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Abstract
Assuming aromaticity (cyclic continuous conjugation, planarity, and obeying the Hückel 4n + 2 rule), effects of one and two
fused six-membered heterocyclic rings are investigated on the energy lowering (stabilization) of 22 novel singlet (s) and triplet (t)
carbenes, at B3LYP/AUG-cc-pVTZ and M06-2X/AUG-cc-pVTZ. Results display that (1) exclusive of triplet pyridine-4-yli-
dene, and s and t states, other species appear as ground state, so every s Hammick carbene exhibits more stability than its
corresponding t state; (2) the highest stability is demonstrated by unsubstituted pyridine-4-ylidene as reference carbene, and the
lowest stability is shown by carbene situated between two nitrogen heteroatoms of two fused rings, in a “W” arrangement; (3)
regarding the relationship between carbenic center (CC) and substituted heteroatom, the order of stabilization for fused rings is
meta > para > ortho; (4) regardless of how organized, fusion of one six-membered ring, in a given arrangement, has more
stabilizing effect than two six-membered rings; (5) contrary to our expectation, t Hammick carbenes show higher band gap
(ΔΕHOMO-LUMO) than their corresponding s species; (6) based on the NICS (nuclear independent chemical shift) results, the least
stable carbene has the most aromaticity in its pyridine ring; and (7) according to proposed homomolecular isodesmotic reactions,
all s states are stabilized via π-donor/σ-acceptor substitution more than the t states.
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Introduction

Carbenes as reactivate intermediates are of great current inter-
est, because of their individual structural properties, their cata-
lytic reactions in transition metal complexes or metal-free

organocatalysts, their metallopharmaceuticals, and their coordi-
nation to p-block elements in many fields of applied chemistry
[1, 2]. The size and substitution pattern can have a large effect
on the properties of N-heterocyclic carbenes (NHCs) [3].
Initially, Buchner and Curtius discovered carbenes that seemed
impossible to isolate [4]. Nevertheless, Bertrand successfully
synthesized and isolated five-membered NHCs containing α-
nitrogen atoms [4–8]. Kühn et al. synthesized and compared
tetrazolylidenes with transition metal complexes [7]. Variation
among normal and abnormal substitution pattern brings an ef-
fect on σ-donor abilities of the ligands (Scheme 1).

Substituent effects on the five-membered ring is in-
vestigated with imidazole-2-ylidene; imidazoline-2-yli-
dene; 1,2,4-triazole-5-ylidene; and tetrazole-5-ylidene
[8]. Clearly, the number and position of substituted
atoms are significant. The nucleophilicity (N), and glob-
al electrophilicity (ω) of the corresponding CC is de-
creased, and is increased, respectively, owing to the less
inductive electron withdrawal from the neighboring car-
bon atom, and lack of p-donation, respectively [9–11].
Also, Kassaee et al. theoretically have compared steric

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11224-020-01650-5) contains supplementary
material, which is available to authorized users.

* Sheida Ahmadi
sh.ahmadi_ch@yahoo.com

1 Department of Chemistry, Payame Noor University, Tehran, Iran
2 Department of Organic Chemistry, Faculty of Pharmaceutical

Chemistry, Tehran Medical Sciences, Islamic Azad University,
Tehran, Iran

3 Department of Chemistry, Ahar Branch, Islamic Azad University,
Ahar, Iran

4 Industrial Nanotechnology Research Center, Tabriz Branch, Islamic
Azad University, Tabriz, Iran

https://doi.org/10.1007/s11224-020-01650-5

/ Published online: 13 October 2020

Structural Chemistry (2021) 32:787–798

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-020-01650-5&domain=pdf
https://doi.org/10.1007/s11224-020-01650-5
mailto:sh.ahmadi_ch@yahoo.com


effects of tetrazol-5-ylidens and diaminocarbenes [12,
13]. They have reported N is a crucial factor for the
coordination of NHCs’ excellent σ-donors to transition
metal complexes, N increases as the size of the substit-
uent increases, ω trend takes on an exactly opposite
direction, and both normal and abnormal carbenes be-
come more stable in the presence of heteroatoms. Evidently,
the nitrogen-substituents or other groups situated adjacent to
CC have the largest influence on the steric environment at the
CC. In this manuscript, we try to respond to the important
question of: “How fused rings effect on the stability of
Hammick carbene?”Hence, we are probed normal substituted
pyridine-4-ylidenes (1–5) and abnormal derivatives (6–11)
(Scheme 2).

