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Abstract
Toxoplasma gondii is an obligate intracellular protozoa that can infect a wide variety of warm-blooded animals and
humans. It was claimed that novel anti-Toxoplasma gondii agents were optimized as potential drug candidates, designed
and created as significant agents. In this work, molecular modeling studies, including CoMFA, CoMFA-RF, CoMSIA,
and HQSAR were performed on a set of 59 thiazolidin-4-one derivatives as anti-T. gondii agents. The statistical qualities
of generating models were justified by internal and external validation, i.e., cross-validated correlation coefficient (q2),
non-cross-validated correlation coefficient ( r2ncv ) and predicted correlation coefficient ( r2pred ), respectively. The CoMFA

(q2, 0.897; r2ncv, 0.933; r2pred , 0.938), CoMFA-RF (q2, 0.900; r2ncv, 0.935; r2pred , 0.998), CoMSIA (q2, 0.910; r2ncv, 0.950;

r2pred , 0.998), and HQSAR models (q2, 0.924; r2ncv, 0.953; r2pred , 0.995) for training and test set yielded significant

statistical results. Therefore, these QSAR models were excellent, robust, and had better predictive capability. Contour
maps of the QSAR models were generated and validated by molecular dynamics simulation-assisted molecular docking
study. The final QSAR models could be useful for the design and development of novel potent anti-T. gondii agents.
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Abbreviations
T. gondii Toxoplasma gondii
ROPs Rhoptry proteins
QSAR Quantitative structure-activity relationship
3D-QSAR Three-dimensional QSAR
CoMFA Comparative molecular field analysis
CoMFA-RF CoMFA region focusing
CoMSIA Comparative molecular similarity

index analysis
HQSAR Hologram QSAR
MD Molecular dynamics
AD Application domain.

Introduction

Toxoplasma gondii is an obligate intracellular coccidian
parasite of the phylum Apicomplexa that can infect any
nucleated cell of a very wide range of warm-blooded ver-
tebrates, including, carnivores, omnivores, and herbi-
vores, as well as humans throughout the world, causing
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toxoplasmosis [1, 2]. According to global investigation
estimated, approximately 30% of the human population
is chronically infected with toxoplasmosis specifically in
developing countries. T. gondii in different hosts such as
humans according to parasite strain and the immune status
of the host cause infection with a range from asymptom-
atic to severe manifestations, therefore toxoplasmosis in
immunocompetent persons is usually asymptomatic or as-
sociated with self-limited symptoms and rarely needs
treatment [3, 4], but in immunocompromised individuals
with primary or acquired deficiencies in T cell function
such as AIDS patients and patients undergoing therapies
for malignancies, transplants, or lymphoproliferative dis-
orders because of reactivation of a latent infection, it may
cause severe diseases ranging from encephalitis, myocar-
ditis, pneumonia, hepatitis, and severe ocular disease to
death [5]. Also in fetuses and children, congenital toxo-
plasmosis according to infected time of seronegative preg-
nant mothers may cause death of the fetus in the uterus or
disorders such as ocular and neurologic complications in
surviving infants [6]. Furthermore, T. gondii causes con-
siderable economic loss and damage to the livestock in-
dustry, mainly among food-producing animals. Therefore,
this protozoan has great importance in both public health
and livestock husbandry. Nevertheless, so far, fully effec-
tive, safe, and efficacious vaccine is not produced for
prevention of transmission and reducing serious compli-
cations of toxoplasmosis in humans and animals. The
therapy for this disease has not changed in recent years,
despite the tragic consequence of toxoplasmosis in
humans. The current treatment for toxoplasmosis is a
combination of antifolates (pyrimethamine and trimetho-
prim with a sulfonamide drug (sulfadiazine)) that display
numerous and serious side effects such as hypersensitivi-
ty, hematological toxicity, teratogenicity, and allergic re-
actions [7] (Fig. 1).

So, the discovery and development of less-toxic and
more-efficacious parasite-specific compounds becomes
crucial for blocking any stage of the parasite’s life cycle
in humans or in a different type of hosts [8]. Among the
heterocyclic systems, thiazolidine-4-one is a biologically
important scaffold for potential drugs and drug candidates
such as antiviral, antibacterial, antifungal, antihistamine,

and anti-inflammatory drugs. The thiazolidin-4-one ana-
logs present promising pharmacological properties not on-
ly for the treatment of T. gondii infections but also for its
high selectivity level with a high therapeutic index [9,
10].

The apical complex structure of T. gondii has served
essential functions in both invasions of its host cells by
attachment or penetration and in replication of the para-
site. This structure includes three important secretory or-
ganelles known as rhoptries, micronemes, and dense gran-
ules. Rhoptries are morphologically club shaped with an-
terior duct (neck) and the posterior bulb that contain a
conserved serine/threonine protein kinase domain and ap-
proximately constitute 1–30% of the total Toxoplasma cell
volume. The rhoptry proteins (ROPs) have an important
role in the multiple stages of the T. gondii invasion and
also critical for survival within host cells (e.g., family
ROP2, ROP4, ROP7, and ROP8) [11]. ROP8 is consid-
ered a type I transmembrane and has a conserved serine/
threonine (S/T) kinase domain and contain in its cytoplas-
mic tails both tyrosine-based and dileucine-sorting sig-
nals. This protein expressed in the bradyzoites and
tachyzoites stages of T. gondii, therefore, is a main factor
of T. gondii acute virulence and has a key role in the
parasitophorous vacuole (PV) formation [12].

Quantitative structure-activity relationship (QSAR) is a
technique that is used in computer-assisted rational drug
design and predicts the protein-ligand interaction and to
explore the correlation between biological activity and
molecular structure [13–15]. Three-dimensional QSAR
(3D-QSAR) is a broad term encompassing all those
QSAR methods which are utilized to calculate the highly
specific interactions and a molecule, how far and with
how much power can be connected to the active site of
an enzyme or protein [16, 17]. Recently, comparative mo-
lecular field analysis (CoMFA), CoMFA region focusing
(CoMFA-RF), comparative molecular similarity index
analysis (CoMSIA), and hologram QSAR (HQSAR) are
especially effective methods of QSAR based on statistical
techniques [18–23].

In the present study, we performed a molecular
modeling study by combining 2D- and 3D-QSAR, mo-
lecular docking, and molecular dynamics (MD) simula-
tion techniques. 2D-QSAR, using HQSAR method, and
3D-QSAR, using CoMFA, CoMFA-RF, and CoMSIA
methods, were used to identify the key structural factors
influencing inhibitory activity. Molecular docking was
used to identify some key amino acid residues at the
active site of ROP8 protein and investigate the binding
modes between ROP8 and the selected inhibitors. MD
simulations were employed to determine the detailed
interactions in ROP8 protein and validate the rationality
of docking results. The obtained results can apply to theFig. 1 DHFR inhibitors in the clinic for T. gondii infections
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further structural modification, design and develop new
and more potent anti-toxoplasma drugs.

