
lization, and function of nucleic acids [34, 35].With the bio-
logical importance of these ions, it is important to study com-
plexation with bioactive ligands to understand functions of
their complexes and to find new bioactive compounds. The
goal of the current research is to analyze a comparative study
of interplay effects between the cation-π and IMHB interac-
tions in the various complexes of MS with Mn+, Fe2+, Co+,
Ni2+, Cu+, and Zn2+ cations. The geometrical parameters,
binding energies, and topological properties are examined to
gain further insight into the effects of these interactions on
each other. For this study, DFT calculations are done, and

the AIM and NBO analyses are exploited. Finally, a complete
investigation of these interactions is presented on molecular
orbital (MO) data in the studied complexes.

Computational methods

All of the calculations in the present study are performed using
the Gaussian 03 [36] set of program. The structures are opti-
mized with the DFT method using the M06-2X functional
[37] along with the M06-2X/aug-cc-pVTZ basis set [38].
Frequency calculations are carried out to prove that the
resulting stationary points are real energy minima. For the
studied complexes, the binding energies (ΔEion-π) are calcu-
lated by evaluating the difference between the total energies of
complex and the optimized energies of monomers, as given in
Eq. (1):

ΔEion−π ¼ Ecation–π− Ecation þ Eπ−system
� � ð1Þ

where Ecation–π is the total energy of complex and Ecation and
Eπ-system are the energies of the relaxed cation and MS (or
BEN) monomer, respectively. The obtained binding energies
are corrected for the basis set superposition error (BSSE)
using counterpoise correction method of Boys and Bernardi
[39].The topological electron charge density is analyzed by
the atoms in molecules (AIMs) method [40, 41], using the
AIM2000 program [42]. The achieved wave functions at the
M06-2X/aug-cc-pVTZ computational level are also applied to
calculate the orbital interaction and the charge transfers within
the NBO framework [43] using the NBO program [44] under
Gaussian 03 package. The molecular orbital (MO) calcula-
tions are performed on the investigated complexes with the
same level of DFT theory. Finally, electronic descriptors such
as energy gap, softness (S), chemical hardness (η) [45], elec-
tronic chemical potential (μ) [46], electrophilicity index (ω)
[47], and electronegativity (χ) [48] are calculated as defined in
Eqs. (2), (3), (4), and (5) according to Koopmans theorem [49]
to investigate the local characteristics of the complexes:

μ ¼ ∂E
∂N

� �

V rð Þ;T
ð2Þ

η ¼ ∂2E
∂N2

� �

V rð Þ;T
ð3Þ

S ¼ 1

2η
ð4Þ

ω ¼ μ2

2η
ð5Þ
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Results and discussions

Energetic descriptors

In the current research, the mutual influences of the
cation-π and IMHB interactions are investigated on the
different binary complexes of MS with (M = Mn+, Fe2+,
Co+, Ni2+, Cu+, and Zn2+) cations as the benchmark sys-
tems. In addition, for deeper understanding the nature of
mentioned interactions, it is necessary to compare the
results of the titled complexes with the appropriate ref-
erences, such as the parent molecule (MS) and the
BEN∙∙∙M complexes. The considered complexes are illus-
trated according to the position of the metal cations (M)
on the benzene ring (see Fig. 1). The values of the cal-
culated binding energies without and with the BSSE cor-
rection (ΔE and ΔEBSSE) are demonstrated in Table 1.
For the MS∙∙∙M and BEN∙∙∙M complexes, the interaction
strength based on the calculated binding energies is as
follows:

