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Abstract
Radiosensitizers are aimed to augment tumor cell killing by radiation while having much less effect on normal tissues.
Nitroimidazoles and related analogues are efficient radiation sensitivity enhancers, and they particularly work on hypoxic tumor
cells. In the current study, we have developed two partial least squares (PLS) regression-based two-dimensional quantitative
structure-activity relationship (2D-QSAR) models using a novel class of 84 nitroimidazole compounds to understand their
radiosensitization effectiveness (pC1.6). Feature selection was done by genetic algorithm along with stepwise regression, while
model validation was performed using various stringent validation criteria following the strict rules of OECD guidelines of
QSAR validation. The variables included in the models were obtained from Dragon (version 7.0) and simplex representation of
molecular structures (SiRMS) (version 4.1.2.270) software. The developed models were robust, externally predictive, and useful
tools to predict the radiosensitization effectiveness of nitroimidazole compounds. True external prediction was carried out using a
group of six nitroimidazole derivatives and the model reliability was checked using the Prediction Reliability Indicator tool
(http://dtclab.webs.com/software-tools). Furthermore, the developed models will give an insight for development of new
radiosensitizers with enhanced radiation sensitivity.
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Introduction

Radiation, surgery, and chemotherapy have been the major
approaches of treatment for cancer and malignancies for more
than 40 years. Combination therapy including radiation and
chemotherapy often termed as chemoradiation has provided
promising results in targeting, diagnosis, and treatment of hu-
man malignancy. With recent discoveries, newer molecules
targeting specific pathophysiology or molecular pathways
have come into the forefront. The use of antibodies or

hormones labeled with radionuclides to deliver radiation in
the systemic circulation has enlarged the concept of
radiosensitizers [1]. Nitroimidazoles have proven to be effi-
cient radiation sensitivity enhancer particularly in hypoxic tu-
mor cells [2]. Hypoxia is a particular pathophysiological con-
dition arising due to inefficient vascularization of tumors,
causing an alteration in tumor metabolism [3], and metastasis
[4], and is associated with poor diagnosis and resistance to
therapeutic agents [5]. Nitroimidazole radiosensitizers are rel-
atively non-toxic molecules, and they replace oxygen in oxi-
dizing radiation-induced DNA free radicals to generate cyto-
toxic DNA strand breakage [6].

A number of studies performed previously have elaborately
explained the role of nitroimidazole derivatives in radiation
sensitivity enhancement. 1-Methyl-5-sulfonamide-4-
nitroimidazole (MJL-1–191-VII) sensitizes hypoxic cells with
its electron affinity, but does not affect the radiosensitivity of
aerated cells when added to cells 5 min prior to irradiation [7].
2-nitroimidazoles like misonidazole and etanidazole has abil-
ity to kill hypoxic cell by increasing the cells’ radiation sen-
sitivity via radiochemical and biochemical means known as
“preincubation effect” [8].
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Molecular modeling studies such as quantitative structure-
activity relationships (QSAR) [9] are effective tools in prediction
of radiosensitization effectiveness due to lack of data and proper
experimental facilities. QSAR studies have found immense ap-
plications in the prediction of absorption, distribution, metabo-
lism, elimination, and toxicity (ADMET) properties of drug and
other organic biologicals [10–12]. Computational ADMET in
combination with in vivo and in vitro predictions helps in reduc-
ing the chances of safety related issues [13]. Many pharmaceuti-
cal and chemical industries, commercial software developers,
and research groups are developing new QSAR models for
ADMET properties utilizing large databases or compilation of
published data. Awide number of computational research work
describing oral absorption and bioavailability [14, 15], metabo-
lism [16], volume of distribution [17], and enzyme inhibition and
induction [18, 19] have been carried out in recent years. The
theory of QSAR is applied not only to model activity and toxic-
ity, but also properties of materials in the form of quantitative
structure-property relationships (QSPR). Radiosensitization ef-
fectiveness can be considered as a property of the nitroimidazole
compounds and can thus be subjected to QSAR analysis. Many
such property based QSAR models for radiopharmaceuticals
have been developed previously by different groups of re-
searchers [20–24]. A properly validated QSAR model could
generate radiosensitization data for groups of such related
chemicals, and such predictions have the ability to substitute
experimental evaluation to an extent.

