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Abstract
Recently, adenosine A2A receptor antagonists have been identified as an interesting drug target for the treatment of Parkinson’s
disease (PD). Radiolabelled molecular imaging technologies such as positron emission tomography (PET) have emerged in the
research field of medicinal chemistry as a diagnostic tool for PD. In the current study, we have performed quantitative structure–
activity relationship (QSAR) analysis of 35 xanthine ligand PET tracers as A2AR (adenosine receptors) antagonists in order to
determine their structural features required to have binding affinity and selectivity towards A2AR. The division of the dataset into
training and test sets was done using a randommethod, while the feature selection for the binding affinity was done using Genetic
Algorithm (GA). The best model with five descriptors was obtained using the spline option in the GA run. QSAR models with
four descriptors were also developed for A2AR selectivity, where significant descriptors were selected from the large pool of
descriptors using stepwise regression method followed by Best Subset Selection (BSS) method. Furthermore, to improve the
quality of the external predictions, we used the “Intelligent Consensus Predictor” tool (http://teqip.jdvu.ac.in/QSAR_Tools/
DTCLab/). Both the models showed robustness in terms of statistical parameters. Molecular docking studies have been
carried out to understand the molecular interactions between the ligand and receptor, and the results are then correlated with
the structural features obtained from the QSAR models. Furthermore, the information derived from the newly found descriptors
gives an insight for the development of new candidate PET tracers for the use in PD.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder of the central nervous system characterized by mus-
cle rigidity, bradykinesia, and tremor. The disease affects
older people, and it is known that 2–3% of the population ≥
65 years of age are more prone towards this disease [1]. It is
also associated with loss of dopaminergic neurons in the

substantia nigra, lewy body generation, and abnormal cluster-
ing of α-synuclein protein, which is directly connected to
expectancy of long life. Hence, effective research for neuro-
degenerative disease treatment is one of the vital clinical needs
of today’s life. The current therapy of PD includes restoration
of dopamine with levodopa in the striatum of the brain.
However, to maintain the therapeutic level, the dosage has
to be increased which does not prevent the underlying neuro-
nal loss [2, 3]. On the other hand, such long-term treatment in
addition may cause adverse effects which include levodopa-
induced dyskinesia and behavioral disturbances in the individ-
uals [4, 5].

Adenosine enzyme inhibitors can be considered an alterna-
tive medication in the treatment of PD having less degree of
adverse effects. Adenosine is an endogenous modulator of
different physiological functions in the peripheral tissues in
addition to the central nervous system (CNS). It is a purine
nucleoside having four varieties of subtypes consisting of A1,
A2A, A2B, and A3. A2A receptors are highly expressed in stri-
atum (dopamine-rich areas of the CNS) where it is almost co-
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located with dopamine D2 receptor on GABAergic
striatopallidal neurons [6]. A2A antagonistically interferes
with the D2 receptor and as a result decreases the affinity of
the D2 receptor for dopamine upon stimulation and show op-
posite effect on motor function [7]. Thus, adenosine A2A re-
ceptor blockademay showmotoric improvement as proven by
many animal models [8–11].

Positron emission tomography (PET) [12] and single-
photon emission computed tomography (SPECT) [13] are
non-invasive methodologies which make use of the dynamic
distribution of the radiotracers and provide 3D map of the
brain quantifying the biological processes. These imaging
agents help in the detection and quantification of dopamine
and adenosine receptors in the brain thereby creating a path for
early detection of the disease. PET studies are superior to
SPECT in terms of accurate results and in determining the
temporal measurements of radioactivity with their regional
distributions. Agonists and antagonists containing positron-
emitting radioisotopes can be introduced in vivo to get 3D
image of the receptors which have been helpful in CNS diag-
nosis. The PET tracers can be used as in vivo–imaging agents
in order to improve the pharmacokinetics, physicochemical
properties, and mapping of the receptor as per interest. As
search of new compounds with desired activity is time-
consuming and expensive, pharmaceutical companies have a
great interest upon theoretical approaches to design com-
pounds with desired activity.