π•••Ni2þ > π•••Fe2þ > π•••Zn2þ > π•••Mnþ > π•••Coþ

> π•••Cuþ

As can be seen, the divalent complexes show the strongest
interactions, whereas the weakest those belong to the monova-
lent ones. By comparison of the binding energies of the corre-
sponding complexes of the MS and BEN (Table 1), it is found
that the presence of RAHB ring increases the strength of
cation-π interaction in divalent complexes. The reverse behav-
ior is observed for the cation-π interactions in monovalent
complexes. These results are strongly dependent on the nature
of metal cations. Since cation-π interactions are predicted by
electrostatics, it follows that cations with larger charge density
interact more strongly with π systems. In the studied com-
plexes, it can be seen that the divalent cations carry the most
positive charge, whereas the least positive charge exists on the
monovalent ones. This result leads to transfer some electron
density of the RAHB units to the benzene ring that increases
strength of cation-π interaction in these systems. In contrast, the
greater ionic radius and lengthening of the metal–benzene

distance of the monovalent complexes with respect to divalent
ones are factors that may cause weakening of the cation-π
interaction in these structures.

In this exploration, the approximate values of the IMHB
energies of RAHB systems are calculated by the Espinosa and
Molins method [50]. Herein, the HB energies (EHB) could be
estimated from the properties of bond critical points. The sim-
ple relationship between HB energy and the potential energy
density V(rcp) at the critical point corresponding to O⋯H
contact is assigned to be EHB = 1/2 V(rcp) [50–52].
Inspection of our theoretical results reveals that with the ex-
ception ofMS∙∙∙Ni2+ complex, the values of IMHB energy are
lower than the parent molecule. This denotes that the presence
of cation-π interaction decreases the IMHB strength. The elec-
tron density decrease within the RAHB units may be related to
the attractive effects between the cations and π-electrons of
the benzene ring. Hence, the reduced IMHB energies are
found to be in the order MS∙∙∙Co+ (0.74) > MS∙∙∙Mn+

(0.54) >MS∙∙∙Cu+ (0.27 kcal mol−1) and MS∙∙∙Zn2+ (0.52) >
MS∙∙∙Fe2+ (0.12 kcal mol−1) for the corresponding complexes
(see Table 1).

It is worth mentioning that, in the Ni2+ complex, after ge-
ometry optimization, the cation does not remain exactly along
the perpendicular symmetric axis of benzene ring and ap-
proaches little to the ring bonds. It seems that the deviation
of cation from the symmetric axis of the benzene ring can be
related to the more negative electronic charge of ring C–C
bond. Besides, in the Ni2+ complex, due to the strong
cation-π interaction causing the architecture of “binary-sys-
tem moiety” distortion, so that, the presence of RAHB unit
destroys a little bit the aromaticity of the benzene ring, and this
makes the cation-π interaction less efficient [53, 54]. Hence,
with the merging of the RAHB unit and the benzene ring, the
aromaticity of the benzene ring slightly decreases. This causes
that the π-electron delocalization between the benzene ring
and the RAHB unit also reduce. Thus, the less charge transfer
from the RAHB unit to the benzene ring leads to the increment
of HB strength in this system. For the Ni2+ complex, it can be
observed that, in general, both cation-π and HB interactions
have similar trend for the ΔEBSSE and EHB values, indicating
that the effect of HB on the cation-π interaction is similar to
the effect of the cation-π interaction on HB. Therefore, the

Fig. 1 Molecular structures of (a)
MS∙∙∙M and (b) BEN∙∙∙M
complexes (M =Mn+, Fe2+, Co+,
Ni2+, Cu+, Zn2+)
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results reflect the interplay enhancement of both interactions.
In other words, the stronger the noncovalent interactions, the
more remarkable these effects; as a result, the complex with
both strongest interactions should be the most energetically
favorable.

