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Abstract
Glucokinase is an enzyme which is responsible for the conversion of glucose to glucose-6-phosphate through ATP-dependent
phosphorylation and has a significant role in glycogen synthesis and hepatic glucose production. Allosteric activators of gluco-
kinase could be an attractive approach for the treatment of T2DM (type 2 diabetes mellitus). Recently, an innovative standard
“Index of Ideality of Correlation” has been introduced for the estimation of QSAR (quantitative structural activity relationship)
model’s potential. In the present work, QSARmodels for activators of glucokinase have been developed with target function TF1
and TF2 using index of ideality of correlation (IIC). Along with this, prediction of calibration sets for different QSAR models
generated for different splits is also categorized as correct and wrong. Moreover, dispersion in the different runs of same split is
also explained. The values of criteria R2 and IIC for best split preparedwith target function TF1 are 0.6554 and 0.7912 and that for
TF2 are 0.9531 and 0.9758, respectively. The models developed with index of ideality of correlation are better than the models
generated without index of ideality of correlation. The IIC could be a better criteria option for predictability of QSAR model for
glucokinase activators.
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Introduction

Increased hepatic glucose production and dysfunction of the
pancreatic β-cells are mainly responsible for the whole-body
insulin resistance and hyperglycemia, which are related to
type 2 diabetes mellitus [1]. It is a chronic metabolic disease
influencing about 150 million people throughout the world
[2]. In the developing world, it is assumed as one of the pri-
mary causes of death, and from recent data of IDF Diabetes
Atlas, it is specified as chief obstacle in the universal devel-
opment [3]. At present, there is not a single oral antidiabetic
drug available through which we can achieve permanent

glycemic control. In reality, the utilization of combination
therapy is assumed as better option than monotherapy, al-
though combination therapy also has several unwanted side
effects. Thus, to overcome the crisis related with T2D thera-
pies, the demand of more effective and safe novel antidiabetic
drugs is also rising [4].

Glucokinase (GK) can be suggested as a better target op-
tion for the treatment of T2D because of having activity in
multiple organs which helps in control of whole-body glucose
level [5]. It is related to the hexokinase family also known as
hexokinase D/hexokinase IV [6]. It is involved in the first step
of glycolysis and is accountable for the ATP-dependent phos-
phorylation of glucose. GK is present in pancreaticβ-cells and
acts like as detector for secretion of insulin. It maintains the
glucose homeostasis due to unique kinetic features [7].

Quantitative structure activity relationships (QSARs)/
quantitative structure property relationships (QSPRs) play an
important function in screening and development of the novel
biomolecules with effectiveness [8]. In QSAR/QSPR, mathe-
matical models are developed through which we can relate the
physiochemical or biological property of compounds with
their chemical structures [9]. After the development of a
QSAR model, actual predictive potential of the QSAR model
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is corroborated with distinct decisive factors. Development of
these criterions is not an easy task. Some matrices have been
explained in the literature to explain the predictability.
Recently, a new criteria known as the Index of Ideality of
Correlation (IIC) has been suggested. The IIC estimates the
predictive potential of QSAR model which is not only based
on the correlation coefficient but also depends on the residual
values of endpoint and arrangement of the dots image related
to the diagonal [10]. The purpose of the current research is to
compare the IIC with other different well-known criteria of
predictive potential of QSAR models for activators of gluco-
kinase in T2D.

Materials and methods

In the present study, a data set consisting of 67 benzamide
derivatives was used for QSAR model development. The ex-
perimental values for EC50 data were retrieved from literature
reports [11–13]. Then, these experimental values were
changed into negative decimal logarithm (pEC50) which was
considered as the dependent variable for QSAR model gener-
ation [14]. 3D arrangement of the glucokinase activators were
sketched with Marvin Sketch [15], and further, Open Babel
[16] was used to convert them into the SMILES depiction.
Three different splits were prepared by random distribution
of molecules into training, invisible training, calibration, and
external validation sets [17]. The training, invisible training
sets are like the manufacturer and inspector of the correlation
weights, and the external validation set is the indicator of the
true predictive potential of the correlation weights [18].
OECD guidelines were precisely followed in QSAR model
development [19]. The percentage of the identical distribution
of compounds into splits was determined with the well-known
method [20], and it is summarized in Table 1. From this table,
nonidentical nature of splits can be confirmed.