Feature selection is an essential step for unbiased develop-
ment of QSAR models. The selection of a reduced pool of de-
scriptors by using multilayered variable selection strategy has
proven to be an effective method in QSAR model development
and easier data handling. Furthermore, feature selection can re-
duce the chances of intercorrelation among the descriptors [25].
The current study presents QSAR models for predicting the
radiosensitization effectiveness of a dataset of 84 nitroimidazole
derivatives. Two-dimensional descriptors calculated from
Dragon and SiRMS softwarewere capable enough in developing
well-validated and predictive models. Simplex representation of
molecular structures (SiRMS) descriptors helped in providing a
comprehensive understanding of the basic fragments contribut-
ing towards the improvement of radiosensitization effectiveness
of the nitroimidazole derivatives. The 2D-QSAR models were
developed with an intention of producing statistically robust pre-
dictions for radiosensitization effectiveness of nitroimidazole de-
rivatives. Furthermore, we have also predicted some related
nitroimidazole compounds to prove the validity of the developed
models.

Materials and methods

A data of 86 nitroimidazoles possessing radiosensitizing prop-
erties are used for two-dimensional QSAR (2D-QSAR) study

[26]. Radiosensitization capacities of the compounds can be
understood by radiosensitization effectiveness, expressed as
C1.6, which can be represented as the corresponding concen-
tration of a given compound when its sensitization enhance-
ment ratio (SER) accomplishes 1.6. Higher value of C1.6 in-
dicates lower bioactivity of radiosensitization effectiveness.
For analysis purpose, the source literature had converted the
endpoint C1.6 to its negative logarithmic scale (pC1.6, where
pC1.6 = − log(C1.6)). Two compounds (one radical and one
salt) were removed, and the final dataset of 84 compounds is
used for model development. The structures of the compounds
were drawn inMarvinSketch software (version 14.10.27) [27]
with proper aromatization and hydrogen bond addition and
saved as MDL.mol, a recommended format for further de-
scriptor calculation.

Descriptor calculation

For developing the first 2D-QSAR model, a pool of 270 de-
scriptors was calculated using Dragon version 7 [28] software.
This model was developed using specific classes of descrip-
tors including E-state indices, connectivity, constitutional,
functional, 2D atom pairs, ring, atom-centered fragments
and molecular property descriptors. Additionally, SiRMS de-
scriptors were calculated using SiRMS (version 4.1.2.270)
[29] tool. Simplex representations of molecular structure
(SiRMS) descriptors symbolize a class of diverse molecular
features developed from 1D to 4Dmolecular structures. These
are tetratomic fragments of different simplex descriptors hav-
ing predefined chirality, composition, and symmetry [29].
SiRMS descriptors consider both connected and unconnected
fragments and also take into account not only the nature of
atoms but also their different chemical and physical properties
like charge, lipophilicity, electronegativity, atomic refraction,
donor/acceptor of hydrogen in the potential Hbond, etc. In our
study, we have used 2D SiRMS descriptors only in order to
avoid conformational complexity and energy minimization
requirements for higher dimensional descriptors and to derive
reproducible models. The constant (variance < 0.0001),
intercorrelated (|r| >0.95) variables and other incompetent data
were removed using an in house software available at http://
dtclab.webs.com/software-tools before model development.

Dataset splitting

A well-validated QSAR model is the main objective of any
QSAR study which can be obtained through proper division
of the dataset into training (used for model development) and
test (used for model validation) sets. An unbiased external
validation with uniform distribution of compounds into train-
ing and test sets can be obtained through rational dataset divi-
sion [30]. For 2D-QSAR modeling, the whole dataset utilized
for modeling was divided into training (75%) and test (25%)
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sets using modified k-Medoids (Modified k-medoid GUI 1.3)
[31, 32] method of dataset division.