Quantitative structure–activity relationships (QSAR) have
gained a lot of attention in molecular modeling field and are
beneficial due to less involvement of human resource and
cost-effectiveness [14, 15]. It attempts to develop a correlation
between the chemical structures with a well-defined activity.
It expresses chemical structures and physiological property in
the numerical form and develops a mathematical correlation
between them. Furthermore, this relationship can be used to
predict the biological response of other existing chemical
structures. QSAR-based studies have shown useful applica-
tions in drug discovery, molecular modeling, pharmaceutical
toxicity modeling, pharmacokinetics/toxicokinetics, data min-
ing, environmental toxicity (ecotoxicity), chemical or drug
property modeling, food science, agricultural sciences, pesti-
cide toxicity, fragrance, nanoscience (Nano-QSAR), and
many other fields [16–24]. QSAR is also used to predict the
absorption, distribution, metabolism, excretion, and toxico-
logical (ADMET) of drug like compounds [25, 26]. QSAR
has widespread applications in drug design, medicinal chem-
istry, and predictive toxicology. It has also become an effec-
tive tool in understanding and determining the major bio-
chemical features associated with the Parkinson’s disease
[27, 28].

In the present study, we have tried to develop QSAR
models with PET tracers of xanthine ligands as A2AR (aden-
osine receptors) antagonist using only 2D descriptors to

explore the structural features required for binding affinity
towards A2AR and selectivity of the tracers between A2B and
A2A receptors.

Materials and methods

Dataset

The experimental binding affinity and selectivity data of 35
xanthine ligand–based PET tracers were taken from a previ-
ously published literature [29] and applied for QSAR model-
ing to determine the essential structural features needed for
binding affinity and explore the structural requirements nec-
essary to be present in the antagonists for selectivity towards
A2A adenosine receptors. The experimental values of selectiv-
ity and binding affinity (Ki) ranged from 0.1–20 nM and
7.84–16,500 nM respectively, and the details are provided in
Supplementary Material I (Table S1). The experimental
values were converted into negative logarithm scale during
modeling and were used as independent values. No com-
pounds with binding affinity data were removed during
modeling but some compounds (14, 32, 33, and 34) with no
experimental selectivity values were eliminated duringmodel-
ing. Here, the binding affinity and selectivity were separately
used as endpoints or independent variables in modeling. The
compounds for both the dataset were represented in the
MarvinSketch software [30] with proper aromatization and
addition of hydrogen bond as necessary.

Fig. 1 Observed vs predicted A2AR binding affinity scatter plot
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Molecular descriptors

In the present study, QSAR models were developed using a
selected class of two-dimensional molecular descriptors in-
volving E-state indices, connectivity, constitutional, function-
al, 2D atom pairs, ring, atom-centered fragments, molecular
property descriptors, and extended topochemical atom (ETA)
indices. The ETA descriptors were calculated using the
PaDel-Descriptor software [31], whereas the non-ETA de-
scriptors were calculated using the Dragon 7 software [32].
Intercorrelated (|r| > .95), constant (variance < 0.0001), and
other incompetent and redundant data was removed using an
in-house software available at http://dtclab.webs.com/
software-tools before model development.

Dataset division

Dataset division is a crucial part of QSAR modeling in order
to develop a properly validated and robust model. Rational
data division ensures an unbiased external validation along
with uniform data distribution [33]. The division of the dataset
into training set (~ 70%) and test set (~ 30%) was performed
employing random dataset divisionmethod [34] for both bind-
ing affinity and selectivity end points. The training set was
used for model development, and the test set was used for
model validation.

Variable selection and model development

Prior to model development, we have performed variable se-
lection strategies such as Genetic Algorithm (GA) [35, 36]
and stepwise regression [35, 37] for binding affinity and se-
lectivity, respectively, to extract the important and influential
descriptors and created a reduced pool of descriptors. After
obtaining the important descriptors, we went for model devel-
opment. The best model with five descriptors was obtained
using the spline option in the GA run on Discovery Studio
version 4.1 for the binding affinity. On the other hand, for
A2AR selectivity, four models with four descriptors were se-
lected from the Best Subset Selection (BSS) method based on
MAE criteria [38]. Furthermore, to improve the quality of the
external prediction via “intelligent” selection of multiple
models, we have applied an “Intelligent consensus predictor”
tool [39] developed in our laboratory [40].

Statistical validation metrics

The statistical quality of the models developed in the present
study was rigorously examined using multiple approaches to
check the robustness and predictivity of the developed
models. All the models were validated both externally and
internally. Various parameters like determination coefficient
R2, explained variance R2a, variance ratio (F), and standard

error of estimate (s) were computed. Internal predictivity pa-
rameters such as predicted residual sum of squares (PRESS)
and leave-one-out cross-validated correlation coefficient
(Q2

LOO) were also calculated along with external predictivity

parameters like R2
pred or Q2

F1, Q
2
F2, and concordance correla-

tion coefficient (CCC) [41]. It has been reported that consen-
sus models are better in performance in comparison with an
individual model [41]. Therefore, we have also performed
“Intelligent Consensus Prediction (ICP)” using multiple
models to see whether the quality of predictions can be in-
creased through an intelligent selection.