Optimal descriptors

The CORAL QSAR modeling depends on the concept, de-
scribed in the following Eq. 1 [21]:

Endpoint ¼ F Molecular Structureð Þ ð1Þ

Simplified molecular-input line-entry system (SMILES)
notation is regarded as the most suitable depiction for the
molecular structures of compounds [22]. In QSAR modeling,
molecular optimal descriptor (DCW) is defined as the function
of the molecule’s SMILES notation, described in Eq. 2 [23].

DCW ¼ F SMILESð Þ ð2Þ

Molecular structures of compounds can be shown as
SMILES and molecular graph; in several cases, hybrid

representation is also used [24]. In hybrid form, both
SMILES and molecular graph are employed for model devel-
opment in QSARmodeling. The CORALmethod depends on
correlation weights of structural attributes obtained from
hydrogen-suppressed graph (HSG), hydrogen-filled graph
(HFG), and graph of atomic orbitals (GAO). There are two
types of molecular features, named as local and global which
are extracted from HSG [25]. The hybrid descriptor based on
Monte Carlo simulation of the activators of glucokinase was
computed with the following equation [26]:

DCW T*N*ð Þ ¼ DCWgraph T*N*ð Þ
þ DCWSMILES T*N*ð Þ ð3Þ

Index of ideality of correlation (IIC)

In Monte Carlo optimization, sets of correlation weights CW
(x) are the coefficients which result in production of the target
function with higher value. Different target functions can be
calculated for available optimization method by changing the
value of parameter WIIC. Here, two versions of the target
function were evaluated. The target function is defined as
[27]:

TF1 ¼ Rtraining þ Rinvisible training− Rtraining−Rinvisible training
�� ��

� 0:1 ð4Þ

Table 1 Percentage of identical distribution of compounds into the
training set, invisible training set, calibration set, and validation set

Splits Sets Split 1 Split 2 Split 3

1 Training set 100 33 07

Invisible training set 100 11 35

Calibration set 100 08 00

Validation set 100 10 20

2 Training set 100 29

Invisible training set 100 22

Calibration set 100 09

Validation set 100 00

3 Training set 100

Invisible training set 100

Calibration set 100

Validation set 100

To measure (%) of nonidentity of splits into the training, invisible train-
ing, calibration, and validation set, examined in this work

Identity (%) = Ni.j/0.5 (Ni + Nj)*100

where

Ni is the number of compounds which are distributed into the set for i-th
split

Nj is the number of compounds which are distributed into the set for j-th
split

832 Struct Chem (2020) 31:831–839



where Rtraining and Rinvisible training are the correlation coef-
ficients between the observed and predicted endpoints for the
training and invisible training sets, respectively.

TF2 ¼ TF1 þ IIC �WIIC ð5Þ

The IIC is described as the index of ideality of correlation.
The WIIC is an experimental coefficient; generally its value is
considered as zero in the Monte Carlo optimization. But in the
case of modified version, the value of WIIC is taken as greater
than zero, but too large value of WIIC can also ruin the opti-
mization process.

Index of ideality of correlation is defined as:

IIC ¼ Rcalibration �
min −MAEcalibration; þMAEcalibration

� �

max þMAEcalibration;
� � ð6Þ

Here;−MAEcalibration ¼ 1

N− � ∑N−

K¼1 Yobs−Ypred
� �

;where; Yobs−Ypred
� �

< 0

ð7Þ
Here;þMAEcalibration ¼ 1

N− � ∑Nþ
K¼1 Yobs−Ypred

� �
;where; Yobs−Ypred

� �
> 0

ð8Þ

In Eqs. 7 and 8, the parameters Yobs and Ypred are corre-
spondingly observed and calculated values of pEC50 for the
calibration set. If we use IIC as a replacement of the conven-
tional correlation coefficient, the statistical parameters of any
inferior models could be improved. Hence, the IIC can be
taken as an alternative option to check the characteristic of
developed model. The application of the IIC becomes impos-
sible if [27]:

−MAE ¼ þMAE ¼ 0

How to rate different criteria of predictive potential
as correct or wrong? [28]

If XCLB 1½ � > XCLB 2½ � and R2
VLD 1½ � > R2

VLD 2½ � ð9Þ

(then the rating is given as correct)

If XCLB 2½ � > XCLB 1½ � and R2
VLD 2½ � > R2

VLD 1½ � ð10Þ

Fig. 1 The general scheme for
building up of QSAR model by
means of Monte Carlo method
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And

If XCLB 1½ � > XCLB 2½ � and R2
VLD 1½ �

< R2
VLD 2½ � then rating is given as wrongð Þ ð11Þ

The rating is given as “correct” if the values of the criteria
for both calibration and validation set for model 1 are higher
than model 2 or values or the parameters of both calibration
and validation set related to model 2 are more than 1. But in

comparison of model 1 with model 2, if the value of the X [1]
increases for calibration set and the value of R2 decreases for
validation set, then rating is given as “wrong.” The XCLB [1]
and XCLB [2] demonstrated the values of criteria R2, q2, q2F1,
q2F2, Q

2
F3, Rm

2, CCC, and IIC for model 1 and model 2,
where models 1 and 2 were prepared with TF1 and TF2 with
WIIC values 0 and 0.2, respectively.