Variable selection and QSAR model development

Development of well-validated QSAR models in order to un-
derstand the radiosensitization effectiveness of the dataset
compounds was the main aim of the present study. Critical
evaluation process helped in the selection of statistically sig-
nificant models. In this study, we have built two QSAR
models; a 2D-QSAR model to deduce a relationship between
the molecular properties of the nitroimidazoles and their
radiosensitization properties. For the model with Dragon de-
scriptors, a pool of 32 descriptors were selected using Genetic
Algorithm (GA) [33, 34] modeling implemented in double
cross-validation (DCV) [35] tool (version 1.2). Then, the final
model was generated using Partial Least Squares (PLS) re-
gression [33, 36] method using descriptors selected from best
subset selection (BSS). In case of SiRMS, the number of de-
scriptors generated was large, i.e., about more than ten thou-
sand. Handling of this large data is very much complicated,
and so we have applied stepwise regression on the large pool
of SiRMS descriptors to find out the essential descriptors con-
tributing to the radiosensitization properties of the dataset.
After descriptor thinning, the obtained pool of 300 descriptors
was further subjected to multilayered stepwise regression to
obtain a manageable number of descriptors and run best sub-
set selection for development of five descriptors models. From
the developed models obtained after best subset selection, we
have selected one model based on different validation param-
eters for the test set. Finally, we have run a partial least squares
regression (PLS) using SIMCA-P software [37] and devel-
oped a PLS model.

Statistical validation metrics

We have rigorously examined the statistical quality of the
derived models to judge the robustness in terms of reliability
and predictivity measures using various internal and external
validation parameters. In the present work we have computed
various stat is t ical parameters like determinat ion
coefficient R2, explained variance R2

a, variance ratio (F), and
standard error of estimate (s). Since these quality parameters
are not sufficient to assess the predictive ability of the model,
we have further used additional parameters that could properly
validate our predictions. For internal predictions, leave-one-

out cross-validation (Q2
LOOð Þ ) was reported, and for external

predictions, parameters like R2
pred or Q2

F1,Q
2
F2 and concor-

dance correlation coefficient (CCC), were calculated [38].

We have also calculated r2m metrics (i.e., r2m andΔr2m ) for both
training and test set compounds [39]. We have also validated
the models using mean absolute error (MAE) based criteria for

both external and internal validation [40]. This was done since

the Q2
ext based criteria do not always offer the correct indica-

tion of the prediction quality because of the influence of the
response range as well as the distribution of the values of
response in both the training and test set compounds [40].

Results and discussion

Statistically significant 2D-QSAR models using Dragon and
simplex (SiRMS) descriptors explaining the chemical features
required for good radiosensitization are presented in the fol-
lowing section. The observed versus predicted pC1.6 values
are plotted for both the models is shown in Fig. 1.

2D-QSAR model using dragon descriptors

pC1:6 ¼ 3:612þ 0:613� C−035ð Þ−0:285� nCp−1:129

� C−043ð Þ þ 0:068� H−052ð Þ−1:630� C−042ð Þ
þ 0:295� nRNHR:

Ntrain ¼ 63;R2 ¼ 0:773;R2
adj ¼ 0:757;Q2

LOOð Þ

¼ 0:746; r2m Trainð Þ ¼ 0:647;Δr2m Trainð Þ

¼ 0:173;MAE Trainð Þ ¼ 0:246; SD Trainð Þ
¼ 0:195;RMSEC ¼ 0:30;Quality ¼ GoodNtest

¼ 21;Q2
F1 ¼ 0:752;Q2

F2 ¼ 0:724; r2m Testð Þ

¼ 0:608;Δr2m Testð Þ ¼ 0:216;CCC Testð Þ
: 0:831;MAE Testð Þ ¼ 0:240; SD Testð Þ
¼ 0:204;RMSEP ¼ 0:31;Quality ¼ Moderate