Applicability domain

Applicability domain (AD) [42] is a theoretical region in
the chemical space developed based on modeled descrip-
tors and modeled response of the training set, where the
developed model could make predictions basing on some
logical reliability. Here, we have checked AD using stan-
dardization approach using the tool developed in our lab-
oratory [40].

Molecular docking

Molecular docking analysis has been implemented in the pres-
ent work that helps in understanding the intermolecular inter-
actions taking place between the PET tracer antagonists and
the A2A receptor. The protein structure for adenosine A2A

receptor is retrieved from the protein data bank with PDB
ID:3UZA [43]. The X-ray crystal structure of the protein con-
sists of a bound ligand T4G commonly known as 6-(2,6-
dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine (for-
mula: C16H15N5). Before docking the target PET tracers, pro-
tein preparation was done by cleaning the protein for any
missing residues, explicit hydrogen addition, and generation
of the docking site. The generation of active docking site was
done in the BIOVIA Discovery Studio platform from the
ligand-binding domain of the bound ligand T4G by the selec-
tion of the ligand and generating the site “from current selec-
tion” program in receptor-ligand interaction module of the
software. After the generation of the active ligand-binding
domain, the bound ligand was removed for new molecule
docking. For ligand preparation, the PET tracers were put
through small molecule module in the Discovery Studio plat-
form where a series of ligand conformers were generated.
Each of these generated conformers was then used in the
CDOCKER module energy for molecular docking involving
CHARMm interaction [44]. The CDOCKER interaction en-
ergy parameter (kJ/mol) was checked for all the receptor li-
gand complexes, and the top scoring (most negative, thus
favorable to binding) poses were kept.
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Results and discussion

Based on the binding affinity and selectivity endpoints of 35
xanthine PET tracer antagonists of adenosine A2A receptor,
we have developed one model for the binding affinity (Q2 =
0.85, R2 = 0.90, Q2

F1 = 0.80) and 4 models (Q2 = 0.80–0.87,
R2 = 0.87–0.91, Q2

F1 = 0.84–0.85) for selectivity. All the
models were externally and internally validated which showed
model robustness and good predictivity in terms of the statis-
tical results.We have also checked the rm

2 parameters for both

internal sets (r2m looð Þ;Δr2m looð Þ ) and external sets (r2m testð Þ and

Δr2m testð Þ ), and the statistical results were above the critical

point justifying the reliability of the models. To improve the
quality of the external prediction for selectivity, we also per-
formed “Intelligent Consensus Prediction” of the multiple
MLR models using the ICP tool [39], and found that the con-
sensus predictions were better than the individual MLR
model–derived predictions. The winner model was consensus
model 0 (CM0).

Modeling binding affinity of PET tracers towards
adenosine (A2A) receptor

The model for binding affinity consists of five descrip-
tors: C-025, F09 [N-O], nBnz, NRS, and nCIR which
significantly influence the binding of the antagonists to
the adenosine (A2A) receptor. The 5 descriptor MLR

model (Eq. 1) developed using Genetic Function
Algorithm (GFA) could predict 85.0% variance of the
training set and 80.0% of the test set. The values of all
descriptors appearing in the model for training and test
set compounds are given in Supplementary Material II
(Excel file) and the scatter plot of the observed vs. pre-
dicted binding affinity is shown in Fig. 1.

pKi A2ARð Þ ¼ −0:849 �0:2167ð Þ
−0:36271 �0:06190ð Þ C−025
þ 0:17693 �0:05895ð ÞF09 N−O½ �
−0:52109 �0:07616ð ÞNRS

þ 0:81699 �0:09908ð ÞnBnz
þ 0:3024 �0:03363ð ÞnCIR

ntraining ¼ 25;R2 ¼ 0:901;R2
adj ¼ 0:875;Q2 ¼ 0:850; S

¼ 0:170027; F ¼ 34:62; PRESS

¼ 0:833306; r2m LOOð Þ ¼ 0:790;Δr2m LOOð Þ

¼ 0:072;MAE−based criteria ¼ Moderate

ntest ¼ 10;Q2
F1 ¼ 0:80;Q2

F2 ¼ 0:681; r2m testð Þ

¼ 0:54;Δr2m testð Þ ¼ 0:23;MAE−based criteria ¼ Good

Table 1 Definition and
contribution of all the descriptors
obtained from the MLR models
(models developed by using
binding affinity)

Sl.
no.