In CORAL QSARmodeling, the dispersion in several runs
of the same split with same optimization procedure can be

Table 3 Statistical characteristics of three runs for split 2 of glucokinase activators with Monte Carlo optimization

Run TF WIIC Set n R2 CCC Q2 Q2
F1 Q2

F2 Q2
F3 Rm2 IIC

1 TF1 0.0 CLB 12 0.5959 0.6932 0.3778 0.1831 0.1810 0.6006 0.4577 0.3380

VLD 10 0.5138

TF2 0.2 CLB 12 0.7819 0.8758 0.7240 0.7606 0.7600 0.8829 0.6921 0.8841

VLD 10 0.9492

Rating Correct Correct Correct Correct Correct Correct Correct Correct

2 TF1 0.0 CLB 12 0.7863 0.7354 0.7136 − 0.1586 − 0.1615 0.4336 0.3341 0.4706

VLD 10 0.5659

TF2 0.2 CLB 12 0.8661 0.9228 0.8123 0.8573 0.8569 0.9302 0.8044 0.9239

VLD 10 0.9254

Rating Correct Correct Correct Correct Correct Correct Correct Correct

3 TF1 0.0 CLB 12 0.7103 0.8345 0.5723 0.6548 0.6540 0.8312 0.5997 0.5997

VLD 10 0.7745

TF2 0.2 CLB 12 0.8854 0.7718 0.8487 0.7084 0.7077 0.8574 0.2907 0.9398

VLD 10 0.4672

Rating Wrong Wrong Correct Correct Correct Correct Wrong Correct

Explanation of terms used is same as given in footnote of Table 2

Table 2 Statistical characteristics of three runs for split 1 of glucokinase activators with Monte Carlo optimization

Run TF WIIC Set n R2 CCC Q2 Q2
F1 Q2

F2 Q2
F3 Rm2 IIC

1 TF1 0.0 CLB 12 0.2635 0.4531 − 0.1290 0.1158 − 0.3855 0.5265 0.1324 0.4075

VLD 10 0.7209

TF2 0.2 CLB 12 0.7190 0.8100 0.5950 0.7668 0.6345 0.8751 0.6092 0.8476

VLD 10 0.7936

Rating Correct Correct Correct Correct Correct Correct Correct Correct

2 TF1 0.0 CLB 12 0.4186 0.6285 0.0130 0.4056 0.0678 0.6817 0.2625 0.5732

VLD 10 0.6261

TF2 0.2 CLB 12 0.6706 0.7200 0.5578 0.6309 0.4217 0.8024 0.5492 0.8189

VLD 10 0.7525

Rating Correct Correct Correct Correct Correct Correct Correct Correct

3 TF1 0.0 CLB 12 0.7327 0.8213 0.6334 0.7657 0.6329 0.8745 0.6277 0.1515

VLD 10 0.4978

TF2 0.2 CLB 12 0.6644 0.7561 0.5302 0.6802 0.4988 0.8287 0.5422 0.8151

VLD 10 0.5543

Rating Wrong Wrong Wrong Wrong Wrong Wrong Wrong Correct

Where CLB represents the calibration set, VLD is the validation set, n is number of molecules in set, R2 is regression coefficient, CCC is concordance
correlation coefficient, Q2 is cross-validation correlation coefficient, Rm2 is criteria of predictability, and IIC is index of ideality of correlation
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explained and calculated with the standard deviation. Along
with this, the developed splits could be categorized as correct
and uncertain. Firstly, the average values of a criteria X1 for
model-1 and X2 for model-2 were calculated, and then their
standard deviations Δ1 and Δ2 were determined which were
developed with target function TF1 and TF2. On the basis of
following inequality, it can be defined as uncertain or correct
[29].