Model 1

The PLS model with 4 latent variables (LVs) could predict
74.6% variance of the training set and 75.2% of the test set.
Important internal and external metrics used to determine the
quality of the QSAR model are listed in eq. 1. Mechanistic in-
terpretation of the six descriptors obtained in the model would
give us an insight about the structural features of the
nitroimidazoles which are likely to influence their
radiosensitization effectiveness. The obtained descriptors are
C-035, nCp, C-043, H-052, C-042, and nRNHR. The model
contains four atom-centered fragments C-035 (R–CX..X; posi-
tive contribution), C-043 (X–CR..X, negative contribution), H-
052 (hydrogen (He) attached to sp3 carbon (C0) with one X
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attached to next carbon, “e” represents the formal oxidation num-
ber; positive contribution) and C-042 (X–CH..X; negative con-
tribution). These descriptors are further explained with molecular
structures from the dataset in Fig. 2. The other two descriptor
belonging to functional group counts are nCp (number of termi-
nal primary C (sp3); negative contribution) and nRNHR (number
of secondary amines (aliphatic); positive contribution). The de-
scriptors obtained in the model gives us an idea regarding the
vital features essential for better radiosensitizationwhich includes
the position of nitro group in the imidazole moiety. Atom-
centered fragment-based descriptors like C-042 and C-043 could
explain that presence of nitro group at position 4 and position 5
would decrease the pC1.6.

The variable importance plot (VIP) [41] analysis gives us
a premonition that C-042 and C-035 are the most important
descriptors (VIP > 1) and contributing mostly towards the
radiation enhancement of the compounds. The loading plot
gives the relationship between the Y variable (pC1.6) and the
X variables (descriptors). For interpretation of the loading,
the distance from the plot origin is considered, where similar
types of descriptors with similar properties are located to-
gether. The variables which are far away from the plot origin
are considered to have stronger impact on the model. This
statement is verified by descriptors C-042 and C-035 which
are proved to have higher impact from the VIP values also.
The closeness of any descriptor to the Y variable signifies its
higher influence on the response. The VIP and loading plot
are shown in Fig. 3.

The 2D-QSAR model with Dragon descriptors gives an
insight about the importance of the position of nitro group in
the nitroimidazole compounds. Also it is found that the

presence of secondary aliphatic amine has significant impor-
tance on radiosensitization.

2D-QSAR model using SiRMS descriptors

We have further tried to improve the quality of the model by
the use of SiRMS descriptors. The obtained 2D-QSAR model
using SiRMS descriptors for radiosensitization effectiveness
of nitroimidazoles was highly robust in terms of the statistical
parameters as the values of quality metrics were above the
recommended threshold as currently practiced [39].

pC1:6 ¼ 1:381þ 0:802� Fr3 elmð Þ=CNN=12s; 13a=
þ0:494� SA chgð Þ=ACDD=12s; 14a; 34s=6
þ0:004� SA chgð Þ=BCCC=14s; 34s=4
þ0:377� Fr5 typeð Þ=C:3C:ARC:ARC:ARN :AR=12s; 23a; 25a; 45a=
þ0:269� Fr enð Þ=CCCCD=15s; 23s; 25s; 34a=

Ntrain ¼ 63;R2 ¼ 0:82;R2
ad j ¼ 0:81;Q2

L00ð Þ ¼ 0:79; r2m 100ð Þ ¼ 0:70;Δr2m l00ð Þ ¼ 0:14;
MAEtrain ¼ 0:22; SDtrain ¼ 0:18;RMSEC ¼ 0:26;Quality Trainð Þ ¼ Moderate

N test ¼ 21;Q2
F1 orR2

pred

� �
¼ 0:80;Q2

F2 ¼ 0:77; r2m Testð Þ ¼ 0:70;Δr2m Testð Þ ¼ 0:05;
CCC Testð Þ ¼ 0:88;MAEtest ¼ 0:23; SDtest ¼ 0:16;RMSEP ¼ 0:28;Quality Testð Þ

¼ Moderate

Model 2

The PLS equation with 3 LVs is able to predict 79% variance

of the training set (Q2) and 80% of the test set (R2
pred ). The

various internal and external metric values obtained are given
in eq. 2. The observed and predicted radiosensitization effec-
tiveness values of the nitroimidazoles are listed in Table S1 in
the Supplementary Section.