That is, three classes of pyridine-derived NHCs are identi-
fied: normal, abnormal, and normal remote (rNHCs). The dif-
ference among these three classes is the relationship between
substituted heteroatom and CC, which is ortho, meta, and
para, respectively [9–18].

Computational methods

The reliability of various, the most popular density functional
theory (DFT) [19–22], B3LYP [23–30], and M06-2X [31] is
already evaluated for the study of bond dissociation energies,
heats of formation, molecular properties, geometrical param-
eters, polarizability, and hyperpolarizability not only for
atoms and small molecules but also for large systems
[36–42]. Conversely, the advantages of using DFT for deter-
mining single-bond torsional potentials in π-conjugated sys-
tems are less obvious. In accordance with the previous calcu-
lations, the B3LYP [23–27] method has been well-used to the
theoretical valuations on divalent species so that it could pro-
vide rather responsible results contrasted to those achieved
through various basis sets [41–46]. In this work, full geometry
optimization of Hammick s and t carbenes is carried out with-
out any symmetry constraints using the GAMESS program
package [47, 48]. The restricted hybrid functional B3LYP
and M06-2X methods are employed for s states, and
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unrestricted broken spin-symmetry UB3LYP and UM06-2X
are used for t states due to its excellent performance-to-cost
ratio as compared with correlated wave function theory
[19–27]. The applied 6-311+G* basis set is confined of
Pople’s famous basis set and an extra plus owing to the sig-
nificance of diffuse functions [49–52]. To reachmore accurate
energetic data, single-point calculations are accomplished at
(U)B3LYP/AUG-cc-pVTZ//(U)B3LYP/6-311+G*. In order
to confirm the nature of the stationary species, the harmonic
vibration frequency (υmin) calculations are carried out, at
(U)M06-2X/AUG-cc-pVTZ//(U)M06-2X/6-311+G* [53,
54]. The natural bond orbital (NBO) calculations involving
the charge distributions are done at the (U)M06-2X/AUG-
cc-pVTZ [55–58]. To obtain the magnetic data, NICS calcu-
lations are applied at GIAO/B3LYP/AUG-cc-pVTZ [59–61]
including NICS (0, 0.5, 1, 1.5, 2) values, at rings centers, 0.5,
1.0, 1.5, and 2.0 Å above the plane of rings showingNICS1 for

singlet pyridine-4-ylidene ring, 1, along with NICS2 (values in
italic) for its fused rings, respectively. The nucleophilicity in-
dex, N, is calculated as N = ΔEHOMO(Nu)−ΔEHOMO(TCNE),
where tetracyanoethylene (TCNE) is preferred as the reference
[62]. The global electrophilicity (ω), chemical potential (μ),
and chemical hardness (η) are obtained via the expression of
ω = (μ2/2η), μ = (EHOMO + ELUMO)/2, and η = EHOMO−ELUMO

[63–65]. DFT calculations are implemented to identify the
stability of the scrutinized carbenes through appropriate
isodesmic reactions.

Results and discussion

Succeeding our search for stable NHCs, we have probed s and
t states of pyridine-4-ylidene, and its derivatives, (1–11,
Scheme 2) and contrasted their stability based on singlet-
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Table 1 The minimum vibrational frequency (υmin in cm−1), total
energy (Ε in a.u.) calculated for s and t carbenes at M06-2X/AUG-cc-
pVTZ, their energy separation (ΔΕs−t = Et−Es in kcal/mol) at B3LYP/

AUG-cc-pVTZ (values in upright), and M06-2X/AUG-cc-pVTZ (values
in italic), and their stabilizing energy (ΔE in kcal/mol) compared with the
parent pyridine-4-ylidene, 1, at B3LYP/AUG-cc-pVTZ