Materials and methods

Data set

QSAR studies were performed on a set of 59 thiazolidin-4-one
derivatives as a new class of anti-T. gondii agents with their
biological activities (IC50 values) that are recently reported by
Tenorio, de Aquino, Carvalho, Liesen, and Carradori groups
[9, 24–27].

These activity values (IC50 in μM) were converted to cor-
responding pIC50 (−log IC50) values and used as a dependent
variable in CoMFA, CoMFA-RF, CoMSIA, and HQSAR
models. The data set was randomly divided into a training
set (44 compounds, 75%) for QSAR model generation and a

test set (15 compounds, 25%) for external validation of the
models (Fig. 2).

Molecular modeling and alignment

The QSAR models including CoMFA, CoMFA-RF,
CoMSIA, and HQSAR were performed using the SYBYL-
X 1.2. molecular modeling software (Tripos, Inc., St. Louis,
MO). Before modeling with these primary methods, the 3D
structures of compounds were drawn using Chemoffice Bio
3D Ultra (version 12.0, Cambridge Soft Corporation,
Cambridge, UK, 2010). All the compounds were energy min-
imized using the standard molecular mechanics force field
with a distance dependent dielectric and the Powell conjugate
gradient algorithm with a convergence criterion of 0.05 kcal/
molÅ using the maximum iteration set to 5000 [28]. Partial
atomic charges of the compounds for electrostatic interactions
were calculated by the Gasteiger-Hückel method. Structure
alignment was one of the most important input variables in
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Fig. 2 Distribution of
experimental inhibitory activities
(pIC50) for the training and test
sets compounds in the QSAR
models
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Fig. 3 Compound 56 used as the
template molecule for database
alignment and common
substructure in distill alignment
shown in the bold red (a) and
aligned compounds in the training
and test sets (b)
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3D-QSAR analysis, and the accuracy of the prediction power
of the models was reliability dependent on contour maps ac-
cording to the structural alignment of the molecules. In this
study, rigid body alignment of molecules in a Mol2 database
was performed using maximum common substructures de-
fined by Distill alignment. Compound 56was selected as tem-
plate because the most active compound of the data set and
other compounds were aligned according to the common
structure. The structure of compound 56 with bold red com-
mon substructure and final super imposition of compounds are
shown in Fig. 3a, b.

CoMFA and CoMSIA analysis

The CoMFA model (by Cramer et al.) describes the molecular
properties by steric (Lennard-Jones) and electrostatic
(Coulomb) energy fields of important regions of a set of
aligned compounds that predict their biological activity over
a lattice of point [29–31]. In CoMFA-RF model, steric and
electrostatic fields are calculated for aligned fragments by cre-
ating specific grid space at the specific lattice points [32]. In
CoMFA method, the aligned molecules in optimal orientation
were located in a 3D cubic lattice with grid spacing of 2 Å in
the x, y, and z direction which extended 4.0 Å around the align
molecules in all Cartesian directions. The CoMFA steric and
electrostatic fields were calculated for each molecule using a
hybridized sp3 carbon probe atom with a Vander Waals radius
of 1.52 Å and a charge of + 1.0. The Coulomb and Lennard-
Jones potential functions were used to estimate the electrostatic
and steric interactions, respectively. The energy cutoff values
for both steric and electrostatic fields were set at 30 kcal/mol.
In order to reduce noise and improve efficiency, column filter-
ing was tested in the range of 0.0 to 2.0 kcal/mol and a thresh-
old column filtering value of 2.0 kcal/mol. CoMFA-RF in the
“Advanced CoMFA” module is a technique of application of
weight to the lattice point in a CoMFA region to increase or
decrease the contribution of these points to subsequent analy-
sis. “StDev*Coefficients” values as different weighting factors
were employed in addition to grid spacing for getting the better
models. This increases the resolution and predictive capability
(q2, cross-validated r2) of a followed partial least squares (PLS)
analysis [33].

In the CoMSIA model, proposed by Klebe et al., a probe
atom is used to calculate similarity indices, at regularly placed
grid points for the aligned molecules. Compared with
CoMFA, CoMSIA uses a Gaussian-type distance-dependent
function to assess five fields of different physicochemical
properties (i.e., steric, electrostatic, hydrophobic, hydrogen-
binding donor, and acceptor [34, 35]. Also, CoMSIA is dif-
ferentiated by distance-related Gaussian functions and no ar-
bitrary definitions of cut off limits should be used.

The CoMSIA method calculates the similarity indices de-
scriptors with the same lattice box used in CoMFA. Five

physicochemical properties of steric, electrostatic, hydropho-
bic, hydrogen-binding donor, and acceptor fields were evalu-
ated using a probe atom with to charge + 1.0, radius 1 Å,
hydrophobicity + 1.0, hydrogen-binding donor + 1.0,
hydrogen-binding acceptor + 1.0, attenuation factor α of 0.3
and grid spacing 2.0 Å. A distance-dependent Gaussian type
was used between the probe atom and each molecule atom
[28, 36]. In these models, all regression analyses performed
in two steps using the PLS method [37–42].

HQSAR analysis

Hologram QSAR study is a 2D-QSAR technique which
provides certainty to the relationship between the bio-
logical activity with the structural fragments which em-
ploys the fragment fingerprints of molecular holograms
and other molecular descriptors to predict the biological
activity of a series of molecules [43–45]. Hologram
QSAR study is a 2D-QSAR technique which certain
the relationship between the biological activity with
the structural fragments. This method eliminates the
need for 3D structure, the ability to achieve molecular
alignment and conformational specification [46, 47] by
transforming the chemical representation of a molecule
into its corresponding molecular hologram. 2D chemical
database storage and searching technologies rely on lin-
ear notations that define chemical structures (Wiswesser
line-formula notation (WLN), simplified molecular input
line entry system (SMILES); SLN-SYBYL line nota-
tion). The process involves the generation of fragments
that are hashed into the array called molecular holo-
gram, and bin occupancies are the descriptor variable
[46, 48].

The HQSAR method employs different parameters for the
molecular hologram generation, such as hologram length
(HL) values (53, 59, 61, 72, 83, 97, 151, 199, 257, 307, 353,
and 401), a fragment distinction (atom (A), bonds (B), con-
nections (C), hydrogen atoms (H), chirality (Ch), and donor
and acceptor (DA), and the fragment size (2–5, 3–6, 4–7, 5–8,
6–9, 7–10).

Partial Least-Square analysis

In 3D-QSAR studies, PLS method [19, 49] which is an exten-
sion of multiple regression analysis was used for the model
building. Calculated CoMFA and CoMSIA descriptors as in-
dependent variables were used with the pIC50 values as de-
pendent variables in the PLS regression analysis, respectively.
Before the PLS analysis, the CoMFA and CoMSIA columns
were filtered by using column-filtering value equal to 2.0 kcal/
mol. The predictive ability of the models was evaluated by
leave-one-out (LOO) and leave-ten-out (L-10-O) methods.
LOO cross-validation method was used as an internal
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validation to determine the number of components that yields
an optimal predictive model. A component is a linear combi-
nation of the explanatory, independent column data. Unlike
the independent explanatory variables themselves, the compo-
nents are mutually orthogonal to one another. This number of
components can only be as large as the number of degrees of
freedom in the dataset. The optimal setting for un-cross-
validated analyses is generally determined by preliminary
cross-validated runs. The default setting of 6 is a reasonable
place to start for cross-validation analyses.