From VIP (Fig. 4) the descriptors from highest to lowest
order of significance are as follows: Fr3(elm)/C_N_N/
1_2s,1_3a/, S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6,
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Fig. 1 Scatter plots for observed vs predicted pC1.6values for Model 1 and Model 2
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Fig. 2 Descriptor features obtained from Dragon controlling the radiosensitization effectiveness of nitroimidazoles
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Fig. 3 VIP and loading plot of Model 1
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S_A ( c h g ) /B_C_C_C / 1 _ 4 s , 3 _ 4 s / 4 , F r 5 ( t y p e ) /
C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/ and
Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/. The loading plot
developed using first two components describe the relation-
ship between the X variables and Yvariable is shown in Fig. 5.

The highest contributing descriptor is Fr3(elm)/C_N_N/
1_2s,1_3a/ which is a three atomic fragment depicted by N-
C=N (Box 1). Here, the unsaturation between carbon and
nitrogen takes place within the imidazole moiety and the other

nitrogen is from the nitro group. This descriptor has a positive
impact on the radiosensitization of the nitroimidazoles thus
with higher number of such fragments increases the pC1.6

value. All the compounds in the dataset have this particular
group once or twice. Compounds with two fragments of this
kind has higher pC1.6 values as prominently seen in com-
pounds like 63, 47, 11, 53, 46, 51, 43, 45, 10, 22, 54, etc.
Compounds with only one fragment have considerably lower
pC1.6 values as observed in 72, 71, 82, 78, 75, 86, 80, 81, 85,

Fig. 4 Variable importance plot of SiRMS model. (A- Fr3(elm)/C_N_N/1_2s,1_3a/, B- S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, C- S_A(chg)/B_C_C_
C/1_4s,3_4s/4, D- Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/, E- Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/)

Loading Plot
w*c[Comp. 1]/w*c[Comp. 2]

pC1.6

A

B

C

D

E

Fig. 5 Loading plot of the SiRMS model. (A - Fr3(elm)/C_N_N/1_2s,1_3a/, B - S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, C - S_A(chg)/B_C_C_C/1_
4s,3_4s/4, D-Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/, E- Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/)
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Fig. 6 Simplex representation of molecular structures (SiRMS) frag-
ments appearing in the nitroimidazole dataset. (I- Fr3(elm)/C_N_N/1_
2s,1_3a/, II- S_A(chg)/A_C_D_D/1_2s,1_4a,3_4s/6, III- S_A(chg)/B_

C_C_C/1_4s,3_4s/4, IV- Fr5(type)/C.3_C.AR_C.AR_C.AR_N.AR/1_
2s,2_3a,2_5a,4_5a/, V- Fr5(en)/C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/)

Fig. 7 SiRMS features controlling the increase or decrease in pC1.6
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84, etc. Thus, the importance of this fragment leads us to a
conclusion that the presence of nitro groups in nitroimidazole
should be between N1 and N3 positions of imidazole moiety
so as to show better radiosensitization property.

The second important descriptor is S_A(chg)/A_C_D_D/
1_2s,1_4a,3_4s/6 that represents the partial charge of any of
the four atom fragment as given in Box 2. The fragment here
has two possibilities, one with single nitrogen present within
the imidazole moiety and another with two nitrogens (one
from the imidazole moiety and another from the nitro group)
(given in Box 2). Most of the compounds having this fragment
have a nitro group attached at position 2 of the imidazole ring.
Thus, the position of nitro group plays a vital role in control-
ling the pC1.6 value. This fragment has a positive influence on
the radiosensitization effectiveness observed in compounds
like 63, 66, 65, 68, 47, 11, and 53. Compounds which are
devoid of these kind of fragments have considerably low
pC1.6 value (such as in 74, 77, 80, 75, 78, 71, and 72)
(Figs. 6 and 7).