Name of
descriptors

Descriptor type Contribution Discussion Probable mechanism
of binding

1 C-025 Atom-centered
fragment
descriptor

−ve C-025 can be depicted as
R--CR--R, where ‘R’ can
be any group linked to
carbon and ‘--’ is any
aromatic bond. It is the
number of fragments in
which a C (sp2) aromatic
atom is bound to three
carbon atoms, two of them
by an “aromatic bond”
and the third by a simple
single bond

Flexibility which
helps in
accommodating
the antagonist well
in the receptor
pocket

2 nBnz Ring descriptor +ve Indicates number of
benzene-like rings

π-π Stacking
interaction

3 F09 [N-O] 2D atom pair
descriptor

+ve Frequency of N-O fragment
at the topological distance
9

Hydrogen bonding

4 NRS Ring descriptor −ve A ring descriptor indicates
number of ring systems
within a molecule

-

5 nCIR Ring descriptor +ve Number of circuits, i.e.,
larger loops around two or
more rings in a molecule

Hydrophobic
interaction/π-π
stacking interac-
tion

1972 Struct Chem (2020) 31:1969–1981



Essential features required for binding and receptor interac-
tion The descriptors obtained in the QSAR model
(Table 1) give an insight regarding the mechanism of interac-
tion occurring during binding of the xanthine PET tracer an-
tagonists to adenosine A2A receptor. Unsaturation and aroma-
ticity play a dominating role in regulating the receptor binding
affinity which is evident from the occurrence of descriptors
such asC-025, nBnz,NRS, and nCIR. Descriptors like nBnz
and nCIR have positive influences on the adenosine A2A re-
ceptor binding (Fig. 2). But on the other hand, descriptors like
C-025 and NRS have negative effects on the binding affinity
of the PET tracers (Fig. 3). The occurrence of these similar
types of descriptors with opposite influence is contradictory
and leads to a conclusion that aromaticity provided by ben-
zene nucleus (as seen in compounds like A-32 and A-23) is
more important for binding. On the other hand, the presence of
heterocyclic aromatic rings and fused-ring systems decrease
the overall binding affinity of the radiotracer molecule (found
in compounds A-1, A-2, and A-20).

The 2D atom pair descriptor F09 [N-O] gives information
about the electronegativity of the compounds, and the positive
coefficient of the descriptor suggests that higher occurrence of
nitrogen and oxygen at topological distance 9 would enhance
binding affinity of the compounds as seen in compounds A-4
and A-32. It is found that the presence of electronegative
atoms in the compounds or chemical structures can influence
the binding to the receptor through hydrogen bonding [45].

Molecular docking Molecular docking helped in understand-
ing the optimized conformation of the complex between the
imaging agent and A2A receptor and gave evidences related to
the orientation of the imaging agents at the binding zone of the
receptor. The major goal was to understand the molecular
interactions taking place during radiotracer binding and corre-
late these findings with QSAR analysis. The docking analysis
showed the predominance of different types of π bonding
interactions and hydrogen-bonding interactions. In higher ac-
tive compounds (Fig. 4) likeA-4,A-8, andA-25 (pA2AR(BA)
= 0.699, 1.000, and 0.398 respectively), the interaction forces
include mainly hydrogen-bonding interactions (conventional
hydrogen bond and carbon-hydrogen bond interaction), π in-
teractions (π-cation, π-donor hydrogen, π-π stacked, π-π T-

shaped, and π-alkyl). Other interactions include halogen and
alkyl interaction in compound A-4 and salt bridge formation
in compoundA-8. Higher number of interacting residues sup-
ports the fact that these compounds have higher binding affin-
ity. Compounds having binding affinity in the medium range
(Fig. 5) like compound numbers A-14 and A-27 (pA2AR(BA)
= − 0.301 and − 0.255 respectively) make less number of
interactions with the adenosine receptor, but the type of inter-
actions remains similar, i.e., π interactions and hydrogen-
bonding interactions. The lowest active compounds (Fig.
5) like compound numbers A-20 and A-35 (pA2AR(BA) = −
1.301and − 1.204 respectively) show the least number of in-
teractions. All the details of binding including interacting res-
idues and type of binding interactions are given in Table 2.