The optimal number of principal components (ONC) was
obtained by applying leave-one-out cross-validation, which
was then utilized to derive the final QSAR models. The opti-
mal number of components corresponds to one that produces
the lowest standard error of prediction (SEP) and the highest
cross-validated coefficient q2 (r2cv ) that was calculated by Eq.
(1):

q2 ¼ 1−
∑∞

n¼1 byi−yi� �2

∑∞
n¼1 yi−y

� �2 ð1Þ

whereas, byi and yi are predicted, observed activity values, and
y and ŷ are observed and predicted mean activity values of the

training set, respectively [50]. The ∑∞
n¼1 byi−yið Þ2 is the predic-

tive residual sum of squares (PRESS).
After cross-validation, the final PLS analysis was carried

out using the optimal number of components with no vali-
dation to generate the final QSAR model. The non-cross-
validated analysis performed by the conventional correla-
tion coefficient r2(r2ncv ) (Eq. (2)), standard error of estima-
tion (SEE) and F values calculated with the same column
filtering set. High q2 and r2 (q2 > 0.5, r2 > 0.6) values are
regarded as a proof of high predictive ability of the built
model and also r2 − q2 for a good model should not be more
than 0.3 [51].

r2 ¼
∑ yi−yi
� � byi−ŷ� �h i2

∑ yi−yi
� �2

� ∑ byi−ŷ� �2 ð2Þ

Bootstrapping analysis was performed for 100 runs to as-
sess the statistical confidence of the derived models [29, 49,
52, 53]. Contour maps were generated graphically after
models were developed in CoMFA/CoMFA-RF and
CoMSIA using the field type “StDev*Coeff”, and the contour
levels were set to default values.

In HQSAR, LOO cross-validation was applied to deter-
mine the number of components that yields a good predictive
model. PLS then yields a mathematical equation that related
the molecular hologram bin values to the inhibitiory activity
of the compounds in the database.

Validation of the QSAR model

A good internal validation showed only a high q2 in the training
set of compounds, but it did not indicate the high predictive
ability of the established models, therefore external validation
was essential. The predictive ability of 3D-QSAR models was
validated by calculating biological activities of the compounds
which were not included in the training set and used as a test set.
Test set was marked with an asterisk in Table 1.

The predictive correlation coefficient r2pred (r2pred > 0:6 )

[54], based on the test set, was calculated using Eq. (3):

r2pred ¼
SD−PRESS

SD

� �
ð3Þ

SD is the sum of squared deviation between the biological
activities of the test set molecules and the mean activity of the
training set molecules. PRESS is the sum of squared deriva-
tions between the predicted and actual activities of the test set
molecules.

The performance of the regression models constructed here
was evaluated using the root mean squared error (RMSE),
mean absolute error (MAE) (RMSE and MAE close to zero),
residual sum of squares (RSS), and concordance correlation
coefficient (CCC; CCC ≥ 0.85) of the training and validation
sets [55]. The RMSE and the MAE are calculated for the data
set as Eqs. (4)–(7):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi−byi� �2

n

vuut
ð4Þ

MAE ¼
∑n

i¼1 yi−byi��� ���
n

ð5Þ

RSS ¼ ∑n
i¼1 yi−byi� �2

ð6Þ

CCC ¼
2∑n

i¼1 yi−y
� � byi−ŷ� �

∑n
i¼1 yi−y

� �2
þ ∑n

i¼1 byi−ŷ� �2
þ n y−ŷ

� �2 ð7Þ

To obtain the best predictive model for the test set, addi-
tional validation of model, the following parameters [54] were
used (Eq. (8)):

r2−r2o
� 	

r2
< 0:1 or

r2−r02o
� 	

r2
< 0:1

0:85≤k≤1:15 or 0:85≤k 0≤1:15
ð8Þ

r20 and r
02
0 are squared correlation coefficients of determi-

nation for regression lines through the origin between predict-
ed (y) and observed (x) activities and vice versa. The values of
k and k′ are the slopes of their models, respectively.
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Table 1 Chemical structure and the corresponding experimental and predicted pIC50 values by QSAR models

Predicted pIC50

Compd R1, R , R2 3

Experimental 

pIC50

CoMFA
CoMFA-

RF
CoMSIA HQSAR

1 3.699 3.455 3.628 3.433 3.526

2 3.301 3.445 3.623 3.426 3.447

3* 3.155 3.328 3.210 3.016 3.199

4 3.301 3.420 3.597 3.422 3.389

5* 3.301 3.124 3.249 3.571 3.328

6 3.341 3.527 3.676 3.521 3.364

5* 3.301 3.124 3.249 3.571 3.328

6 3.341 3.527 3.676 3.521 3.364
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Table 1 (continued)

7* 3.00 2.906 3.127 3.15 .438

8 3.301 3.154 3.094 3.11 .080

9 3.00 3.123 3.083 3.079 3.036

10* 2.699 3.070 3.111 2.817 2.927

11 3.311 3.171 3.113 3.145 3.079

12 3.00 3.180 3.126 3.12 .191

13* 4.301 4.182 4.112 4.21

3 3

3 3

0 3

3 4.593
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Table 1 (continued)

14 3.00 3.100 3.068 3.053 3.226

15* 4.301 4.123 4.091 4.265 4.501

16 3.00 3.128 3.077 3.074 3.037

17* 4.301 4.171 4.111 4.247 4.204

18 3.00 3.138 3.141 3.103 2.956

19 3.301 3.137 3.089 3.141 3.210
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Table 1 (continued)

20 3.341 3.145 3.108 3.147 3.254

21 3.301 3.167 3.125 3.120 3.294

22
*

4.00 4.136 4.097 4.233 4.225

23 3.371 3.070 2.991 3.182 3.210

24* 2.894 3.085 3.124 3.063 3.024

25 2.824 3.051 2.979 3.134 3.024
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Table 1 (continued)

26* 4.00 4.062 3.983 4.163 4.398

27 4.699 4.479 4.539 4.543 4.558

28* 4.432 4.119 4.269 4.320 4.304

29 4.824 5.034 4.953 4.916 5.010

30 4.357 4.50 4.574 4.525 4.409

31 4.284 4.092 4.10 4.184 4.149
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Table 1 (continued)

32 4.620 5.001 4.917 4.728 4.813

33 4.495 4.457 4.531 4.524 4.373

34 3.830 4.136 4.163 4.20 4.113

35* 4.137 4.004 4.228 4.189 4.207

36 4.620 4.487 4.562 4.544 4.581
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Table 1 (continued)