Geometric descriptors

To provide more insight into the nature of noncovalent inter-
actions, we have considered the most significant structural
parameters, i.e., the distance between the ion and the center
of the aromatic ring (dπ…M) in the studied complexes. It is
well known that the strength of the cation-π interaction in-
creases with decreasing of the dπ…M. According to the results
presented in Table 1, the dπ…M in the MS complexes shows
higher values than the BEN complexes. Based on these out-
comes, the coexistence of the cation-π and IMHB interactions
decreases the strength of the cation-π in the monovalent com-
plexes. However, there is no a meaningful relationship be-
tween the computed dπ…M values and the achieved binding
energies in the divalent ones (see Table 1). For monovalent
complexes, the augmented dπ…M values, which are propor-
tional to the type of cations, increase as follows: Mn+

(0.033) > Cu+ (0.027) > Co+ (0.020 Å).
We also intend to investigate how the cation-π interaction

affects the IMHB strength of the resulting structures. For this
purpose, we have analyzed the structural parameters of RAHB
units, which are the most important indicators of the HB
strength. As it is apparent from Fig. 1, the studied complexes
represent one O–H⋯O IMHB in its structure. The formation
of O–H⋯O HB is accompanied with the lengthening of O–H
bond, the shortening of H⋯O distance, and the increase of the
O–H⋯O angle. The values of geometrical parameters are
given in Table 1. As shown in this table, the parent molecule
creates the shorter H⋯O distance (dH⋯O) and the greater O–

H⋯O angle (θOHO) in comparison with the corresponding
values of the MS complexes (with the exception of π···Ni2+

complex). Alternatively, the O–H bond length (dO-H) in the
parent molecule is also less than theMS complexes value. The
reason for the increase of the dO-H and dO...H during the for-
mation of complexes can be due to the electrostatic effects
between metal ions and oxygen atom of the carbonyl func-
tional group connected to the phenyl ring. There is the large
negative charge on the oxygen atom (e.g., − 1.061 for Mn+

complex), which causes the oxygen atom to transfer a certain
amount of electron density towards the metal ion. Thus, it
leads to increasing the bond lengths in the related complexes.

According to these results, it is evident from Table 1 that
the presence of cation-π interaction decreases the strength of
the IMHB. The result of calculations also shows that the trend
in the obtained dH⋯O values is MS∙∙∙Co+ (1.827) >MS∙∙∙Mn+

(1.820) > MS∙∙∙Cu+ (1.812 Å) and MS∙∙∙Zn2+ (1.818) >
MS∙∙∙Fe2+(1.804) >MS (1.803) >MS∙∙∙Ni2+(1.703 Å). There
is a linear relationship between values of the EHB and the
dH...O with an excellent correlation coefficient (R2 is equal to
0.9974), while the corresponding correlation cannot be seen
for the dO H values. In other words, our studies show that the
dO...H values correlate better with the EHB than the dO-H ones.
On the other hand, the dO-H values increase in the following
order, MS∙∙∙Ni2+ (0.998) > MS∙∙∙Fe2+ (0.986) > MS∙∙∙Zn2+

(0.983 Å) and MS∙∙∙Co+ (0.973) > MS∙∙∙Mn+(0.972) ≈
MS∙∙∙Cu+(0.972) >MS (0.967 Å), that have good correlation
with the binding energies (see Fig. 2).

Spectroscopic descriptors

In order to analyze the interplay between the cation-π and
IMHB interactions, the most important stretching frequencies
(νπ⋯M) computed at the M06-2X/aug-cc-pVTZ level of the-
ory are listed in Table 1. The strength of cation-π interactions

Table 1 The BSSE-corrected
binding and IMHB energies
(ΔEBSSE and EHB, in kcal mol−1),
the geometrical (bond lengths (d),
in Å, and bond angles (θ), in °),
and spectroscopic descriptors (ν,
in cm−1) of complexes calculated
at the M06-2X/aug-cc-pVTZ lev-
el of theory