υmin Ε ΔΕs−t ΔΕ υmin Ε ΔΕs−t ΔΕ

1s 317.1 − 248.25632 22.5, 22.0 0.00, 0.00 7s 155.0 − 417.98158 14.0, 14.5 − 8.5, − 7.5

1t − 222.1 − 248.22118 7t 146.8 − 417.95852

2s 156.2 − 401.94159 14.9, 15.6 − 7.6, − 6.4 8s 156.5 − 417.97848 12.5, 12.8 − 10.0, − 9.2

2t 136.7 − 401.91679 8t 139.5 − 417.95804

3s 82.1 − 555.62634 10.5, 11.9 − 12.0, − 10.1 9s 86.9 − 587.72618 8.6, 10.0 − 13.9, − 12.0

3t 74.7 − 555.60742 9t 82.2 − 587.71017

4s 132.3 − 417.97278 9.1, 9.5 − 13.4, − 12.5 10s 81.2 − 587.70792 12.0, 11.4 − 10.5, − 10.6

4t 140.0 − 417.95762 10t 75.8 − 587.68969

5s 80.7 − 587.68772 0.3, 1.1 − 22.2, − 20.9 11s 79.4 − 587.69734 6.9, 6.4 − 15.6, − 15.6

5t 80.2 − 587.68596 11t 75.5 − 587.68710

6s 163.5 − 417.99228 13.8, 14.0 − 8.7, − 8.0

6t 153.8 − 417.97000
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triplet energy difference (ΔEs−t), structural parameters such as
bond length (R), divalent angle (A), dihedral angle (D), dipole
moment (DM), NBO charge distribution, and MEP maps at
B3LYP/AUG-cc-pVTZ, and M06-2X/AUG-cc-pVDZ which
approve the higher stability of singlet carbenes. Beneficial
results are attained from these species including υmin, N, ω,
μ, and ΔΕHOMO-LUMO. Additionally, we have estimated rela-
tive stability through aromaticity (NICS), and isodesmic reac-
tions. Except for 1t with an imaginary frequency of − 222.1
cm−1, all full-optimized geometries turn out as minima on
their potential energy surfaces for displaying no negative force
constant (Table 1).

Fortunately, both s and t states of 2, 4, 6, 7, and 8 carbenes
have υmin values more than 100 cm−1 [66]. All s Hammick
carbenes appear as ground state, showing more stability than
their corresponding t congeners. In this work, because of the
reliability between the thermodynamic characters (ΔEs−t, ΔHs

−t, and ΔGs−t) also for the sake of time saving, we confine our
results and discussion to ΔEs−t. The total stability trend recom-
mended by these parameters is 1 (22.5) > 2 (14.9) > 7 (14.0) ≥ 6
(13.8) > 8 (12.5) > 10 (12.0) > 3 (10.5) > 4 (9.1) > 9 (8.6) > 11
(6.9) > 5 (0.3 kcal/mol). There is an inconsistent relationship
among ΔΕHOMO-LUMO trend of s species; 1s (70.7) > 7s (62.3)
≥ 2s (62.1) > 10s (60.1) > 6s (59.3) ≥ 8s (59.2) > 3s (58.6) > 9s
(55.8) > 4s (54.2) > 11s (53.6) > 5s (46.1 kcal/mol) and
ΔΕHOMO-LUMO trend of t species; 1t (115.4) > 4t (102.1) > 6t
(98.9) > 7t (94.3) > 5t (91.2) > 2t (89.8) = 8t (89.8) > 10t (87.6) >
9t (87.0) > 3t (78.3) > 11t (77.0 kcal/mol) (Table 2).

Completely planar geometries are demonstrated by all spe-
cies, while their symmetries are Cs and/or C1 (Table 3).