37 4.602 4.333 4.229 4.289 4.321

38 4.770 5.004 4.921 4.993 5.018

39 4.745 4.481 4.559 4.556 4.595

40 4.347 4.319 4.296 4.298 4.335

41 5.097 5.014 4.925 5.001 5.032
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Table 1 (continued)

42 4.538 4.460 4.552 4.528 4.587

43 4.143 4.296 4.285 4.270 4.327

44* 5.22 5.112 5.122 5.10 5.014

45 4.409 4.456 4.521 4.542 4.489

46 4.469 4.308 4.275 4.288 4.228
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Table 1 (continued)

47 5.046 5.033 4.946 5.003 4.925

48 4.721 4.483 4.562 4.554 4.538

49 4.292 4.314 4.295 4.298 4.278

50 5.097 5.029 4.929 5.027 4.975

51 4.292 4.474 4.561 4.522 4.484
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Table 1 (continued)

52 4.092 4.229 4.288 4.266 4.224

53 5.00 5.023 4.925 5.025 4.92

54 4.443 4.461 4.555 4.535 4.717

55 4.456 4.288 4.273 4.276 4.456

56 5.301 4.946 4.819 5.087 5.153
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To further assess the models, another validation statistical

parameter r2m andΔr2m were determined by Eqs. (9) and (10):

r2m ¼ r2 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−r2o
�� ��q� �

ð9Þ

Δr2m ¼ r2m −r
02
m

�� �� ð10Þ

r2m value more than 0.5 (r2m > 0:5 ) and Δr2m < 0:2 show
good external predictability of the models.

Molecular docking study

Molecular docking as one of the most frequent methods in drug
design was used to investigate the mode of interaction of small

molecules with the appropriate target binding sites. The docking
study was performed using Operation Environment (MOE) soft-
ware (www.chemcomp.com) between the most and least active
compounds with TgROP8 protein. For the preparation of ligands
prior to docking, the 2D structures of ligands were prepared by
Chemoffice ultra (version 12.0, Cambridge Soft Corporation,
Cambridge, UK, 2010) and converted to 3D format by Hyper
Chem7 (Hyper cube Inc., USA) using AM1 semi-empirical
method. The ligands in our data set were docked in the active
site of TgROP8 (PDB ID: 3byv) byMOE software. The docking
was performed by the triangle matcher placement algorithm in
combination with London dG scoring function and force field as
refinement method, and the conformation of compounds were
further analyzed by LigX module in MOE software. The best
docking pose of compound 56 was chosen for MD simulation.

Table 1 (continued)

*Test set

57* 4.056 4.216 4.108 4.125 3.964

58 4.108 4.306 4.285 4.191 3.990

59* 4.086 4.306 4.228 4.127 4.192
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Molecular dynamics simulation

The MD simulations, based on Newton’s second law or the
equation of motion, were performed to investigate the interac-
tion between the receptor and ligand in atomic details using
the dynamics module of SYBYL [56]. The compound 56was
used as the template molecule to elucidate the MD simula-
tions. Energy minimization of the docked ligand was per-
formed in the Tripos force field and Gasteiger-Huckel charge
without water using Boltzmann initial velocity.

The simulations were executed using normal temperature
and volume (NTV) ensemble 300 K with coupling 100 fs.
The MD simulations were performed with a time step of 2 for
10,000 fs and conformation snapshot at every 100 fs to calculate
RMSD, Rg and potential energy values and recorded as a plot.

Results and discussion

CoMFA and CoMFA-RF statistical results

The statistical results of CoMFA and CoMFA-RF models are
summarized in Table 2. The CoMFA analysis was carried out
with steric and electrostatic fields at column filtering of
2.0 kcal/mol.

PLS analysis of CoMFA for the training set including
leave-one-out (LOO) and leave-ten-out (L-10-O) cross-

validation with ONC 3 showed q2 value of 0.897, r2cv (L-10-
O) value of 0.892, and SEP of 0.242. These statistical results
showed that the model had a better predictive capability.

The non-cross-validated PLS analysis gave a r2ncv of
0.933 with SEE of 0.191, F value of 194.977, r2 − q2 of
0.036, and Rpearson of 0.932 which supported the statis-
tical validity of the development model. The contribu-
tions from steric and electrostatic field descriptors ex-
plained 0.709 and 0.291 of the total variance, respec-
tively, that indicated steric effect was more important
than the electrostatic fraction.

After using region focusing, a new model of CoMFA-RF
with improvement in the statistical parameters was created.
The cross-validation and non-cross-validated PLS calculation
results were found better in CoMFA-RF as, compared with
CoMFA. This approach showed an increase in the q2 value
from 0.897 to 0.900 with ONC of 2 and r2cv (L-10-O) from
0.892 to 0.902 and SEP of 0.236. The non-cross-validated PLS
analysis resulted in high r2ncv value of 0.935with a lowSEE value
of 0.174, F value of 242.439, r2 − q2 value of 0.035, and Rpearson
value of 0.940. The contribution of steric and electrostatic field
descriptors was 0.730 and 0.270, respectively in CoMFA-RF.

The bootstrapped results were shown in r2bs and SEEbs

values of 0.984 and 0.005 (CoMFA) and 0.980 and 0.006
(CoMFA-RF), respectively, suggesting a good internal consis-
tency and the absence of systematic errors of the models with-
in the training data set.

Table 2 Statistical parameters of QSAR models

Parameters CoMFA CoMFA-
RF

CoMSIA HQSAR

PLS analysis
q2 0.897 0.900 0.910 0.924
r2cv (L-10-O) 0.892 0.902 0.912 0.896
ONC 3 2 3 4
SEP 0.242 0.236 0.226 0.210
r2ncv 0.933 0.935 0.950 0.953
SEE 0.191 0.174 0.169 0.162
Rpearson 0.932 0.940 0.951 0.954
F 194.977 242.439 252.617 226.360
r2bs 0.984 0.980 0.981 0.982
SEEbs 0.005 0.006 0.006 0.006
Contribution
Steric 0.709 0.730 0.143 –
Electrostatic 0.291 0.270 0.170 –
Hydrophobic – – 0.206 –
Donor – – 0.356 –
Acceptor – – 0.126 –
Steric (VIF) 1.287 1.477 1.746 –
Electrostatic (VIF) 1.287 1.477 2.971 –
Hydrophobic (VIF) – – 3.483 –
Donor (VIF) – – 1.465 –
Acceptor (VIF) – – 2.374 –

q2 , cross-validated correlation coefficient after the leave-one-out procedure; ONC, optimal number of principal components; r2ncv, non-cross-validated correla-
tion coefficient; SEE: standard error of estimate;F, the value of F statistic; r2bs, the average r

2 value from a bootstrapping analysis for 100 runs; SEEbs, the
average SEE value from a bootstrapping analysis for 100 runs; r2cv, (mean) the average rcv from ten times tenfold cross-validation
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CoMSIA statistical results

The CoMSIA technique deals with direct correlation of ligand
affinities to changes in molecular properties [30]. The
CoMSIA model was generated using combinations of five
steric (S), electrostatic (E), hydrophobic (H), hydrogen-
binding acceptor (A), and hydrogen-bonding donor (D) fields.
The statistical parameters of CoMSIA model are summarized
in Table 2. In PLS analysis, the q2 value of 0.910 with ONC of
3, SEP of 0.226, and r2cv (L-10-O) of 0.912 was obtained with
column filtering of 2.0 kcal/mol. The non-cross-validated PLS
analysis gave a r2ncv value of 0.950 with SEE value of 0.169, F
value of 252.617, r2 − q2 value of 0.040, and Rpearson value of
0.951.

