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Abstract
Although Hückel molecular orbital theory (HMO) has been generally outdated as a computational method for the energetics of
organic molecules, there is still much we can learn from it. This paper explores two compounds, 1,4-divinylbenzene and 2-
phenylbutadiene, which, according to Hückel theory, are isospectral, i.e., they have the same eigenvalues and orbital energy
levels. However, by using a small, well-defined perturbation, we show it is mathematically possible to distinguish between these
two compounds. We suggest that this is a general procedure for distinguishing isospectral pairs of molecules as opposed to the
two species being identical.
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Introduction

Although Hückel molecular orbital theory (HMO) [1–4] has
been generally viewed as outdated as a computational method
for the energetics of organic molecules [5–11], there is still
much we can learn from it [12–14]. Hückel theory, created by
Erich Hückel, is a molecular orbital-based theory that states a
hydrocarbon with a conjugated π system can be described
mathematically using an adjacency matrix, i.e., the eigenvec-
tors of an adjacency matrix are the π orbitals, and the corre-
sponding eigenvalues are the corresponding orbital energies.
Take the example of benzene, as shown in Fig. 1. The carbons
can be labeled in either formulation but will produce the same
result mathematically. There are many ways the carbons can
be labeled, 6 (720) in fact, since there are six carbon atoms that
may be arbitrarily permuted.

As there are six carbons, a 6-by-6 Hamiltonianmatrix can be
constructed where an α is placed on each of the diagonal ele-
ments and a β is placed where two carbons are connected. The
α’s represent the energy of a 2p atomic orbital, and the β’s
represent the overlap of two such carbon 2p orbitals and, thus,
the energy of an electron in a πmolecular orbital. α is typically
set equal to 0 for a carbon atom, with some other value to
specify a heteroatom as found for the nitrogen in pyridine. β
is often set equal to 1 for the energy level of the π orbital as
found in ethylene. A modified β is used for bonds involving
heteroatoms such as found in pyridine for the two carbon-
nitrogen bonds, C2-N and C6-N. An example of a 6-by-6
Hamiltonian matrix for benzene is shown in Fig. 2 where we
have used the first numbering system from Fig. 1. (The
Hamiltonian matrix is equivalent to the adjacency matrix since
it tells us what atoms are adjacent, hence bonded, to each other.)

Taking the Hückel Hamiltonian in Fig. 2, with α = 0 and β
= 1 as mentioned above, and substituting into the matrix equa-
tion that follows, one can find the energy levels for the π
molecular orbitals of benzene by solving for the eigenvalues
and eigenvectors of the so-defined adjacency matrix. The ma-
trix equation, (H − EI)ψ = 0, is equivalent to solvingHψ = Eψ,
the Schrödinger equation as customarily written. Using the
“eig” function in MATLAB R2019b [15] and the
“Eigenvalues” and “Eigenvectors” functions in Wolfram
Mathematica 12.0 [16], we then obtain the eigenvalue spec-
trum for benzene {2, 1, 1,−1,−1,−2}, along with their
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corresponding eigenvectors. Both packages shall be used for
the remainder of our study for determination of the eigen-
values and eigenvectors of the matrices which may be related
to the energy levels and orbitals of the molecules of interest.

Hückel theory has been used for predicting energy levels of
conjugated molecules, but not necessarily for distinguishing
between molecules in that two different molecules occasion-
ally have the same set of eigenvalues, i.e., they are defined as
isospectral [17–20]. This paper explores two different pairs of
isospectral compounds; an admittedly commonly cited pair of
isospectral molecules, 2-phenylbutadiene and 1,4-
divinylbenzene [21–25], as well as the mathematically sim-
plest isospectral pair tetramethylenemethane (neopentane-
1,1’,1”,1’”-tetrayl), as related to spiro[4, 4]nonane-1,4,6,9-
tetrayl [26, 27], and cyclobutadiene with a fifth unconnected
carbon (planar methane) [28]. From reference 28, we find the
terms isospectral and cospectral are synonyms. Since
“cospectral” has generally been used in mathematical settings
and “isospectral” has generally been used in chemical settings,
we shall use the term isospectral through the remainder of this
article. It is confirmed that the two molecules of each
isospectral pair are in fact different species. We admit now
that a knowledge of undergraduate organic chemistry, even

just the first course, is more than adequate to perceive the
difference; we want to do this within the Hückel framework
of the current study.