Located non-bonding electrons in the σ-orbital of CC,
which is orthogonal to π-system and the ring current, leads
to higher DM in s structures (1s–11s) than their corresponding
triplets (about 1.5–3 times). For example, 5s (9.56 Debye)
displays a higher DM than 5t (6.53 Debye). Also, in polar

environment, 9s (1.93 Debye) and 9t (0.97 Debye) are expect-
ed to be stabilized to a smaller extent than the other species.
The average polarizability (α), as a criteria of interaction of
one molecule with its surrounding polar species, increases
from 64.31 a.u. for 1t to 179.66 a.u. for 3t compared with
1s, and 3s (68.34, and 174.23 a.u., respectively). This result
reveals that substituting the mentioned groups leads to in-
creasing α and activity of fused carbenes (Table 3). Triplet
carbenes have less N than their corresponding s states, show-
ing the most and the least value for 1s (4.87 eV) and 1t (2.34
eV), respectively (Table 4).

More participation of the unpaired non-bonding electron
on CC in delocalization causes the s structures more prone
toN than their related t states. Here, the substituent effect plays
a different role in ω of the scrutinized s and t Hammick

Table 2 The frontier molecular orbital energies (EHOMO, ELUMO in a.u.) and their corresponding band gaps (ΔEHOMO−LUMO in kcal/mol) calculated
for s and t carbenes at B3LYP/AUG-cc-pVTZ (values in upright), and M06-2X/AUG-cc-pVTZ (values in italic)

Species ΕHOMO ΕLUMO ΔΕHOMO-LUMO Species ΕHOMO ΕLUMO ΔΕHOMO-LUMO

1s − 0.1685 − 0.0559 70.7, 70.4 7s − 0.1857 − 0.0865 62.3, 63.4

1t − 0.2617 − 0.0779 115.4, 113.9 7t − 0.2470 − 0.0968 94.3, 93.2

2s − 0.1732 − 0.0742 62.1, 63.4 8s − 0.1860 − 0.0917 59.2, 55.8

2t − 0.2289 − 0.0858 89.8, 90.5 8t − 0.2415 − 0.0984 89.8, 88.5

3s − 0.1803 − 0.0870 58.6, 59.6 9s − 0.1943 − 0.1054 55.8, 54.2

3t − 0.2173 − 0.0925 78.3, 77.5 9t − 0.2477 − 0.1090 87.0, 85.9

4s − 0.1742 − 0.0879 54.2, 54.8 10s − 0.2021 − 0.1070 60.1, 59.6

4t − 0.2522 − 0.0895 102.1, 104.1 10t − 0.2520 − 0.1124 87.6, 88.2

5s − 0.1811 − 0.1076 46.1, 46.9 11s − 0.2042 − 0.1191 53.6, 54.8

5t − 0.2456 − 0.1003 91.2, 92.5 11t − 0.2381 − 0.1155 77.0, 79.4

6s − 0.1813 − 0.0868 59.3, 60.3

6t − 0.2532 − 0.0956 98.9, 97.7

Table 3 The calculated dipole moment (DM in Debye), polarizability
(α in a.u.) and point group (PG) of s and t carbenes at M06-2X/AUG-cc-
pVTZ

Species DM (α) PG D.M. (α) PG

1s 6.96 68.34 Cs 7s 7.43 109.76 Cs

1t 2.73 64.31 Cs 7t 4.86 110.37 Cs

2s 6.21 116.77 Cs 8s 5.50 110.16 Cs

2t 2.62 117.42 Cs 8t 3.68 110.64 Cs

3s 5.18 174.23 C1 9s 1.93 172.45 C1

3t 2.12 179.66 C1 9t 0.97 161.35 C1

4s 8.38 111.41 Cs 10s 7.16 158.44 C1

4t 4.94 113.24 Cs 10t 4.29 163.21 C1

5s 9.56 162.44 C1 11s 2.96 159.55 C1

5t 6.53 170.59 C1 11t 1.24 163.75 C1

6s 4.06 110.75 C1

6t 1.38 114.08 C1
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carbenes. The N data show no noticeable correlations with the
corresponding ω values for s and t species. For instance, 11s

shows higher ω (4.16 eV) than 11t (3.47 eV), while 1s shows
lower ω (1.52 eV) than 1t (2.13 eV). Also, every s carbene
shows lower absolute value of chemical potential (|μ|), and
global hardness (η) as global reactivity descriptor than its cor-
responding t structure. Succeeding our attention to stable syn-
thesized carbenes, here, we compare the substituent effect on
the N and ω of some of common NHCs with five-membered
rings (12s–19s, Scheme 3).