X 1−X 2≤Max Δ1;Δ2ð Þ ð12Þ

Max (Δ1, Δ2) = Δ1 > Δ2, otherwise Δ2 is taken
Then, in the standard deviations of a criteria Δ1, Δ2 maxi-

mum standard deviation value is determined. Suppose if the
value of Δ1 is greater than Δ2, then Δ1 is considered as “Max
Δ.” Further, if the difference between the average values of
criteria was lower than the max Δ value, then it is recommend-
ed as “uncertain,” and opposite of above statement is sup-
posed to be the “correct.”

Building of CORAL model

Three steps involved in the development of the CORAL
QSAR models were [30] the following:

1. The total data set was divided into the training, invisible
training, calibration, and validation sets, and different
splits were generated by running the CORAL SEA 2019
with the search for preferable number of epochs (N*) and
threshold (T); ranges of T and Nepoch were selected from 1
to 10 and 1 to 50, respectively.

2. Then the models were developed with preferable number
of threshold (3) and Nepoch (25), and molecular features
for all compounds were computed by mean of CORAL.

3. Correlation weights were extracted for all molecular fea-
tures related to QSAR models.

Figure 1 represents the general scheme used of CORAL
model development with Monte Carlo method [31].

Table 5 Equations for QSAR
models with target function TF2 Developed splits No. of run Equations

Split 1 Run 1 Endpoint = −2.90926 (± 0.12386) + 0.05615 (± 0.00103) × DCW(2,13)

Run 2 Endpoint = −2.01484 (± 0.06762) + 0.04111 (± 0.00047) × DCW(2,5)

Run 3 Endpoint = −2.17933 (± 0.12822) + 0.06355 (± 0.00130) × DCW(3,3)

Split 2 Run 1 Endpoint = −2.16134 (± 0.09073) + 0.06071 (± 0.00093) × DCW(2,4)

Run 2 Endpoint = −3.80739 (± 0.12969) + 0.05631 (± 0.00090) × DCW(2,3)

Run 3 Endpoint = −3.79536 (± 0.11795) + 0.06700 (± 0.00101) × DCW(1,5)

Split 3 Run 1 Endpoint = −2.58645 (± 0.14207) + 0.06141 (± 0.00126) × DCW(3,3)

Run 2 Endpoint = −4.49770 (± 0.16462) + 0.07441 (± 0.00138) × DCW(1,3)

Run 3 Endpoint = −4.09191 (± 0.16438) + 0.08455 (± 0.00166) × DCW(1,3)

Table 4 Statistical characteristics of three runs for split 3 of glucokinase activators with Monte Carlo optimization

Run TF WIIC Set n R2 CCC Q2 Q2
F1 Q2

F2 Q2
F3 Rm2 IIC

1 TF1 0.0 CLB 11 0.6554 0.7912 0.4098 0.5017 0.4976 0.4940 0.5221 0.7912

VLD 10 0.6421

TF2 0.2 CLB 11 0.9531 0.9468 0.9341 0.9143 0.9136 0.9130 0.7400 0.9758

VLD 10 0.8314

Rating Correct Correct Correct Correct Correct Correct Correct Correct

2 TF1 0.0 CLB 11 0.8476 0.9129 0.7337 0.8347 0.8333 0.8321 0.7793 0.7883

VLD 10 0.6480

TF2 0.2 CLB 11 0.8729 0.9274 0.7421 0.8421 0.8408 0.8397 0.8148 0.9341

VLD 10 0.8439

Rating Correct Correct Correct Correct Correct Correct Correct Correct

3 TF1 0.0 CLB 11 0.7888 0.8734 0.6259 0.7241 0.7219 0.7199 0.7015 0.6301

VLD 10 0.6405

TF2 0.2 CLB 11 0.8893 0.9286 0.7903 0.8311 0.8298 0.8285 0.7638 0.9417

VLD 10 0.7168

Rating Correct Correct Correct Correct Correct Correct Correct Correct

Explanation of terms used is same as given in footnote of Table 2
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Table 7 Percentage of correct
recommendations provided by
criteria of the predictive potential
of developed QSAR model

Split Run R2 CCC Q2 Q2
F1 Q2

F2 Q2
F3 Rm2 IIC

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

3 0 0 0 0 0 0 0 1

2 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

3 0 0 1 1 1 1 0 1

3 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1

Correct recommendation 78% 78% 89% 89% 89% 89% 78% 100%

Recommendations which are done with considering the dispersion of criteria

1 1 1 1 1 1 1 0 1

2 1 1 1 1 1 1 0 1

3 0 0 0 0 0 0 0 0

Correct recommendation 67% 67% 67% 67% 67% 67% 0% 67%

Table 6 Rating of
recommendations provided by
criteria of dispersion in the three
splits of Monte Carlo
optimization