Relationship with QSAR models The docking study shows
different types of π interactions occurring between the PET
radiotracer molecules and adenosine A2A receptor. This ob-
servation supports the occurrence of nBnz and nCIR descrip-
tors obtained in the QSAR models. The presence of aromatic
rings like benzene can enhance binding with the receptor
through aromatic π-π stacking interaction with the phenyl/
imidazole residue of the receptor [46]. The interaction of these
antagonists through π-π stacking interaction eventually
blocks the receptor in the indirect pathway thus blocking the
activity of GABA-mediated influence in the globus pallidus
pars externa (GPe). This helps the PD patients to gain the
motor function again by regaining the balance between direct
and indirect pathway. Nitrogen and oxygen are capable of
hydrogen bond formation and various types of hydrogen
bonding as observed in both higher active and lower active
compounds, and this can be also correlated to the F09[N-O]
descriptor which gives an idea about the electronegativity of
the molecule.

Modeling selectivity of PET tracers towards adenosine
(A2A) receptor

In the current work, we have developed four MLR models to
understand the selectivity of the PET tracer molecules towards
adenosine A2A receptor. A single QSAR model may not be
efficient enough for the prediction of activity since the prop-
erty of molecules cannot be understood by a limited number of

Fig. 2 Features increasing the
binding affinity (pKi) value
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features. The use of multiple models for prediction using con-
sensus approach helps in reducing model uncertainty by en-
hancing the prediction quality of the external set and also in
reducing the prediction errors [38]. The four MLR models are
given below:

Model 1

logA2AR Selð Þ ¼ 0:5875 �0:4130ð Þ
þ 0:4643 �0:1574ð Þ C−027
−0:8679 �0:1797ð ÞC−040
þ 0:7245 �0:1006ð ÞF09 N−O½ �
þ 0:8382 �0:01749ð ÞETA Beta s

ntraining ¼ 21;R2 ¼ 0:915;R2
adj ¼ 0:893;Q2 ¼ 0:867; S

¼ 0:234982; F ¼ 42:88;

PRESS ¼ 1:37546; r2m LOOð Þ ¼ 0:81227;Δr2m LOOð Þ

¼ 0:07373;MAE−based criteria ¼ Moderate

ntest ¼ 10;Q2
F1 ¼ 0:84;Q2

F2 ¼ 0:81; r2m testð Þ

¼ 0:7682;Δr2m testð Þ ¼ 0:11949;MAE−based criteria

¼ Good

Model 2

logA2AR Selð Þ ¼ 0:36359 �0:43605ð Þ−0:76227 �0:18863ð ÞC
−040−0:05224 �0:02421ð ÞT F::Clð Þ
þ 0:71046 �0:11057ð ÞF09 N−O½ �
þ 0:09777 �0:01808ð ÞETA Beta s

ntraining ¼ 21;R2 ¼ 0:90;R2
adj ¼ 0:87;Q2 ¼ 0:82; S

¼ 0:274853; F ¼ 35:21;

PRESS ¼ 1:05627; r2m LOOð Þ ¼ 0:7526;Δr2m LOOð Þ

¼ 0:05874;MAE−based criteria ¼ Moderate

Fig. 4 Docking interactions for compounds having higher binding affinity (pKi)

Fig. 3 Features decreasing the
binding affinity (pKi) value
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ntest ¼ 10;Q2
F1 ¼ 0:84;Q2

F2 ¼ 0:82; r2m testð Þ

¼ 0:7737;Δr2m testð Þ ¼ 0:04197;MAE−based criteria

¼ Good

Model 3

logA2AR Selð Þ ¼ 0:9642 �0:4535ð Þ
þ 0:31245 �0:08846ð Þ nCIC
þ 0:4848 �0:1856ð ÞC−027
−0:9394 �0:2114ð ÞC−040
þ 0:6662 �0:1184ð ÞF09 N−O½ �

ntraining ¼ 21;R2 ¼ 0:883 R2
adj ¼ 0:854; S ¼ 0:274853; F

¼ 30:27;

PRESS ¼ 1:72765;Q2 ¼ 0:833; r2m LOOð Þ
¼ 0:76;Δr2m LOOð Þ ¼ 0:12;MAE−based criteria