Because of the smaller carbenic angle, all five-membered
rings exhibited less N and less ω than the six-membered rings
(Table 5).

The highest N and the highest ω of the synthesized NHCs
are considered for 12s and 17s with the values of 3.78 and
1.56 eV, respectively. We hope the higherN of six-membered
carbenes along with their thermodynamic stability will make
them worthy of synthetic attentions. The overall aromaticity,
according to NICS1 values for pyridine-4-ylidene rings and
NICS2 values for fused rings, is considered for substituted
species specially 2s and 5s more than those of unsubstituted
species, 1 (Table 6).

The trend of aromaticity for the parent unsubstituted mol-
ecules is 1 < 2 < 3, and for their corresponding substituted
species is ortho > meta > para. However, substitution in-
creases differences in aromaticity between the parent mole-
cules (1, 2, and 3) and their corresponding derivatives. In
addition, by going down from 1s to 3s and from 1t to 3t, the
electron density distribution on CC decreases (− 0.727, −
0.681, − 0.156, − 0.276, − 0.074, and 0.456 e, respectively,
Figs. 1 and 2 and S1–S2).

Contrary to benzenemolecule, the pyridine group increases
the electron density distribution on CC, revealing the most
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Table 4 The calculated nucleophilicity index (N), global
electrophilicity (ω), chemical potential (μ), and global hardness (η) in
eV, for s carbenes, at B3LYP/AUG-cc-pVTZ

Species N ω μ η

1s 4.87 1.52 − 3.05 3.07

1t 2.34 2.13 − 4.62 5.00

2s 4.75 2.10 − 3.37 2.69

2t 3.23 2.35 − 4.28 3.89

3s 4.55 2.60 − 3.64 2.54

3t 3.55 2.62 − 4.21 3.391

4s 4.72 2.70 − 3.57 2.35

4t 2.60 2.44 − 4.65 4.43

5s 4.53 3.86 − 3.93 2.00

5t 2.78 2.80 − 4.71 3.95

6s 4.53 2.59 − 3.65 2.57

6t 2.57 2.63 − 4.75 4.29

7s 4.41 2.54 − 3.70 2.70

7t 2.74 3.70 − 4.68 4.09

8s 4.40 2.78 − 3.78 2.57

8t 2.89 2.75 − 4.62 3.89

9s 4.17 3.43 − 4.08 2.42

9t 2.72 3.12 − 4.85 3.77

10s 3.95 3.39 − 4.20 2.61

10t 2.60 3.24 − 4.96 3.80

11s 3.90 4.16 − 4.40 2.32

11t 2.98 3.47 − 4.81 3.34
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negative charge (−2.774 and − 1.526 e) for 5s, and 5t,
respectively. Hence, pyridine ring has the weaker reso-
nance stabilization than benzene (resonance energy in
pyridine and benzene is 28.0 and 35.8 kcal/mol, respec-
tively) [67]. Indeed, NLP in the plane of the ring as the
π-electron donoring group especially in a “W” arrange-
ment has a more effect on charge distribution of s spe-
cies than those of t species by more strongly interacting
with the ring π-system.

Here, the electrostatic potential values of MEP maps are
specified with different intensities for s carbenes compared
with their corresponding t states in the range of − 0.0318

a.u. (deepest red) to + 0.0318 a.u. (deepest blue) (Figs. 3
and 4, and S3–S4) [37–40, 68, 69].