ΔEBSSE dπ...M νπ...M EHB dO-H dH...O θOHO νO-H

BEN∙∙∙Ni2+ −197.72 1.776 302.0 ─ ─ ─ ─ ─
BEN∙∙∙Fe2+ −173.58 1.693 324.4 ─ ─ ─ ─ ─
BEN∙∙∙Zn2+ −162.79 1.806 304.5 ─ ─ ─ ─ ─
BEN∙∙∙Mn+ −93.58 1.601 329.9 ─ ─ ─ ─ ─
BEN∙∙∙Co+ −66.19 1.767 241.8 ─ ─ ─ ─ ─
BEN∙∙∙Cu+ −53.15 1.930 217.1 ─ ─ ─ ─ ─
MS ─ ─ ─ −10.09 0.967 1.803 141.7 3746.8

MS∙∙∙Ni2+ −213.69 1.841 347.6 −13.83 0.998 1.703 142.2 3214.2

MS∙∙∙Fe2+ −186.76 1.737 334.0 −10.05 0.986 1.804 138.6 3456.9

MS∙∙∙Zn2+ −169.56 1.815 327.1 −9.65 0.983 1.818 138.3 3510.5

MS∙∙∙Mn+ −90.35 1.634 340.4 −9.63 0.972 1.820 140.3 3662.2

MS∙∙∙Co+ −64.16 1.787 246.8 −9.43 0.973 1.827 139.7 3657.5

MS∙∙∙Cu+ −51.33 1.957 223.8 −9.90 0.972 1.812 140.0 3646.3
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can be evaluated using the νπ⋯M. In other words, the calcu-
lations reveal a direct relationship between the calculated vi-
brational frequencies and the binding energies for the studied
complexes. It is apparent from Table 1 that the changes in
νπ⋯M values are in the ranges of 217.1–329.9 and 223.8–
347.6 cm 1 for BEN···M and MS⋯M complexes, respective-
ly. Our data show that these values for MS complexes are
higher than the corresponding values for BEN complexes.
The increased values can be arranged, respectively, as Ni2+

(45.6) > Zn2+ (22.6) > Fe2+ (9.6 cm 1) and Mn+ (10.5) >
Cu+(6.7) > Co+(5.0 cm 1); as a result, the increasing of
νπ⋯M values and the strengthening of cation-π interaction
can be observed in the presence of IMHB.

The O–H stretching mode (νO–H) is the most significant
vibrational mode of O–H···O unit, in which its wave number
strongly depends on the IMHB strength (see Table 1). For the
parent molecule, there is a reverse relationship between the O–
H bond length (dO-H) and its corresponding frequency (νO-H).
In other words, the O–H stretching vibrational frequency is
observed to shift to a higher frequency, together with a con-
traction of the O–H bond (see Table 1). As shown in this table,
the cation-π interaction reduces the values of νO-H in the stud-
ied complexes. It is evident from the conventional definition
of HB that formation of X–H⋯Y bond is accompanied by a
weakening and elongation of the covalent X–H bond with
concomitant decrease of X–H stretching frequency [55]. The
lengthening of the proton donating bond as an effect of HB
formation is accompanied by the red shift of the correspond-
ing mode. Hence, the νO-H values show red-shifted nature for
the MS complexes. In comparison with the parent molecule,
the νO-H for theMS complexes appears red-shifted by ca. Ni2+

(532.6) > Fe2+ (289.9) > Zn2+(236.3 cm 1) and Cu+(100.5) >
Co+(89.3) >Mn+ (84.6 cm 1), which is in good agreement
with the EHB and dO H (related to divalent complexes).

Topological descriptors

The mutual effects between the cation π and IMHB interac-
tions can also be investigated by the topological properties of
the bond critical points of interactions. The computed topo-
logical parameters of complexes such as charge density (ρ), its
Laplacian (∇2ρ), the total electron energy density (HC), and its
components (GC, kinetic electron energy density, and VC,
potential electron energy density) at the bond critical points
(BCPs) are given in Table 2. Figure 3 shows the typical mo-
lecular graphs obtained from AIM analysis for MS∙∙∙Mn+ and
BEN∙∙∙Mn+ complexes. As observed in this figure, the bond
paths are detected between metal cations and each carbon
atom of the benzene ring in the related complexes.