¼ Moderate;

ntest ¼ 10;Q2
F1 ¼ 0:84;Q2

F2 ¼ 0:82; r2m testð Þ
¼ 0:77;Δr2m testð Þ ¼ 0:13;MAE−based criteria

¼ Good

Model 4

logA2AR Selð Þ
¼ 1:3245 �0:2988ð Þ−0:6702 �0:2119ð Þ C−040

þ 0:10445 �0:04427ð ÞSssN
þ 0:05519 �0:01932ð ÞF07 C−C½ �
þ 0:5954 �0:1263ð ÞF09 N−O½ �

ntraining ¼ 21;R2 ¼ 0:872 R2
adj ¼ 0:84; S ¼ 0:287861; F

¼ 27:24;

PRESS ¼ 2:09555;Q2 ¼ 0:827; r2m LOOð Þ ¼ 0:717;Δr2m LOOð Þ

¼ 0:131;MAE−based criteria ¼ Moderate;

ntest ¼ 10;Q2
F1 ¼ 0:85;Q2

F2 ¼ 0:83; r2m testð Þ ¼ 0:78;Δr2m testð Þ

¼ 0:07;MAE−based criteria ¼ Good

The significant descriptors obtained from the four MLR
models (M1–M4) contributing to A2A receptor selectivity
are C-040, C-027, F09 [N-O], ETA_Beta_s, nCIC, T (F..Cl),
SsssN, and F07[C-C]. All the descriptors positively contribute
to the A2A receptor selectivity, except C-040, as identified
from the regression coefficients of the descriptors and sum-
marized in Table 3. We have also checked the applicability
domain of the developed MLR models. The models showed
good predictive ability as per the statistical results. The details
of the descriptors, their contribution, and frequency of appear-
ance in all the four models are explained elaborately in

Fig. 5 Docking interactions for compounds having medium (A-14) and low (A-35) binding affinity (pKi)
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Table 3. The values of all descriptors appearing in the models
for training and test set compounds are given in the
Supplementary Material II (Excel file) and the scatter plots
of the observed vs. predicted selectivity values are given in
Figure 6.

Mechanistic interpretation All the descriptors obtained in the
four models and their frequency give an idea about their im-
portance in modeling the selectivity of the PET tracers to-
wards adenosine A2A receptor. The descriptors like C-027,
F09[N-O], SsssN, T(F..Cl), and ETA_Beta_s appearing in
the models give information about the electronic feature of
the compounds and are essential when the selectivity of recep-
tor is considered (Fig. 7). Electronegativity is a chemical prop-
erty that describes the tendency of an atom to draw electron
towards itself. If a compound contains higher number of elec-
tronegative atoms in its structure, then the selectivity of the
A2A receptor for that compound also increases.

The presence of atom-centered fragments like C-027 (R–
CH–X) in compounds like A-23 and A-25 increase the antag-
onist selectivity of the PET compounds. Since ‘X’ represents
any electronegative atom like O, N, S, P, Se, and halogens, the
presence of heteroatoms increases the selectivity of the com-
pounds towards A2A receptor. The descriptor F09[N-O] ex-
plains the frequency of presence of nitrogen and oxygen at
the topological distance 9, and its positive regression coeffi-
cient indicates its influential activity on the antagonistic be-
havior of the imaging agents (as seen in compounds A-4 and
A-27). Another similar kind of descriptor is T (F..Cl),
explaining the information about sum of topological distances

between F and Cl atoms in the chemical structure. These de-
scriptors give information about the electronegative atoms,
i.e., nitrogen and oxygen in F09[N-O] and fluorine and chlo-
rine in T(F..Cl). ETA_Beta_s (Σβs) is an extended
topochemical atom (ETA) descriptor, which can be represent-
ed as sum of βs values of all non-hydrogen vertices divided by
2. The term ′βs′ can be denoted as

∑βs ¼ ∑xσ

Here, x represents contribution of sigma bonds and σ sig-
nifies parameters related to sigma bonds. During the computa-
tion of β values, the sigma bond value for two similar types of
electronegative atoms should be considered 0.5, and dissimilar
electronegative atoms should be considered 0.75. This suggests
that compounds bearing dissimilar heteroatoms will have great-
er selectivity to A2A receptor as seen in compoundsA-25,A-23,
and A-4. Sigma bonds connected with different heteroatoms
will have higher descriptor values indicating that the presence
of dissimilar heteroatoms is more favorable for selectivity than
similar heteroatoms. E-state descriptor SsssN (> N—) encodes
the intrinsic electronic state of the nitrogen atom as perturbed by
the electronic influence of other molecules with the context of
topological character within the molecule. The electronegative
contribution of nitrogen is well-depicted in this descriptor, and
the positive regression coefficient shows that an increase in the
number of tertiary nitrogen benefits in receptor selectivity as
seen in compounds A-30 and A-4.