A high bootstrapped r2 value of 0.981 and SEEbs of 0.006
suggests a high degree of confidence in the analysis. For
CoMSIA, the contribution of the steric, electrostatic, hydro-
phobic, hydrogen bond donor and hydrogen bond acceptor
field descriptors were 0.143, 0.170, 0.206, 0.356, and 0.126,
respectively. These molecular fields were not completely in-
dependent of each other and could form 31 combinations
(Fig.4).

Among the first five models, acceptor field with a high
q2 value (q2 = 0.910) was more important than the other
four fields. In CoMSIA model, combination of steric, hy-
drophobic, and hydrogen bond acceptor (SHA) was found
to be the best. CoMSIA (SHA) combination gave q2 value
of 0.932, r2ncv of 0.951, r

2
cv of 0.923, and r2bs of 0.982. In the

model CoMSIA, this combination shared the large part and
indicated that internal prediction of SHA combination was
good.

According to the results of the CoMFA and CoMSIA
models, the steric field and the steric, hydrophobic and hydro-
gen bond acceptor contributions, respectively shared the large
part. Also, docking study show that the steric, hydrophobic
and H-bond effects around the key residues of the active site

performed a significant role in the binding of ligand to
TgROP8. It was indicated that the hydrophobic and steric
properties were effective in the design of new T. gondii agents.

HQSAR statistical results

The HQSAR is a technique for QSAR analysis that is
useful in exploring the combination of each molecule
under study to the biological activity and eliminates
the need of alignment, generation of 3D structures and
putative binding conformation. The performance of the
HQSAR model was affected by three parameters, in-
cluding the fragment size, the fragment type (fragment
distinction), and hologram length. The HQSAR models
with statistical parameters are shown in Table 2.

The best statistical results of HQSARmodel were obtained
with q2 value of 0.924, ONC of 4, SEP of 0.210, and r2cv
(L-10-O) of 0.896, r2ncv of 0.953 with SEE of 0.162, F value

of 226.360, r2 − q2 of 0.029, r2bs of 0.982 with SEEbs of 0.006,
and Rpearson of 0.954 using a relevant hologram length (HL) of
151, fragment distinction (atom (A) and bond (B)), and the
fragment size of 4–7 (Tables 3 and 4). All the results demon-
strated that the HQSAR model was also highly predictive.

Validation of QSAR models

The predictive abilities of the QSAR models were externally
validated using the independent test set that was not used for
the model generation [50]. q2 and r2 parameters, obtained from
internal validation, were used for confirming the stability and the
predictive ability of themodels. TheQSARmodels for thewhole
test set including 15 compounds gave the r2pred and r

2
m values of

0.938 and 0.771 (CoMFA), 0.988 and 0.725 (CoMFA-RF),
0.998 and 0.870 (CoMSIA), and 0.995 and 0.763 (HQSAR)
and high slope regression lines with k and k′ values of 0.995
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and 1.002 (CoMFA), 1.000 and 0.997 (CoMFA-RF), 1.009 and

0.989, and 1.018 and 0.991 (HQSAR), respectively. r2o and r
02
o

values of 0.909 and 0.931 (CoMFA), 0.895 and 0.925 (CoMFA-
RF), 0.952 and 0.961 (CoMSIA), and 0.897 and 0.839
(HQSAR), respectively, were used to calculate the relationship

between r2, r2o, and r
02
o that (r2− r2oÞ=r2 and (r2− r02o )/r2 values

of 0.035 and 0.012 (CoMFA), 0.060 and 0.025 (CoMFA-RF),
0.016 and 0.006 (CoMSIA), and 0.034 and 0.001 (HQSAR),
respectively were obtained.

Table 5 Statistical parameters of validation method for QSAR models

Parameters CoMFA CoMFA-
RF

CoMSIA HQSAR

r2pred 0.938 0.998 0.998 0.995

r2o 0.909 0.895 0.952 0.897

r
02
o 0.931 0.928 0.961 0.839

r2−r2o
� 	

=r2 0.035 0.060 0.016 0.034

r2−r02o
� 	

=r2 0.012 0.025 0.006 0.001

k 0.995 1.000 1.009 1.018

k′ 1.002 0.997 0.989 0.991

r2m 0.771 0.725 0.870 0.763

r
02
m 0.843 0.805 0.892 0.813

Δr2m 0.072 0.080 0.022 0.05

RMSEtrain 0.157 0.177 0.140 0.133

RMSEtest 0.089 0.091 0.157 0.136

MAEtrain 0.119 0.132 0.111 0.098

MAEtest 0.040 0.038 0.032 0.056

RSStrain 1.454 1.859 1.161 1.046

RSStest 0.465 0.487 1.455 1.100

CCCtrain 0.967 0.888 0.951 0.976

CCCtest 0.961 0.955 0.968 0.904

r2pred , predicted correlation coefficient for the test set of compounds;

r2 : correlation coefficient for regression through the origin for predicted
vs. observed activities (Test set); r

02
o : correlation coefficient for regression

through origin for observed versus predicted activities (Test set); (r_m2 ):
modified squared correlation coefficient (test set); RMSE: root mean
squared error; MAE: mean absolute error ; RSS: residual sum of squares;
CCC: concordance correlation coefficient.

Table 4 Statistical results of QSARmodel using the model 1–2 (includ-
ing fragments A/B) with different fragment sizes

Model Fragment size q2 SEP r2 SEE HL N

2–1 1–4 0.899 0.246 0.946 0.180 53 5

2–2 2–5 0.900 0.245 0.949 0.174 59 5

2–3 3–6 0.914 0.221 0.948 0.172 353 3

2–4 4–7 0.924 0.210 0.953 0.162 151 4

2–5 5–8 0.917 0.220 0.951 0.169 353 4

2–6 6–9 0.900 0.241 0.943 0.182 307 4

2–7 7–10 0.900 0.241 0.950 0.171 353 4

2–8 8–11 0.901 0.243 0.957 0.160 53 5

2–9 9–12 0.890 0.257 0.958 0.159 151 5

The model chosen for analysis is set in italics

q2 , cross-validated correlation coefficient; r2 , non-cross-validated corre-
lation coefficient; SEE, standard estimated error;HL, hologram length;N,
optimal number of components. Fragment distinction: A, atom; B, bond;
C, connections; H, hydrogen atom; Ch, chirality; D, donor and acceptor

Table 3 HQSAR analysis for various fragment distinctions on the key
statistical parameters using fragment size (4–7)