Results and discussion

For the first part of the results and discussion, we address the
isospectral pair of 2-phenylbutadiene and 1,4-divinylbenzene.
It has been shown in previous studies that 2-phenylbutadiene
and 1,4-divinylbenzene are isospectral. However, 2-
phenylbutadiene and 1-phenylbutadiene are isomeric but not
isospectral, and, similarly, 1,4-divinylbenzene, 1,3-
divinylbenzene, and 1,2-divinylbenzene are also isomeric
but not isospectral. The structures of these molecules are
shown in Fig. 3.

Out of simplicity, we are ignoring 1,5-divinylbenzene, 1,6-
divinylbenzene, 3-phenylbutadiene, and 4-phenylbutadiene in
order to not have any repeat structures; we immediately iden-
tify them as identical except for the drawing and numbering of
other divinylbenzenes and phenylbutadienes in our list. We
are also not distinguishing between the (Z)- and (E)-isomers
of 1-phenylbutadiene, as the numbering of the carbons, and,
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Fig. 1 Two of 720 different ways
to number the carbons on benzene
for use in Hückel theory

Fig. 2 a The six-by-six Hückel
Hamiltonian matrix for benzene.
b The Hückel Hamiltonian matrix
with α set equal to 0 and β set
equal to 1
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therefore, the eigenvalues would be the same. The eigenvalue
spectra of the molecules, calculated using both MATLAB
R2019a and Mathematica 12.0, are shown in Table 1. We
reiterate that the eigenvalue spectra of 2-phenylbutadiene
and 1,4-divinylbenzene are identical.

The question then stands: is there any systematic (i.e., not
“merely” visual) way to distinguish between the two
isospectral molecules? We show that if a small perturbation
is applied, it becomes possible to distinguish between these
two molecules. Say we have a Hamiltonian H1 for 2-
phenylbutadiene and a Hamil tonian H2 for 1,4-

divinylbenzene. We then have two matrix equations, H1ψ1 =
E1ψ1, andH2ψ2 = E2ψ2. We can define a matrix A that we add
to each Hamiltonian matrix. When the matrix elements Aij

equals Aδij, the eigenvalues of H + A equal those of H to
which we add the constant A. However, say A is not constant
but still diagonal and is dependent on the number of neigh-
boring (i.e., directly bonded) carbons, as shown in Fig. 4. It
then becomes possible to differentiate between these two mol-
ecules. For example, let Aii = 0.01 when the carbon specified
has one carbon neighbor, Aii = 0.02 when the carbon specified
has two carbon neighbors, Aii = 0.03 when the carbon speci-

Table 1 Eigenvalue spectra for
the five molecules of the first part
of the study

Molecule Eigenvalues

1-phenylbutadiene (3) {2.1543, 1.6540, 1.1878, 1.0000, 0.4736,
−0.4736,−1.0000,−1.1878,−1.6540,−2.1543}

2-phenylbutadiene (4) {2.2143, 1.6751, 1.0000, 1.0000, 0.5392,−0.5392,
−1.0000,−1.0000,−1.6751,−2.2143}

1,2-divinylbenzene (5) {2.2470, 1.4142, 1.4142, 0.8019, 0.5550,−0.5550,
−0.8019,−1.4142,−1.4142,−2.2470}

1,3-divinylbenzene (6) {2.2216, 1.6180, 1.2399, 0.7261, 0.6180,−0.6180,
−0.7261,−1.2399,−1.6180,−2.2216}

1,4-divinylbenzene (7) {2.2143, 1.6751, 1.0000, 1.0000, 0.5392,−0.5392,
−1.0000,−1.0000,−1.6751,−2.2143}