It is well known that the value of ρ at the BCP (ρ(r)π⋯M)
reflects the strength of cation-π interaction, with low values
corresponding to weak interactions, and the ρ value enhances
as the strength of interaction increases [56]. The theoretical
results display that the presence of RAHB unit increases the
ρ(r)π⋯M values for the title complexes with respect to
BEN∙∙∙M. Hence, the augment of ρ(r)π⋯M for the MS com-
plexes in comparison with the BEN ones is found to be in the
order Ni2+ (1.375 × 10 2) > Fe2+ (0.262 × 10 2) > Zn2+

(0.247 × 10 2a.u.) and Cu+ (0.563 × 10 2) > Mn+ (0.521 ×
10 2) > Co+ (0.259× 10 2 a.u.). This means that the effect of
the RAHB units on the ρ(r)π⋯M values depends on the type of
the cation; as a result, the coexistence of the IMHB and
cation-π interactions increases the strength of cation-π inter-
action in the related complexes.

Based on AIM analysis, the topological properties of the
electron density at the BCP of HB (ρ(r)H⋯O) are a criterion for
evaluating the HB strength. Table 2 demonstrates the calculated
topological parameters at the HB critical points. As shown in
this table, the trend in the obtained ρ(r)H⋯O values is as follows:

y = -0.0001x + 0.9624

R = 0.937

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

-250 -200 -150 -100 -50 0

d O
-H

/Å
ΔEBSSE/ kcal mol-1

Fig. 2 The relationship between
the values of dO-H and ΔEBSSE
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MS⋯Ni2+ (4.447 × 10 2) > MS⋯Fe2+ (3.486 × 10 2) >
MS⋯Zn2+ (3.371 × 10 2a.u.) and MS⋯Cu+ (3.393 × 10 2) >
MS⋯Mn+ (3.325 × 10 2) >MS⋯Co+ (3.277 × 10 2a.u.). Our
theoretical results show that this trend is identical with the EHB
parameters (Tables 1 and 2). According to the obtained ρ(r)H⋯O

value for the parent molecule (3.488 × 10 2a.u.), with the excep-
tion of Ni2+complex, the presence of cation-π interaction de-
creases the IMHB strength in the studied complexes.

The −GC/VC ratio can also treat as a descriptor for evalu-
ating of the noncovalent interactions nature [57, 58]: for −GC/
VC > 1, the interaction is electrostatic, while for 0.5 < −GC/
VC < 1, it is partly covalent. Table 2 shows that at the BCP of
the HB, the ratio of −G/VH⋯O for Ni2+ and Fe2+ complexes is
between 0.5 and 1, which show that the IMHB is partly cova-
lent in nature, while the remainder ones are electrostatic. On
the other hand, the obtained −G/Vπ⋯M values (ranging from
0.700 to 0.932) also confirm that the cation-π interactions in
the systems under consideration are partly covalent.

Charge transfer descriptors

The NBO method encompasses a suite of algorithms that en-
able fundamental bonding concepts to be extracted from DFT
computations [59]. One can see that the most significant
donor–acceptor interaction in the considered complexes is
σC–C→ LP*M interaction. The results of NBO analysis indi-
cate that the σC–C of the benzene ring acts as donor and the
LP*M behaves as an acceptor. The obtained outcomes for the
NBO analyses are reported in Table 3. As revealed in this
table, the presence of IMHB increases the energies of σC–

C→ LP*M interaction. In other words, the coexistence of the
cation-π and IMHB interactions enhances the strength of
cation-π interactions. For instance, the augmented value of
these interactions (E(2)) for MS···Ni2+ complex is about
0.24 kcal mol−1 in comparison with the corresponding value
of the BEN···Ni2+. According to the obtained E(2)energies,
these values depend on the type of cation and obey the π···