Model Fragment distinction q2 SEP r2 SEE HL N

1–1 A 0.894 0.249 0.944 0.180 53 4

1–2 A/B 0.924 0.210 0.953 0.162 151 4

1–3 A/C 0.909 0.231 0.957 0.159 71 4

1–4 A/H 0.917 0.223 0.955 0.164 401 5

1–5 A/Ch 0.912 0.226 0.954 0.164 401 4

1–6 A/DA 0.825 0.328 0.944 0.185 53 6

1–7 A/B/C 0.907 0.238 0.959 0.159 59 6

1–8 A/B/H 0.910 0.230 0.944 0.181 307 4

1–9 A/B/Ch 0.922 0.211 0.953 0.164 307 3

1–10 A/B/DA 0.884 0.263 0.953 0.168 71 5

1–11 A/C/H 0.913 0.226 0.947 0.175 151 4

1–12 A/C/Ch 0.904 0.237 0.948 0.175 97 4

1–13 A/C/DA 0.873 0.275 0.954 0.166 61 5

1–14 A/H/Ch 0.918 0.225 0.960 0.156 257 46

1–15 A/H/DA 0.882 0.262 0.935 0.195 71 4

1–16 A/Ch/DA 0.845 0.304 0.943 0.185 151 5

1–17 A/B/C/H 0.913 0.231 0.961 0.155 307 6

1–18 A/B/C/Ch 0.901 0.240 0.956 0.159 199 4

1–19 A/B/C/DA 0.886 0.262 0.955 0.163 97 5

1–20 A/B/H/Ch 0.914 0.226 0.954 0.166 307 5

1–21 A /B/H/DA 0.905 0.235 0.952 0.167 151 4

1–22 A/B/Ch/DA 0.901 0.247 0.957 0.163 71 6

1–23 A/C/H/Ch 0.922 0.217 0.958 0.158 151 5

1–24 A/H/Ch/DA 0.872 0.273 0.939 0.188 97 4

1–25 A/C/H/DA 0.900 0.241 0.948 0.174 151 4

1–26 A/C/H/Ch/DA 0.908 0.231 0.950 0.171 199 4

1–27 A/B/H/Ch/DA 0.911 0.231 0.957 0.161 97 5

1–28 A/B/C/Ch/DA 0.907 0.233 0.951 0.168 97 4

1–29 A/B/C/H/DA 0.911 0.231 0.957 0.161 97 5

1–30 A/B/C/H/Ch 0.914 0.229 0.961 0.155 307 6

1–31 A/B/C/H/Ch/DA 0.902 0.239 0.950 0.170 97 4

The model chosen for analysis is set in italics

q2 , cross-validated correlation coefficient; r2 , non-cross-validated corre-
lation coefficient; SEE, standard estimated error;HL, hologram length;N,
optimal number of components. Fragment distinction: A, atom; B, bond;
C, connections; H, hydrogen atom; Ch, chirality; D, donor and acceptor
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The QSAR models yielded RMSE, MAE and CCC values
of 0.157, 0.119, 0.967; 0.089, 0.040, and 0.961 (CoMFA);
0.177, 0.132, 0.888; 0.091, 0.038, and 0.955 (CoMFA-RF);
0.140, 0.111, and 0.951; 0.157, 0.032, and 0.968 (CoMSIA);
and 0.133, 0.098, 0.976; 0.136, 0.056, and 0.904 (HQSAR)
for training and test set, respectively.

From the values of the performance criteria parameters
yielded by the QSAR models in training and test data
(Table 5), it is evident that all of the models yielded consider-
ably low RMSE andMAE values and high CCC values which
show that models built by training set could be used for the
prediction of these chemo types.

The results of external validation parameters are listed in
Table 5. These results confirm that the QSARmodels could be
used to predict the biological activities of new compounds and
their derivatives.

The correlation plots between the predicted and experimen-
tal activities. Most of the compounds were located on or near
to the trend line in the QSAR models, and these results con-
firm that these models had good predictive ability for new
compounds.

The residual values of the QSAR models. The CoMSIA
and HQSAR models showed smaller residuals than the
CoMFA and CoMFA-RF models and were the better models
are shown in Fig. 5 and Fig. 6.

Evaluation of the Y-randomization test, variance
inflation factor, and application domain of model

The QSAR models were further validated by applying the Y-
randomization test to assess the robustness of the models and
to avoid chance correlation [57, 58]. Thus, for every original
model, several random shuffles of the dependent variable (bi-
ological activity) were performed and a new QSAR model
was developed using the original independent variable matrix
and the results are shown in Table 6. The low q2 and r2ncv
values (q2 < 0.5 and r2ncv < 0:6 ) show that the good results
obtained in the formulation of the final models were not by
chance.

In addition to Y-randomization tests, multi-collinearity of
the descriptors and the models were detected by calculating
the variance inflation factor (VIF), which can be calculated as
follows:

VIF ¼ 1

1−r2

where r2 is the correlation coefficient of the multiple regres-
sion between the variables within the model. If VIF equals to
1, then no inter-correlation exists for each variable; if VIF falls
into the range of 1–5, the related model is acceptable; and if
VIF is larger than 10, the related model is unstable and a

Fig. 5 The plot of predicted pIC50 vs. experimental pIC50 values for training and test sets compounds by QSAR models
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recheck is necessary [59, 60]. The corresponding VIF values
of the seven descriptors were showed in Table 2. As can be

seen from this table, all the variables have VIF values of less
than five, indicating that the obtained model has statistical
significance, and the descriptors were found to be reasonably
orthogonal and model is said to be stably acceptable.

For a new compound with no experimental data, a predict-
ed value of QSAR models without an idea of reliability of the
value is not useful. Therefore, for evaluating new compounds,
a very important step in QSAR model development is the
definition of the applicability domain of regression or classi-
fication models [33].

TheWilliams plot, the plot of the standardized residuals (δ)
vs. leverage values (hi), was used to illustrate the predictive
and express the applicability domain of the models for each
chemical compound [61, 62].