Also, MEP plots of both s and t states indicate blue color
for hydrogen atoms via their positive charges, red color for
carbon atoms via their negative charges, and the electron
cloud in middle of ring(s). Also, MEP maps of s and t states
display symmetrically and differentially electron current in the
centers of the rings. As abovementioned, conjugation of the
nitrogen s lone pairs with the vacant p orbitals of the CC in the
most delocalized species, i.e., 5s and 5t increase their stability
individually and decrease the corresponding ΔΕs−t. The
electron-donating NLP in the plane of the ring affects inversely
charge distribution and electrostatic potential on the surfaces
of 9s, 10s, 11s, 9t, 10t, and 11t, that is when nitrogen atoms of
pyridine are placed far from reach in meta and para positions
of CC via decreasing the effective π-overlap and the resulted
aromaticity.

Based on suggested homomolecular isodesmotic reactions
(Scheme 4) [70, 71],ΔEs andΔEt are the energy released by s
and t carbenes when the corresponding CC is converted to a
saturated carbon via addition of two hydrogen atoms from the
corresponding homomolecular saturated carbon; also, ΔEtotal
and ΔErelative are defined as ΔEt−ΔEs and ΔEs/ΔEt, respec-
tively (Table 7).

We considered stabilization of both s and t carbenes, al-
though with different degrees. The more heat of

Table 6 The NICS (0, 0.5, 1, 1.5,
2) values in ppm showing NICS1
(values in upright), for pyridine-4-
ylidene ring, 1, and NICS2
(values in italic) for its fused
rings, respectively, at
GIAO/B3LYP/AUG-cc-pVTZ

Structures NICS1 (0)

NICS2 (0)

NICS1 (0.5)

NICS2 (0.5)

NICS1 (1)

NICS2 (1)

NICS1 (1.5)

NICS2 (1.5)

NICS1 (2)

NICS2 (2)

1s − 8.71 − 8.49 − 9.77 − 7.40 − 4.74

2s − 6.44 − 9.07 − 10.08 − 7.62 − 5.02

− 8.32 − 10.17 − 10.42 − 7.72 − 5.02

3s − 7.17 − 9.42 − 10.07 − 7.58 − 5.12

− 7.71 − 9.54 − 9.92 − 7.48 − 4.95

4s − 7.43 − 9.98 − 10.82 − 8.17 − 5.41

− 7.47 − 9.76 − 10.37 − 7.79 − 5.14

5s − 10.30 − 12.27 − 12.27 − 9.11 − 6.12

− 6.64 − 8.98 − 9.77 − 7.41 − 4.95

6s − 6.92 − 9.38 − 10.30 − 7.87 − 5.27

− 7.11 − 9.42 − 10.15 − 7.68 − 5.09

7s − 6.94 − 9.35 − 10.36 − 7.84 − 5.23

− 7.13 − 9.40 − 10.12 − 7.69 − 5.19

8s − 6.82 − 9.44 − 10.22 − 7.76 − 5.42

− 7.05 − 9.44 − 10.11 − 7.66 − 5.19

9s − 7.96 − 9.95 − 10.45 − 8.04 − 5.57

− 6.22 − 8.43 − 9.51 − 7.28 − 4.89

10s − 7.99 − 9.90 − 10.55 − 8.24 − 5.50

− 6.36 − 8.63 − 9.74 − 7.32 − 4.95

11s − 7.76 − 9.98 − 10.35 − 8.41 − 5.54

− 6.24 − 8.66 − 9.62 − 7.46 − 4.98

Table 5 The EHOMO and ELUMO energies in a.u., N, and ω in eV for the
s synthesized NHCs, at B3LYP/AUG-cc-pVTZ (see Scheme 3)

Species ΕHOMO ΕLUMO N ω

12s − 0.20751 − 0.01858 3.78 0.92

13s − 0.21753 − 0.01858 3.50 0.95

14s − 0.20902 − 0.01098 3.74 0.83

15s − 0.22738 − 0.03619 3.23 1.24

16s − 0.21693 − 0.00817 3.52 0.82

17s − 0.23036 − 0.05407 3.15 1.56

18s − 0.23188 − 0.02357 3.11 1.06

19s − 0.23474 − 0.04272 3.03 1.36
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1s

2s

3s

5s

Fig. 1 The NBO charge distribution on C, N, and H atoms of selected s
species (1s, 2s, 3s, and 5s) at M06-2X/AUG-cc-pVTZ