Table 2 The selected topological properties of electron density (a.u. × 102 except −G/V) obtained by AIM analysis

π⋯M HB

n ρ(r) ∇2ρ(r) H(r) V(r) −G/V ρ(r) ∇2ρ(r) H(r) V(r) -G/V

BEN∙∙∙Ni2+ 2 6.527 12.358 −2.008 −7.106 0.717 ─ ─ ─ ─ ─
BEN∙∙∙Fe2+ 6 6.462 20.442 −1.284 −7.678 0.833 ─ ─ ─ ─ ─
BEN∙∙∙Zn2+ 6 5.007 13.319 −0.843 −5.016 0.832 ─ ─ ─ ─ ─
BEN∙∙∙Mn+ 6 7.062 28.360 −1.101 −9.292 0.882 ─ ─ ─ ─ ─
BEN∙∙∙Co+ 2 5.547 21.481 −0.526 −6.423 0.918 ─ ─ ─ ─ ─
BEN∙∙∙Cu+ 6 3.925 12.641 −0.248 −3.656 0.932 ─ ─ ─ ─ ─
MS ─ ─ ─ ─ ─ ─ 3.488 12.897 0.006 −3.213 1.002

MS∙∙∙Ni2+ 2 7.902 15.385 −2.896 −9.638 0.700 4.447 14.399 −0.403 −4.405 0.909

MS∙∙∙Fe2+ 1 6.724 20.609 −1.475 −8.103 0.818 3.486 12.776 −0.003 −3.201 0.999

MS∙∙∙Zn2+ 3 5.254 14.459 −0.911 −5.437 0.832 3.371 12.621 0.042 −3.072 1.014

MS∙∙∙Mn+ 2 7.583 24.473 −1.861 −9.840 0.811 3.325 13.103 0.105 −3.066 1.034

MS∙∙∙Co+ 1 5.806 20.627 −0.781 −6.719 0.884 3.277 12.906 0.112 −3.002 1.037

MS∙∙∙Cu+ 1 4.488 14.311 −0.435 −4.447 0.902 3.393 13.346 0.091 −3.154 1.029

Fig. 3 Typical molecular graphs
obtained from AIM analysis for
(a) MS∙∙∙Mn+ and (b) BEN∙∙∙Mn+

complexes. The small red and
yellow spheres and lines
correspond to bond critical points
(BCPs), ring critical points
(RCPs), and bond paths,
respectively
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Fe2+ > π···Ni2+ > π···Zn2+ and π···Mn+ > π···Co+ > π···Cu+

order.
The NBO analysis also offers a method for exploring intra-

molecular bonding and charge transfer in molecular structures
[43]. The NBO results show that the main orbital interaction in
the O–H⋯O IMHB is LP(O)→ σ*(O-H). The lone pairs of
oxygen (LPO) participates as proton acceptor, and anti-
bonding orbital of O–H (σ*O-H) has role of proton donor. The
obtained data are listed in Table 3. The results of the NBO
analysis indicate that the coupling of the cation-π and IMHB
interactions decreases the IMHB strength (except for Ni2+ and
Fe2+ complexes). However, it can be seen that the order of the
E(2) values is as follows: MS···Ni2+ >MS···Fe2+ >MS···Zn2+

and MS···Cu+ >MS···Mn+ >MS···Co+. These values depend
on the type of cations involved in the interaction.

Electronic descriptors

Another important criterion to evaluate the interplay effects
between the cation π and IMHB interactions is the electronic
properties of complexes based on the frontier molecular orbit-
al (FMO) theory. The highest occupied molecular orbital
(HOMO) is the highest amount of energy orbital that can
simply be donated electron density to form a bond, and the
lowest unoccupied molecular orbital (LUMO) is the lowest
empty orbital that energetically could add more electrons into
this orbital. The chemical activity of complexes can be char-
acterized by the energy gap (Eg) that is a significant parameter
relying on the HOMO and LUMO energy levels. A case from
the plots of HOMO and LUMO for the studied complexes is
shown in Fig. 4.