Other descriptors which significantly contribute to A2A re-
ceptor selectivity are nCIC, F07[C-C], and C-040. These

Table 2 Details of interacting residues and different types of binding interaction occurring between the PET imaging agents and the target protein
(adenosine A2A receptor)

Compound
no.

Activity Binding
affinity
[pA2AR(BA)]

Interacting residues Binding interactions

A-4_6 High 0.699 Ala A:88, Val A:186, Leu A:85, Asn A:181, His
A:250, Asn A:253, Phe A:168, Ser A:67, Met
A:270, Leu A:267, Ile A:274, Ala A:63, Ile A:66,
Leu A:249, Met A:177, Trp A:246

Conventional hydrogen bond, carbon hydrogen bond,
halogen (fluorine), π-cation, π-donor hydrogen
bond, π-π stacked, π-π T-shaped, alkyl, π-alkyl

A-8 High 1.000 Met A:270, Asn A:253, Leu A:249, Phe A:168, Ala
A:81, Ile A:66, Glu A:169

Conventional hydrogen bond, carbon hydrogen bond,
π-π stacked, π-alkyl, salt bridge

A-25 High 0.398 Leu A:267, Tyr A:271, Ile A:274, Asn A:181, Gln
A:89, Leu A:85, Leu A:249, Val A:84, Ser A:67,
Glu A:169

Conventional hydrogen bond, carbon hydrogen bond,
π-sigma, π-π T-shaped, π-alkyl

A-14 Medium − 0.301 Val A:84, Leu A:249, Met A;270, Ile A:274, Ile A:66,
Tyr A;271, Phe A:168

π-sulfur, π-π T-shaped, π-π stacked, amide-π stacked,
π-alkyl

A-27 Medium − 0.255 Asn A:253, Ser A:67, Ile A:274, Leu A:167, Glu
A:169, Ala A:63, Ile A:66, Leu A:249, Val A:84

Conventional hydrogen bond, carbon hydrogen bond,
π-anion, π-alkyl

A-20 Low − 1.301 Val A:84, Leu A:249, Leu A:267, Tyr A:271, Ser
A:67, Ile A:274, Asn A:253

Conventional hydrogen bond, π-π T-shaped, π-
sigmsa, π-alkyl, alkyl

A-35 Low − 1.204 Val A:84, Ala A:277, Leu A:249, Ile A:274, Met
A:270, Glu A:169

π-alkyl, alkyl, π-anion
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descriptors give information about the number of rings pres-
ent, type of bonds, and size of the antagonists showing selec-
tivity towards the receptor. The number of rings (cyclomatic
number) in the structure is indicated by nCIC descriptor. The
positive regression coefficient of the descriptor suggests that
the presence of high number of rings increases the selectivity
towards the A2A receptor as observed in compoundsA-25 and
A-4. F07[C-C], a 2D atom pair stands for frequency of C–C
fragment at the topological distance 7. It provides information
about the size (chain length) of the molecule. This means that
with an increase in the number of this fragment, i.e., carbon
chain, the selectivity towards the A2A receptor increases (as
in compounds A-4 and A-25). The atom-centered fragment
descriptor, C-040 (Table 3) gives information about the num-
ber of carbon atoms that are attached to heteroatoms by single/
double or triple bonds in the straight chain length. The nega-
tive regression coefficient suggests that an increase in the
number of such fragments decreases the selectivity of the
compound towards the A2A receptor as seen in compounds

A-6,A-7, andA-35. As this fragment suggests high number of
double and triple bonds attached with the carbon, it can be
concluded that unsaturation in the straight chain of the antag-
onists is unfavorable for the receptor selectivity.

Intelligent consensus predictions For further refinement of the
predictions obtained from the individual models, we have ap-
plied intelligent consensus modeling methods. Consensus
modeling helps in enhancing the prediction performance of
the models and also reduces the test set errors. It was observed
that consensus prediction of the test set compounds (Table 4)
is better in terms of both MAE-based criteria and predicted R2

parameter. Four different consensus approaches were used
employing “Intelligent Consensus Prediction” tool [39]:
CM0 (simple average of predictions), CM1 (average of pre-
dictions from the ‘qualified’ individual models), CM2
(weighted average predictions (WAPs) from ‘qualified’ indi-
vidual models), and CM3 (best selection of predictions
(compound-wise) from ‘qualified’ individual models). From

Fig. 6 Observed vs predicted A2AR selectivity plots for all four MLR models
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the four consensus model obtained, CM0 was found to be the
best.