Notice that the eigenvalue spectra of 2-phenylbutadiene and 1,4-divinylbenzene are identical
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Fig. 3 The five molecules of the first part of our study. (3) 1-phenylbutadiene, (4) 2-phenylbutadiene, (5) 1,2-divinylbenzene, (6) 1,3-divinylbenzene,
and (7) 1,4-divinylbenzene, where we have labeled the carbons 1–10 on reflecting there are ten carbon atoms in each species

Fig. 4 Matrix entries for the
matrix A1

Struct Chem (2020) 31:1119–1124 1121



fied has three carbon neighbors, and likewise Aii = 0.04 when
the carbon specified has four carbon neighbors (multiple
bonds are counted as single bonds for this procedure). We call
this matrix A1. The new eigenvalues for all the molecules of
study using this method are shown in Table 2. Notice the
difference now between 1,4-divinylbenzene and 2-
phenylbutadiene. Notice also that the differences in the values
in Tables 1 and 2 are small, but, nevertheless, significant.

Similarly, say A follows that of Fig. 5 instead of Fig. 4,
matrix A2. Notice the difference is by one order of magni-
tude. However, this one order of magnitude produces a
greater difference in eigenvalues, as shown in Table 3. In
other words, even though H1 and H2 have identical sets of
eigenvalues, H1 + A and H2 + A have different sets, so the

species that generated these sets are different. Suppose now
that the eigenvalue spectra for H1 + A and H2 + A are the
same, as well as the eigenvalue spectra for the earlier enun-
ciated H1 and H2. Although we have never known this to
happen, our immediate suggestion is to try adding an alter-
native matrix B to the matrices H1 + A and H2 + A. Now, are
the eigenvalue spectra for H1 + A + B and H2 + A + B
identical? If they are not, then the species that generated
H1 and H2 are different. It is increasingly unlikely that the
new eigenvalue spectra are the same unless the two species
are identical, and so we proceed with increasing confidence
that they are identical if this is the case.

We now move to the second part of the results and
discussion which focus on the isospectral pairs

Table 2 New eigenvalue spectra
of the molecules of part one using
the variable value of A1

Molecule Eigenvalues

1-phenylbutadiene (3) {2.1318, 1.6312, 1.1671, 0.9800, 0.4560,
−0.4912,−1.0200,−1.2085,−1.6696,−2.1769}

2-phenylbutadiene (4) {2.1904, 1.6544, 0.9800, 0.9800, 0.5239,
−0.5545,−1.0200,−1.0200,−1.6959,−2.2383}

1,2-divinylbenzene (5) {2.2226, 1.3942, 1.3942, 0.7839, 0.5374,
−0.5725,−0.8200,−1.4342,−1.4342,−2.2714}

1,3-divinylbenzene (6) {2.1980, 1.5958, 1.2208, 0.7088, 0.6003,
−0.6358,−0.7433,−1.2590,−1.6403,−2.2452}

1,4-divinylbenzene (7) {2.1909, 1.6523, 0.9840, 0.9800, 0.5214,
−0.5569,−1.0160,−1.0200,−1.6980,−2.2377}

Notice now the difference between the eigenvalue spectra of 2-phenylbutadiene and 1,4-divinylbenzene

Fig. 5 Variable matrix entries for
the matrix A2

Table 3 New eigenvalue spectra
of the molecules of part one using
the variable value of A2

Molecule Eigenvalues

1-phenylbutadiene (3) {1.9298, 1.4595, 0.9817, 0.8000, 0.2975,
−0.6495,−1.2000,−1.3954,−1.8428,−2.3809}

2-phenylbutadiene (4 {1.9768, 1.4690, 0.8021, 0.8000, 0.3859,
−0.6929,−1.2000,−1.2019,−1.8835,−2.4555}

1,2-divinylbenzene (5 {2.0277, 1.2296, 1.2161, 0.6225, 0.3902,
−0.7199,−0.9810,−1.6009,−1.6159,−2.4684}