The electronic descriptors of reactivity in the context of
DFT such as energy gap, softness (S), chemical hardness (η),
electronic chemical potential (μ), electrophilicity index (ω),
and electronegativity (χ) are presented in Table 4. The large
Eg means a hard molecule, and the small Eg means a soft
molecule. In addition, the stability of the molecule with the
most Eg can be related to hardness. This means that the mol-
ecule with the least Eg is more reactive. It is also obvious
from Table 4 that the μ values of complexes are negative;
hence, all the considered structures are stable. The μ presents
a technique to compute the χ values for atoms and molecules.
The μ is known as the negative of the χ. It is well known that
the complexes with the higher χ value are better electron
acceptors. The ω demonstrates that a good electrophile is a
species described by a high |μ| value and a low η value [60].
There is a direct relationship between the minimum Eg and
the maximum electron flow among HOMO and LUMO.

It is obvious from Table 4 that the presence of RAHB rings
reduces the Eg, η, and χ descriptors and enhances the values of
S, μ, and ω (in most cases) in comparison with BEN com-
plexes. A similar trend is also observed for these parameters in
the presence of cation-π interactions (except for χ and μ). In
other words, it can be stated that the coexistence of the IMHB
and cation-π interactions decreases the Eg, η, and μ parame-
ters and increases the S, χ, andω values with respect to parent
molecule. The reduction of the Eg and η in MS complexes is
due to the low chemical stability and high chemical reactivity
of these complexes with respect to BEN ones. Hence, it can be
concluded that, in most cases, both cation-π and HB interac-
tions have same trend for these descriptors. This means that

Table 3 The values of E(2)

correspond to σ(C–C)→ LP*(M)

and LP(O)→ σ*(O–H) interactions
(in kcal mol−1) and occupation
numbers of donor (OND) and
acceptor (ONA) orbitals in the
studied complexes

π⋯M interaction HB interaction

σ(C–C)→LP*(M) LP(O)→σ*(O–H)

E(2) ONσ(C–C) ONLP*(M) E(2) ONLP(O) ONσ*(O–H)

BEN∙∙∙Ni2+ 4.46 1.984 0.075 ─ ─ ─
BEN∙∙∙Fe2+ 6.38 1.975 0.375 ─ ─ ─
BEN∙∙∙Zn2+ 3.31 1.979 0.013 ─ ─ ─
BEN∙∙∙Mn+ 7.27 1.966 0.055 ─ ─ ─
BEN∙∙∙Co+ 5.15 1.973 0.197 ─ ─ ─
BEN∙∙∙Cu+ 4.15 1.980 0.053 ─ ─ ─
MS ─ ─ ─ 10.13 1.953 0.024

MS∙∙∙Ni2+ 4.70 1.975 0.011 17.90 1.934 0.045

MS∙∙∙Fe2+ 8.08 1.964 0.081 10.42 1.945 0.030

MS∙∙∙Zn2+ 3.87 1.976 0.014 9.74 1.947 0.028

MS∙∙∙Mn+ 7.62 1.957 0.026 8.80 1.951 0.025

MS∙∙∙Co+ 6.12 1.970 0.203 8.67 1.951 0.024

MS∙∙∙Cu+ 5.55 1.979 0.054 9.24 1.950 0.025
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the cation-π interaction has a similar effect on the HB inter-
action and vice versa.