Parameters X1 Δ1 X2 Δ2 X2-X1 Rating according to equation

Split 1

R2 0.4716 0.1952 0.7412 0.0686 0.2696 Correct

CCC 0.6343 0.1504 0.8006 0.0624 0.1663 Correct

Q2 0.1725 0.3310 0.6396 0.0907 0.4671 Correct

Q2
F1 0.4290 0.2658 0.7460 0.0867 0.3170 Correct

Q2
F2 0.1051 0.4166 0.6017 0.1356 0.4967 Correct

Q2
F3 0.6942 0.1423 0.8640 0.0464 0.1698 Correct

Rm2 0.3409 0.2097 0.4174 0.2302 0.0765 Uncertain

IIC 0.3774 0.1735 0.8581 0.0370 0.4807 Correct

Split 2

R2 0.6975 0.0783 0.8445 0.0449 0.1470 Correct

CCC 0.7544 0.0592 0.8568 0.0631 0.1024 Correct

Q2 0.5546 0.1377 0.7950 0.0524 0.2404 Correct

Q2
F1 0.2264 0.3335 0.7754 0.0617 0.5490 Correct

Q2
F2 0.2245 0.3343 0.7749 0.0618 0.5504 Correct

Q2
F3 0.6218 0.1630 0.8902 0.0302 0.2684 Correct

Rm2 0.4638 0.1085 0.5957 0.2205 0.1319 Uncertain

IIC 0.4694 0.1068 0.9159 0.0234 0.4465 Correct

Split 3

R2 0.8187 0.1232 0.8503 0.0440 0.0316 Uncertain

CCC 0.8836 0.0668 0.9098 0.0257 0.0262 Uncertain

Q2 0.6925 0.2160 0.7194 0.0690 0.0269 Uncertain

Q2
F1 0.7502 0.1787 0.7991 0.0532 0.0489 Uncertain

Q2
F2 0.7482 0.1802 0.7975 0.0536 0.0493 Uncertain

Q2
F3 0.7464 0.1815 0.7960 0.0540 0.0497 Uncertain

Rm2 0.6805 0.1131 0.7600 0.0463 0.0796 Uncertain

IIC 0.8518 0.0877 0.8353 0.1451 −0.0165 Uncertain
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Domain of applicability

The statistical defects related to the molecular features depend
on allocation of different molecular features into the training
and calibration set [28].

d FKð Þ ¼ PT FKð Þ−PC FKð Þ
NT FKð Þ þ NC FKð Þ ð13Þ

where PT(FK) and PC(FK) are probabilities of feature FK to
be in training set and calibration set and NT(FK) and NC(FK)
are prevalence of feature FK in the training set and calibration
sets, respectively.

The defect of the individuals’ SMILES can be calculated
as:

d SMILESð Þ ¼ ∑
FK∈SMILES

d FKð Þ ð14Þ

The addition of defect of individual SMILES results into
the defect of the split related to training, invisible training,
calibration, and validation set.

d Splitð Þ ¼ ∑d SMILESð Þ ð15Þ

Domain of applicability can be estimated as

d SMILESð Þ < 2� d SMILES
� �

ð16Þ

where the d SMILESð Þ is the average of the statistical de-
fect of SMILES related to the training set.

Results and discussion

The major purpose behind the use of different criteria to pre-
dict the potential of developed QSAR models was to identify
that the built models have predictability control or not. The
comparison of q2, Rm2, CCC, and IIC provided the

satisfactory outcome in terms of the predictive potential of
the QSAR model because all the criteria have comparable
range from zero to one. Moreover, during comparison of
two models, one having larger value of criteria is assumed
as superior, and this is true for all above mentioned parameters
[10]. Tables 2, 3, and 4 are describing the comparison of
different statistical characteristics of three runs of split 1, 2,
and 3 of glucokinase activators with Monte Carlo optimiza-
tion. According to the rating principle, in case of split 1, for