The next impor tant descr iptor is S_A(chg) /
B_C_C_C/1_4s,3_4s/4 which represents the partial
charge of a four atom fragments as given in Box 3.
The presence of the mentioned fragment (i.e., three car-
bon chain attached to nitrogen from a cyclic nucleus)
would increase the radiosensitization effectiveness due
to the positive influence of the descriptor. Compounds
like 47, 51, 43, 46, 55, 49, 54, and 53 have higher

partial charges due to the presence of the mentioned
fragments thereby increasing the radiosensitization effec-
tiveness whereas in compounds with no such fragments
(like in 71, 72, 82, 78, 75, 80, and 81) the effect of
such charges is not observed thereby the pC1.6 value is
less.

T h e n e x t impo r t a n t d e s c r i p t o r Fr5 ( t y p e ) /
C.3_C.AR_C.AR_C.AR_N.AR/1_2s,2_3a,2_5a,4_5a/ is a
five atomic fragment signifying the following formula: C
(sp3)-C (aromatic)-C (aromatic)-C (aromatic)-N (aromatic).
The structure of the possible fragment is given in Box 4.
The presence of this type of fragment reduces the
radiosensitization effectiveness as indicated by the negative
influence of the descriptor on pC1.6 value. This is well ob-
served in compounds like 72, 59, 57, 61, 69, 62, 41, and 70.
On the other hand, absence of this fragment increases the
radiosensitization property as seen in compounds such as 43,
45, 51, 46, 11, 53, 47, and 63.

The descriptor with the least significance is Fr5(en)/
C_C_C_C_D/1_5s,2_3s,2_5s,3_4a/ which denotes the elec-
tronegativity of the compound due to the presence of a four
atomic fragment given in Box 5. The positive contribution
suggested that the presence of any of the given fragments will
influence the electronegativity of the compound thereby in-
creasing the pC1.6 value. Compounds 9, 10, and 11 have been
reported to have two such fragments and thereby increase the
radiosensitization effectiveness.
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Fig. 8 Applicability Domain of training and test set of Model 1 (with Dragon descriptors) at 99% confidence level
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Fig. 9 Applicability Domain of training and test set of Model 2 (with SiRMS descriptor) at 99% confidence level
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Applicability domain assessment

The prediction reliability of both the 2D-QSAR models is
determined by the applicability domain (AD) assessment.
AD gives a theoretical region in chemical space defined by
the respective model descriptors and responses in which the
predictions are reliable [42]. AD assessment for both the
models was performed using DModX (distance to model in
the X-space) approach at 99% confidence level (Figs. 8 and
9). Both the models displayed good coverage of domain of

applicability showing maximum number of compounds in the
AD (only compound 6 is outside the AD in case of Model 1,
i.e., 2D-QSAR model with Dragon descriptors). There were
no outliers obtained from the test set for both the models. We
have also performed AD assessment at 95% confidence level
for both the models as given in the Supplementary Materials
(Figures S1 and S2) and found that in this case three com-
pounds in the test set were outside AD for the model with
Dragon descriptors and two compounds in the test set for the
model with SiRMS descriptors.

Fig. 10 Y-randomization plots for Model 1 and Model 2
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Table 1 External dataset and their predicted pC1.6 values

Compound

Number
Structure

Observed 

pC1.6

Predicted 

pC1.6 using 

model 1

Predicted 

pC1.6 using 

model 2

Reference

P-1 4.05 3.58 3.67 [26]

P-2 2.89 3.88 3.82 [26]

P-3 - 1.98 2.18 [44]

P-4 - 4.22 2.18 [44]

P-5 - 2.81 2.18 [44]

P-6 - 2.53 2.18 [44]

P-7 - 3.33 3.48 [45]

P-8 - 3.04 3.48 [45]
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Y-randomization

Y-randomization plot analysis helps to understand the statisti-
cal significance of the model. The randomization plot con-
firms that the model is not the result of any chance correlation
[43]. In this process, a number of models are generated by
shuffling different combinations of X or Y variables (here Y
variable only) based on the fit of the reordered model. In our
work, we have used 100 permutations for random model gen-
eration. A model with no chance correlation would show very
poor statistics for the randomized models, i.e., RY

2 intercept
should not exceed 0.3 and QY

2 intercept should not exceed
0.05 [43]. The randomization plots given in Fig. S8 show that
the developed models are non-random and robust (as under-
stood from their RY

2 and QY
2 values) and are suitable for

prediction of the radiosensitization effectiveness within the
AD of the model (Fig. 10).