The high chemical reactivity of MS complexes with respect
to BEN ones can also be evaluated by another index. Among
reactivity descriptors, the molecular electrostatic potential
(MEP) is a real property to analyze the physical nature of the
noncovalent interactions involved in the complexes. It has es-
pecially been applied as a reliable descriptor for the HB
strength [61–64]. The negative regions of MEP are related to
electrophilic reactivity, and the positive regions are related to
nucleophilic reactivity. Figure 5 shows electron density
isosurface mapped with electrostatic potential surface for Mn+

complexes. As can be seen, while the regions having the

positive potential are over Mn+ cation and plane of the benzene
ring (blue color), the regions having the negative potential are
over the oxygen atoms (red and yellow colors). The negative
regions lead to strong electrostatic interactions with HB donors
[61, 62, 65]. Therefore, the most negative sections of MEP that
correspond to the lone-pair regions of the oxygen atoms in the
complexes represent a measure of HB ability.

Conclusions

The interplay among the cation-π and IMHB interactions in-
volving aromatic ring is studied by means of DFT calculations

Fig. 4 HOMO and LUMO of MS···Mn+ and BEN···Mn+ complexes as obtained at the M06-2X/aug-cc-pVTZ level of theory

Table 4 Values of the HOMO and LUMO energies (EHOMO, ELUMO), energy gap (Eg), chemical hardness (η), softness (S), electronic chemical
potential (μ), electronegativity (χ), and electrophilicity index (ω)

EHOMO (eV) ELUMO (eV) Eg (eV) η (eV) S (eV-1) μ (eV) χ (eV) ω (eV)

BEN∙∙∙Ni2+ −19.699 −14.154 5.545 2.773 0.180 −16.926 16.926 51.666

BEN∙∙∙Fe2+ −20.598 −12.547 8.051 4.026 0.124 −16.572 16.572 34.111

BEN∙∙∙Zn2+ −19.943 −13.528 6.415 3.207 0.156 −16.736 16.736 43.664

BEN∙∙∙Mn+ −12.851 −5.759 7.092 3.546 0.141 −9.305 9.305 12.208

BEN∙∙∙Co+ −12.907 −5.786 7.121 3.561 0.140 −9.346 9.346 12.267

BEN∙∙∙Cu+ −13.724 −6.175 7.550 3.775 0.132 −9.950 9.950 13.112

MS −7.927 −0.648 7.279 3.639 0.137 −4.288 4.288 2.526

MS∙∙∙Ni2+ −18.193 −12.996 5.197 2.599 0.192 −15.595 15.595 46.791

MS∙∙∙Fe2+ −18.232 −11.837 6.395 3.198 0.156 −15.034 15.034 35.343

MS∙∙∙Zn2+ −18.083 −12.996 5.087 2.544 0.197 −15.540 15.540 47.469

MS∙∙∙Mn+ −12.532 −5.701 6.830 3.415 0.146 −9.117 9.117 12.168

MS∙∙∙Co+ −12.477 −5.738 6.740 3.370 0.148 −9.108 9.108 12.308

MS∙∙∙Cu+ −12.705 −6.122 6.583 3.291 0.152 −9.413 9.413 13.461
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on complexes of MS with Mn+, Fe2+, Co+, Ni2+, Cu+, and Zn2+

cations. These outcomes are compared with the corresponding
results of BEN∙∙∙M complexes and the parent molecule as a set
of reference points. The energetic, geometrical, spectroscopic,
topological, and molecular orbital descriptors are applied to
evaluate the strength of these interactions. Based on the energet-
ic conclusions, for the double-charge cations, the simultaneous
presence of these interactions enhances the strength of the
cation-π, while for the mono-charge cations, the reverse process
is observed. In contrast to the energetic conclusions, for both
type of the cations (mono- and divalent), the descriptors of geo-
metrical, spectroscopic, and AIM and NBO analyses indicate
that the coupling simultaneously strengthens the cation-π inter-
action and weakens the strength of the IMHB in the studied
systems (with the exception of Ni2+ complex). Our findings also
show that, inmost cases, both cation-π andHB interactions have
the same trend for the electronic descriptors of reactivity. This
means that the cation-π interaction has a similar effect on theHB
interaction and vice versa.
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