1t

2t

3t

5t

Fig. 2 The NBO charge distribution on C, N, and H atoms of selected t
species (1t, 2t, 3t, and 5t) at M06-2X/AUG-cc-pVTZ
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5s 9s

10s 11s

Fig. 3 The resulted MEP maps of
selected s species (5s, 9s, 10s, and
11s) at M06-2X/AUG-cc-pVTZ

5t 9t

10t 11t

Fig. 4 The resulted MEP maps of
selected t species (5t, 9t, 10t, and
11t) at M06-2X/AUG-cc-pVTZ
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hydrogenation, the lower stability it has. The s species are
stabilized more than the t states. The trends of absolute
value of ΔEtotal as well as ΔErelative are somewhat con-
sistent with the ΔEs−t results; |ΔEtotal|: 1 (25.6) > 2 (17.9)
= 7 (17.9) > 6 (16.1) > 4 (13.9) > 10 (10.9) = 8 (10.9) > 3
(10.5) > 9 (9.4) = 11 (9.4) ≥ 5 (9.3 kcal/mol). Evidently,
compared with the completely conjugated carbenes 1–11,
the designed non-planar carbenes 1′−11′ only benefit
from substitutient effects of fused benzene or pyridine
rings with contribution of non-planar cyclohexa-2,5-
dienic moiety. The absolute values of ΔEtotal along with
ΔErelative seem much more (approximately 1.4–2.7 times)
in unsubstituted carbene, 1, than those of other substituted
carbene, 2–11, perhaps owing to the higher electronic en-
ergy barrier to planarity of N—atom in two rings com-
pared with one ring.

Table 7 The substituent effect on the stability of s and t carbenes (ΔEs,
ΔEt, respectively, ΔEtotal = ΔEt−ΔEs and ΔErelative = ΔEs/ΔEt) in
kcal/mol, at B3LYP/AUG-cc-pVTZ, based on the corresponding
isodesmic reactions (see Scheme 4)

Carbenes ΔEs ΔEt ΔEtotal ΔErelative

1 28.2 2.6 − 25.6 10.8
2 24.8 6.9 − 17.9 3.6
3 16.1 5.6 − 10.5 2.9
4 21.7 7.8 − 13.9 2.8
5 14.8 5.5 − 9.3 2.7
6 24.4 8.3 − 16.1 2.9
7 24.8 6.9 − 17.9 3.6
8 12.2 1.3 − 10.9 9.4
9 13.8 4.4 − 9.4 3.1
10 12.4 1.5 − 10.9 8.3
11 14.0 4.6 − 9.4 3.0
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Scheme 4 The suggested
isodesmic reactions for Hammick
s and t carbenes 1–11

795Struct Chem (2021) 32:787–798



Conclusion

Using B3LYP/AUG-cc-pVTZ and M06-2X/AUG-cc-pVTZ
computations, 22 s and t Hammick carbenes (1–11) were
inspected. Some of thermodynamic and kinetic factors includ-
ing ΔΕs−t, ΔΕ, ΔΕHOMO-LUMO, DM, α, N, ω, μ, η, NICS,
NBO charge, MEP plots, and relative energies of isodesmic
reactions (ΔEs,ΔEt, andΔEtotal) support differently substitu-
tion effect on s and t states. Apart from t pyridine-4-ylidene,
all studied Hammick carbenes emerge as minima, and s states
display more thermodynamic stability than the corresponding
t states. The most stable carbene is unsubstituted s pyridine-4-
ylidene, and the least stable species is considered with CC
situated by two nitrogen heteroatoms of two fused rings, in a
“W” arrangement. According to the situation of CC and het-
eroatoms, stabilization for fused rings ismetamore than para,
and para more than ortho; also, the substitution effect of one
six-membered ring is significant than that of two six-
membered rings. Every t state exhibits higher kinetic stability
than its corresponding s state. Regarding to proposed
isodesmic reactions, all s states are stabilized through π-do-
nor/σ-acceptor substitution, more than the corresponding t
states.
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