1,3-divinylbenzene (6 {1.9866, 1.3988, 1.0506, 0.5524, 0.4396,
−0.7951,−0.8983,−1.4326,−1.8433,−2.4587}

1,4-divinylbenzene (7 {1.9812, 1.4500, 0.8413, 0.8000, 0.3606,
−0.7160,−1.1613,−1.2000,−1.9064,−2.4493}

Notice the difference between these eigenvalue spectra and those from the previous two tables
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tetramethylenemethane (neopentane-1,1’,1”,1’”-tetrayl)
and cyclobutadiene with a fifth unconnected carbon (pla-
nar methane). For this study, we will also include
cyclobutadiene with the fifth carbon connected to each
other carbon in the molecule, which is not isospectral to
the other molecules. The structures of these molecules are
shown in Fig. 6, and the eigenvalue spectra of each mole-
cule are listed in Table 4.

Now say that we take the Hamiltonian of each of the
molecules above and add them by a matrix A such that
A follows that in Fig. 4, matrix A1. The new eigenvalues
obtained using this method are given in Table 5. Notice,
now, just as in the isospectral pair of 2-phenylbutadiene

and 1,4-divinylbenzene above, the eigenvalues of
tetramethylenemethane and the cyclobutadiene with an
unconnected fif th carbon are sl ightly different .
Similarly, say A follows that in Fig. 5 and not Fig. 4,
matrix A2. The eigenvalues of this method are shown in
Table 6. Notice the differences in the eigenvalues of
Tables 5 and 6 where the Aii values of each matrix A
used for each differ by just one order of magnitude. It,
therefore, follows that the method used in part one is not
an isolated incident.

Conclusion

The study shown can be used to differentiate between
varieties of isospectral compounds. Say we have i number
of isospectral compounds such that H0ψ0 = E0ψ0 …
Hiψi = Eiψi. The eigenvalues would be the same by con-
struction, but the number of neighboring carbons most
l ike ly would not . Therefore , i f one adds each
Hamiltonian by a matrix A such that Aii differs depending
on the number of neighboring carbons, it becomes possi-
ble to mathematically distinguish between pairs of
isospectral molecules, so long as the Hamiltonian matrices
remain distinct.
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Fig. 6 The three molecules of the second part of our study. (8)
Tetramethylenemethane (neopentane-1,1’,1”,1’”-tetrayl), (9)
cyclobutadiene with a fifth unconnected carbon, (10) cyclobutadiene
with the fifth carbon connected to each other carbon, where we have
labeled the carbons 1–5 on reflecting there are five carbon atoms in each
species

Table 4 Eigenvalue spectra for
the three molecules of the second
part of the study

Molecule Eigenvalues

Tetramethylenemethane (8) {2, 0, 0, 0,−2}
Cyclobutadiene with 5th unconnected carbon (9) {2, 0, 0, 0,−2}
Cyclobutadiene with 5th connected carbon (10 {3.2361, 0, 0,−1.2361,−2}

Table 5 New eigenvalue spectra
of the molecules of part two using
the variable value of A1

Molecule Eigenvalues

Tetramethylenemethane (8) {2.0251, 0.01, 0.01, 0.01,−1.9751}
Cyclobutadiene with 5th unconnected carbon (9) {2.02, 0.02, 0.02, 0.02,−1.98}
Cyclobutadiene with 5th connected carbon (10) {3.2688, 0.03, 0.03,−1.1988,−1.97}

Table 6 New eigenvalue spectra
of the molecules of part two using
the variable value of A2

Molecule Eigenvalues

Tetramethylenemethane (8) {2.2556, 0.1, 0.1, 0.1,−1.7556}
Cyclobutadiene with 5th unconnected carbon (9) {2.2, 0.2, 0.2, 0,−1.8}
Cyclobutadiene with 5th connected carbon (10) {3.5642, 0.3, 0.3,−0.8642,−1.7}
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