Applicability domain Applicability domain (AD) is an im-
portant tool for reliable application of QSAR models. It
can be considered a “theoretical region in chemical space
defined by the respective model descriptors and responses
in which the predictions are reliable” [42, 47]. We have
checked the AD of all the models using standardization
approach [48] to check whether any molecule in the test
set lies outside the AD of a model. From the domain of

applicability analysis, it was found that there were no test
set compounds outside the AD, and no compound in the
training set came as an outlier (see Supplementary II
Excel file).

Comparison with a previously published modelA direct com-
parison between the current and a previously published model
[29] is infeasible due to the differences in the composition of
training and test sets. However, the current model can be con-
sidered more advantageous since it has been developed using
simple and easily interpretable two-dimensional descriptors

Table 3 Definition, frequency, and contribution of all the descriptors obtained from the MLR models

Sl.
no.

Name of
descriptors

Type of
descriptor

Contribution Discussion Frequency of
descriptors

1 C-027 Atom-centered
fragment

+ve Counts for certain structural fragment (R--CH--X) in the antagonist, where ‘R’ can be
any group linked to carbon and ‘--’ is any aromatic bond. X can be any
electronegative atom (O, N, S, P, Se, halogens)

3

2 ETA_
Beta_s

ETA indices +ve Sum of all sigma bond contributions considering non-hydrogen vertices divided by 2.
The descriptor deals with the presence of dissimilar heteroatoms.

1

3 F09 [N-O] 2D atom pairs +ve Frequency of the N-O fragment at the topological distance 9 4

4 SsssN Atom-type
E-state indi-

ces

+ve E-state of sssN which encodes the intrinsic electronic state of the nitrogen atom as
perturbed by the electronic influence of other molecules with the context of
topological character within the molecule. SsssN is the atom-type E-state of all
tertiary nitrogen in molecules.

1

5 nCIC Ring
descriptors

+ve Number of rings (cyclomatic number) present in the antagonist 2

6 C-040 Atom-centered
fragment

−ve Represented as R-C(=X)-X/R-C#X/X = C = X fragments where number of carbon
atoms are attached to heteroatoms by single/double or triple bonds

4

7 F07[C-C] 2D atom pairs +ve Frequency of C-C at topological distance 7 1

Fig. 7 Features affecting the adenosine A2A selectivity
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which does not require any conformational analysis or energy
minimization before their calculation.

Conclusion

Parkinson’s disease is a neurodegenerative disease affecting
the elderly person around the world. An important target for
its treatment is blocking adenosine A2A receptor which is co-
located with the D2 receptor and is pharmacologically oppo-
site in motor function. Many studies hint that blocking A2A

receptor would be a beneficial strategy in the treatment of PD.
Thus, this work endeavors exploring QSAR analysis to corre-
late the chemical structures with their biological activity with
the aim to filter the essential chemical features of an antagonist
for selectivity and binding affinity to A2A receptor. The com-
putational approach used in this work consists firstly the cal-
culation of the molecular descriptors, and secondly, correlat-
ing these descriptors with the binding affinity and selectivity
using different chemometric tools such as Genetic Function
Algorithm (GFA), Best Subset Selection (BSS) method, and
Intelligent consensus predictor (ICP) tools. The statistical
quality of the models was checked using traditional metrics
both internally and externally. We have also discussed about
the contributions of the descriptors in the light of known bind-
ing mechanisms such as π-π stacking interaction, hydropho-
bic interaction, and hydrogen bonding with the different pro-
tein residues present in the receptor binding sites. From the
insights obtained from such mechanism, we found that elec-
tronegative atoms and presence of aromatic ring like benzene
are favorable for enhancing the binding affinity to the A2A

receptor. Furthermore, the docking studies supported the con-
clusions derived from the QSAR studies. In conclusion, the
study highlights the pharmacophoric features mainly respon-
sible for antagonizing adenosine receptors that can be further

modified for better binding and selectivity to A2A receptor. In
case of selectivity also, electronegativity and aromaticity of
the compounds play essential and influential roles. The simple
two-dimensional (2D) descriptors appearing in all the models
are easier to compute requiring no conformation analysis or
energy minimization process. Thus, this information would
help in the future development and synthesis of newer PET
tracer targeted towards adenosine receptor.
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