Table 8 Structural attributes extracted from QSAR model of best split

S. No. Structural attributes Correlation weights N1 N2 N3

Promoters of endpoint increase

1. c...c...1... 1.4991 26 20 11

2. c...c...2... 2.15034 26 20 11

3. ++++N---O=== 1.16073 26 20 11

4. 2...(....... 2.05253 26 20 11

5. 2........... 2.48414 26 20 11

6. =........... 0.63146 26 20 11

7. =...O...(... 1.47948 26 20 11

8. EC1-C...6... 1.09139 26 20 11

9. EC1-N...5... 2.45979 26 20 11

10. EC1-O...6... 1.32833 26 20 11

11. c...(...2... 0.59313 26 20 11

12. c...1...c... 1.25895 26 20 11

13. c...2...c... 2.29869 26 20 11

14. O...(...N... 2.01721 26 20 11

15. PT2-O...2... 1.05216 26 20 11

16. PT3-O...3... 2.40404 26 20 11

17. VS2-C...5... 1.42829 26 20 11

18. NNC-C...321. 2.32328 26 20 11

19. NNC-N...220. 1.04267 26 20 11

20. NNC-O...110. 1.1046 26 20 11

21. PT2-C...2... 2.04222 26 20 11

Promoters of endpoint decrease

1. c...N....... − 0.55508 26 20 11

2. n........... − 0.72228 26 20 11

3. n...2....... − 0.50163 26 20 11

4. (...C...(... − 0.80875 26 20 11

5. ++++N---B2== − 0.23788 26 20 11

6. 1...c...(... − 0.85025 26 20 11

7. EC1-O...3... − 0.93775 26 20 11

8. N........... − 0.80988 26 20 11

9. N...c...2... − 0.82967 26 20 11

10 O........... − 0.53408 26 20 11

11. O... = ...(... − 0.44427 26 20 11

12 O... = ....... − 0.68024 26 20 11

13. c...N...(... − 0.33517 26 20 11

Where N1 is the number of SMILES in training set with SA; N2 is the
number of SMILES in invisible training set with SA; N3 is the number of
SMILES in calibration set with SA

Fig. 2 Graphical representation of IIC for different splits with utilization
of target functions TF1 and TF2
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IIC, rating was identified as correct in three run, while for R2,
CCC, Rm2, and q2 matrices, it was correct only for two runs.
In split 2, rating was correct for IIC in all three runs, but for
other criteria, it was correct only for two runs, and lastly in
split 3, rating was obtained as correct for all the statistical
parameters. From the interpretation of above data, it could
be observed that the splits prepared with TF2 were better than
the TF1 and the first run of split 3 was defined as the best split
prepared due to having highest values of R2 (0.9531) and IIC
(0.9758). Different QSAR equations of various runs of three
splits with target function TF2 are summarized in Table 5, and
the rating of recommendations provided by criteria in the three
splits of glucokinase is described in Table 6. According to the
criteria of standard deviation, splits 1 and 2 were correct or
certain for all statistical parameters except Rm2 matrices al-
though split 3 was uncertain for all criteria. The percentage of
correct recommendations estimated for different criteria of the
predictive potential of QSAR models is listed in Table 7. The
percentage of correct recommendations for IIC was calculated
as highest 100% followed by q2 matrices with 89% and lastly
for the R2, CCC, and Rm2 with 78%. Percentage according to
the standard deviation was 67% for all parameters except Rm2

matrices. Figure 2 displays the graphical representation of the
IIC versus target function TF1 and TF2.

Mechanistic interpretation

From the data related to the correlation weight of the devel-
oped QSAR models, different structural attributes can be
framed as stable positive category, stable negative category,
and undefined category [32]. Stable positive category is ac-
countable for the enhancement of the calculated endpoint in
all prepared splits, while other negative are contradictory of

the above statement. Some structural attributes have not a
particular role; they have both positive and negative values
of descriptors in different runs, and thus, for such attributes,
an accurate correlation weight cannot be expressed [33].
Structural attributes extracted from the best split (first run of
split 3) are summarized in Table 8 along with their correlation
weights, and Fig. 3 shows the SMILES attributes present in
one of the glucokinase activators.

Conclusion

The CORAL software provided the robust and predictive
QSAR models for the activators of glucokinase containing
benzamide moiety. In comparison of the predictive poten-
tial of these models, the index of ideality of correlation
emerged as a useful criterion. Application of IIC with tar-
get functions resulted in improvement of statistical quality
of all QSAR models related to different splits. The coeffi-
cient WIIC controlled the effect of the index of ideality of
correlation in Monte Carlo optimization which is an em-
pirical parameter and depends on the nature of endpoint
and compounds diversity of corresponding available data.
Hence, IIC can be used for prediction of glucokinase acti-
vation in a lucid way.
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