True external predictions

Prediction of responses for external compounds based on their
molecular features using chemometric methods can reduce the
experiment costs and animal handling. To verify the predictive
power of both the models, we have used a set of eight
nitroimidazole derivatives (Table 1) as an external prediction
set [26, 44, 45]. The original dataset in the source literature

contain 86 nitroimidazoles but we have removed two of them
and used the rest 84 for modeling. These two compounds are
now used for prediction purpose. In addition to this, the do-
main of applicability and their predictive reliability are ana-
lyzed using Prediction Reliability Indicator tool [46]. The
prediction quality and domain of applicability are given in
Table 2. From the prediction status, it can be inferred that
model with fragment-based SiRMS descriptors provides bet-
ter prediction than model with dragon descriptors.

Comparison with the previously published research

In the previously published research by Long and Liu (2010)
[26], the authors developed MLR and projection pursuit re-
gression (PPR) [47–49] models using complex descriptors
such as geometrical, electrostatic, and quantum chemical de-
scriptors. The models developed by us cannot be critically
compared to the previously published since the calibration
and validation set compositions are different. However, it
can be found that our MLR model developed using SiRMS
descriptor is better in terms of both training and test set vali-
dation metrics if we consider their MLRmodel (Table 3). Also
the current model comes with an added advantage of presence
of lower number of simple descriptors and non-requirement of
conformation analysis or energy minimization prior to their
calculation. Furthermore, the PPR based model reported in the

Table 2 Prediction quality [46] for the true external dataset

Compound
number

Prediction status of model with Dragon descriptors Prediction status of model with SiRMS descriptors

Composite
score

Prediction
quality

AD status (using
standardization
approach)

Composite
score

Prediction
quality

AD status (using
standardization
approach)

P-1 3 Good Outside AD 3 Good In

P-2 3 Good In 3 Good In

P-3 2 Moderate In 3 Good In

P-4 3 Good In 3 Good In

P-5 3 Good In 3 Good In

P-6 3 Good Outside AD 3 Good In

P-7 3 Good In 3 Good In

P-8 3 Good In 3 Good In

Table 3 Comparison of the current SiRMS model with previously developed MLR model

Model Total no. of
compounds
used

No. of
compounds in the
training set

No. of
compounds
in the test
set

Descriptor
type

No. of
descriptors
in final
model

Training set Test set

R2 Q2 RMSEC Q2
F1 RMSEP

Current study 84 63 21 2D (fragment-based
SiRMS)

5 (3 LVs) 0.82 0.79 0.26 0.80 0.28

Long and Liu,
2010

86 68 18 3D 6 0.80 0.76 0.28 0.76 0.28
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previous study is derived from a more complicated process
which uses projection based approach to convert high dimen-
sional data to lower dimension. Moreover, 3D descriptors
were used in the previous work.MLR or PLSmodels are more
straight-forward and reproducible as used in the current work.
In addition, 2D descriptors used in the present work are easy
to compute and do not need any conformation analysis or
energy minimization process.

Conclusion

This study targets for the development of fragment-based 2D-
QSAR models for predicting radiosensitization of
nitroimidazole derivatives. The simplex descriptors give an
insight about the fragments and their proper position in the
ni t ro imidazole r ing that enhance or decl ine the
radiosensitization effectiveness. Also reduction in the large
data pool by using multilayered variable selection is shown
for better handling of a large pool of descriptors and removing
chances of intercorrelation among them. Further, the newly
developed models were used for prediction of eight external
compounds and their prediction reliability was checked.
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