The standardized residuals (δ) value is calculated by Eq.
(11) [63]:

δ ¼ yi−byiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1

yi−byi� �2

n−A−1ð Þ

vuut
ð11Þ

where yi and byi are the observed and predicted values for ith
compound, respectively, n is the number of compounds, and A
is the number of descriptors. Also, the leverage value (hi) is
defined by Eq. (12):

hi ¼ XT
i X TX
� 	−1

xi i ¼ 1; :::; nð Þ ð12Þ

where xi is the descriptor-row vector of the ith compound, XT
i

is the transpose of xi, X is the descriptor matrix of the training

Fig. 6 Residual plots between experimental and predicted values for QSAR models

Table 6 q2 and r2ncv values after several Y-randomization tests

Y-random iteration CoMFA CoMSIA

q2 r2ncv q2 r2ncv

1 0.304 0.460 0.246 0.378

2 0.316 0.436 0.242 0.364

3 0.282 0.345 0.256 0.275

4 0.273 0.387 0.236 0.343

5 0.181 0.377 0.275 0.381

6 0.210 0.411 0.241 0.263

7 0.248 0.421 0.315 0.380

8 0.231 0.395 0.246 0.255

9 0.295 0.356 0.263 0.324

10 0.208 0.376 0.197 0.269

11 0.248 0.368 0.201 0.365

12 0.351 0.379 0.258 0.278

13 0.180 0.424 0.295 0.308

14 0.278 0.405 0.279 0.313

15 0.292 0.443 0.281 0.351

16 0.265 0.387 0.237 0.378

17 0.270 0.358 0.265 0.367

18 0.240 0.369 0.258 0.363

19 0.261 0.367 0.272 0.376

20 0.233 0.359 0.205 0.351

Non-random 0.897 0.9331 0.910 0.950
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set compounds, and XTis the transpose of X.
The warning leverage value (h*), as a prediction tool, is

expressed as:

h* ¼ 3 k þ 1ð Þ
n

where k is the number of model descriptors and n is the num-
ber of training compounds.
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The Williams plot illustrates the distribution of data and its
restricting rang termed cutoff lines which all data should be
between ± 3 units (horizontal dotted line) for standardized

residuals and the leverage value (hi) should be less than warn-
ing leverage (hi < h*). The Williams plot for the training set is
used to identify molecules with the greatest structural
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influence (hi < h*) in developing the QSAR models.
Molecules with hi > h* are evaluated to be unreliably predicted
by the models due to substantial extrapolation.

Cook’s distance is used to estimate the influence of a single
observation of the model [64] and is defined by Eq. (13):

Di ¼ e2i
pþ 1

*
hi

1−hi
ð13Þ

where e2i is the standard residual of the ith compound, p is the
number of descriptors, and hi is the leverage value of the ith
compound. The cutoff of the Cook’s distance is defined as

4
n−p−1ð Þ, and the compounds with Cook’s distance higher than

the cutoff value are marked as highly influential points of the
model.

In this work, for CoMFA, CoMFA-RF, and CoMSIA
models, most of the compounds fall into their corresponding
application domain. These results indicated that our QSAR
models had achieved a reliable activity prediction for the
compounds.

As shown in the Williams plot of CoMFA model for
the data set (Fig. 7a), two compounds (15 and 31) of
training set had greater value than the warning leverage
(h*) value of 0.206. These compounds had low standard
residual value and could be considered as influential in
fitting the model performance but not necessarily outlier
to be deleted from the training set. The test compounds
were within the applicability domain (AD), indicating that
their predicted activity values were reliable. Also, at the
Cook’s plot of CoMFA model (Fig. 7b); only, there were
highly influential two compounds for training and test set
that may slightly distort the regression. In addition, the
histogram of the residuals distribution was confirmed with
histogram plot as shown in Fig. 7c.

In the Williams plot of CoMFA-RF model for data set
(Fig. 8a), two compounds (58 and 31) of training set had
greater value than the warning leverage (h*) value of 0.206.
These compounds similar CoMFA model had low standard
residual value and could be considered influential in fitting
the model performance, but not necessarily outlier to be
deleted from the training set. The test compounds were
within the AD, indicating that their predicted activity
values were reliable. Also, at the Cook’s plot of CoMFA
model (Fig. 8b), there were highly influential four com-
pounds for training and test set. In addition, the histogram
of the residuals distribution was confirmed with histogram
plot as shown in Fig. 8c.

Also, at the Williams plot of CoMSIA model for data set
(Fig. 9a), there were two outlier compounds for training set
that could be regarded as structural outliers. Otherwise, ac-
cording to the Cook’s distances (cutoff = 0.0755) of the com-
pounds in the data set, three highly influential compounds
may distort the regression (Fig. 9b), also, the histogram of
the residual distribution was confirmed with histogram plot
as shown in Fig. 9c and prediction of CoMSIA model is
reliable.

Interpretation of CoMFA and CoMSIA contour maps

The QSAR contour maps were used as an informative tool to
visualize the effects of the different fields on the target com-
pound 3D grid orientation of the models. The CoMFA and
CoMSIA results were graphically interpreted by field contri-
bution maps using the standard deviation (StDev) at each grid
point and the coeff icient from the PLS analysis
(StDev*Coefficients).

Fig. 10 CoMFAStDev*coeff.
Contour plots with the
combination of compound 36. a
Steric contour maps: Green
contours indicate regions where
bulky groups increase activity and
yellow contours indicate regions
where bulky groups decrease
activity. b Electrostatic contour
maps: Blue contours indicate
regions where positive charges
increase activity and red contours
indicate regions where negative
charges increase activity
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The CoMFA contour maps of the steric and electrostatic
fields for the best anti-T. gondii agent (compound 56) are
shown in Fig. 10a, b. The field steric is shown by favorable
groups (80% contribution) in green color and unfavorable
ones (20% contribution) in yellow where the introduction of
bulky groups may enhance or diminish the activity.

In the CoMFA steric maps, there was a green contour
covering the naphthyl group at N-3 position of
thiazolidin-4-one scaffold. The bulky groups at this po-
sition of compound improved anti-T. gondii activity and
had the highest activity. Thiazolidin-4-ones substituted
on the nitrogen atom of the3-position with phenyl,
naphtyl groups such as the compounds 13, 15, and
27–59 exhibited more potency, while compounds 2–5
due to the absence of these groups had relatively low
activity. In addition, ferrocene group was substituted on
the moiety aryl hydrazone that is attached to the carbon
of the two positions of thiazolidin-4-one core with green
contour in compound 56 had the highest activity. The
compounds 1, 13, 15, 17, 22, and 30–59 with bulky
substituent’s (e.g., aryl, thiophenyl, and butyl) at this
region exhibited more potency.

Substituting the bulky groups at C-5 position of
thiazolidin-4-one core, substituents of aryl moiety at N-3 po-
sition of thiazolidin-4-one core and the ethylidene group of
hydrazone moiety decreased activity because these substitu-
ents were located at disfavored yellow contours. Therefore,
these positions of thiazolidin-4-one core should be occupied
by the steric moderate and low crowed substituents such as
acetic acid and halogen aryl groups (e.g., 13, 15, 17, 22, 26,
41, 44, 47, and 53).

In CoMFA electrostatic contour maps (Fig. 9b), the
blue region (80% contribution) are favorable for electro-
positive groups and red regions (20% contribution) is
favorable for electronegative groups. The blue contour
on the ferrocene group of compound 56 indicated the
introduction of electropositive groups in this position
could improve the biological activity. Besides, the red
contours in the S-1 and C-5 positions of thiazolidin-4-

one core and N-1of the moiety hydrazone showed that
the electronegative substituent was beneficial to activity
(compounds 25 < 24 < 23 < 26, 22 < 13, 15, 17).

In CoMSIA model, the steric and electrostatic, hydro-
phobic, hydrogen-bonding (H-bond) donor, and acceptor
contour maps of compound 56 are shown in Fig. 11.
The CoMSIA steric contours were nearly similar to that
of CoMFA contours, so the electrostatic, hydrophobic
interaction and hydrogen bond fields were described
here. The blue contours located at the N-3 position of
the thiazolidin-4-one core that increased anti-T. gonidii
activity (e.g. 5, 6, 23, 54, 55, and 56). The red contour
was observed close to ethylidene hydrazineylidene moi-
ety that the introduction of the electronegative groups
increased biological activity.

In the hydrophobic contour map, the yellow region is fa-
vorable (80% contribution) for the hydrophobic group while
white region (20% contribution) is favorable for the hydro-
philic group.

Fig. 12 The HQSAR contribution map of the most active compound
(56). The colors in yellow, blue, green-blue, or green indicate positive
contributions, while colors with red, red-orange, or orange represent
negative contributions and intermediate contributions are colored in white

�Fig. 11 CoMSIAStDev*Coeff contour plots with the combination of
compound 56. a Steric contour maps: green contours indicate regions
where bulky groups increase activity; yellow contours indicate regions
where bulky groups decrease activity; b electrostatic contour maps: blue
contours indicate regions where positive charges increase activity; red
contours indicate regions where negative charges increase activity. c
Hydrophobic contour maps: yellow contours indicate regions where
hydrophobic substituents enhance activity; white contours indicate
regions where hydrophobic groups decrease activity. d Hydrogen bond
donor contour maps: cyan contours indicate regions where H-bond donor
groups increase activity and purple contours indicate the unfavorable
regions for hydrogen bond donor substituents. eH-bond acceptor contour
maps: magenta contours indicate regions where H-bond acceptor substit-
uents increase activity; red contours indicate the disfavor regions for H-
bond acceptor groups
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The white regions near the N-3 posi t ion of
thiazolidin-4-one core and an aryl moiety of the ferro-
cene group showed that the introduction of hydrophilic
groups into these positions might be beneficial for in-
hibitory activity (Fig. 11c). The yellow contours in a
naphtyl ring of the N-3 position of thiazolidin-4-one

core and ethylidene hydrazineylidene moiety indicated
that hydrophobic groups such as aryl and heterocyclic
in this region could be increasing the activity of the
compounds. The compounds 54–59 with hydrophobic
substituent at this region exhibited more potency; while
compounds 2–4 due to the absence of this hydrophobic
group, had relatively lower activity. These results con-
firm that the yellow contour of hydrophobic map was in
agreement with green contour of steric map.

The CoMSIA H-bond donor and acceptor contour maps
correlated with hydrogen bond interactions of ligand with
the target. The cyan and purple contour maps of H-bond donor
indicated favorable (80% contribution) and unfavorable (20%
contribution) interactions and the magenta and red contour
maps indicated favorable (80% contribution) and unfavorable
(20% contribution) H-bond acceptor groups (Fig. 11d, e).
However, no unfavorable purple contour was observed.
There were two cyan contours near to C-5 and C-6 positions
of naphtyl ring and N-3 position of thiazolidin-4-one core that
the H-bond donor groups might improve anti-T. gonidii
activity.

Also, no unfavorable red contour for H-bond acceptor in-
teraction was observed. There was a magenta contour in sub-
stituents of the N-3 position of thiazolidin-4-one core which
was favorable for H-bond acceptor (compounds 57–59)
(Fig. 10e).

Bulky, hydrophobic, 
electropositive, HBD 

and HBA groups 
favored regions

Thiazolidin-4-one as 
scaffold is essential for 

the biological activity

Electronegative 
and HBA 

favored groups

Bulky and 
Electropositive 
favored groups

Fig. 13 Structure-activity relationship revealed by 3D- and 2D-
QSARand docking studies

Fig. 14 Comparison of binding
poses of co-crystallized ligand
ethylene glycol (orange red) and
its re-docked (green) in the active
site of TgROP8 (PDB: 3byv)
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Interpretation of HQSAR contribution map

HQSAR calculations are based on the contributions of molec-
ular fragments to the biological activity for each molecule.
The results of the HQSAR contribution maps can be graphi-
cally shown as a color-coded structure diagram which the
color of each atom reflects its contribution to the molecule’s
overall activity. The red end of the spectrum (red, red orange
and orange) reflects negative contribution to the activity, while
the green end (yellow, blue, green-blue, and green) represents
positive effect and intermediate contributions are colored in
white. The individual atomic contributions of the most active
anti-T. gonidii analogs (compound 56) were displayed in
Fig. 12.

The thiazolidin-4-one scaffold as maximal common struc-
tural fragment represented by green color code because it was
a common fragment to all molecules and contributed in the
same way to all inhibitors. The aryl derivatives in the N-3
position of thiazolidin-4-one core was highlighted in green
and yellow colors, indicating the importance of these frag-
ments to biological activity. Ferrocene group was substituted
on the aryl hydrazone moiety was colored in green that posi-
tive contribution to inhibitory activity. Finally, the structure-
activity relationship and binding features obtained by present
QSAR models and molecular docking analysis are summa-
rized in Fig. 13.

Molecular docking studies

TgROP8 is kinase from the rhoptry organelles of the parasite
that are unique to apicomplexan organisms. This protein con-
tains a serine/threonine kinase domain is injected into the host
cell in the precise moment of parasite internalization and ma-
nipulate the immune response of the host.

In this study, the MOE program was run to explore the
possible binding modes of the anti-T. gondii agents. To con-
firm the validity of used docking parameters, the co-
crystallized ligand ethylene glycol was re-docked into the ac-
tive site of TgROP8 enzyme. The re-docking result and the
cognate ligand (red) were almost completely superimposed
and the RMSD value (0.8566 Å) guaranteed the reliability
of the docking procedure (Fig. 14).

In order to gain functional and structural insight into the
binding mode of the most-potent (compound 56) and lest-
potent (compound 10) inhibitors and TgROP8 enzyme and
also, to validate the results of QSAR contour maps, docking
studies were carried out using MOE software (Fig. 15a, b).

Analysis of docking results revealed a high docking score
(− 12.44 kcal/mol) for the most active compound 56 in com-
parison with that of the least active compound 10 (− 8.36 kcal/
mol). The compound 10 bound with the less numbering of
active site residues of enzyme and had less interaction with
TgROP8 compared with compound 56. The compound 56

was well stabilized in the active site of TgROP8 and had
significant interactions with the key amino acid residues of
TgROP8 (Fig. S1 in the Supplementary file).

Regarding the docking studies, four types of interac-
tions: hydrophobic π-π, π-cation, hydrogen-bonding,
and hydrophobic interactions were involved in the at-
tachment of compound 56 to the active site of the re-
ceptor. With few exceptions, the binding mode of the
best-scored ligands with TgROP8 by LigX of MOE

Fig. 15 a The 2D representation of the interaction between compound 56
(the most active compound). b The 2D representation of the interaction
between compound 10 (the least active compound) in the crystal structure
of TgROP8 (PDB ID: 3byv) using LigX in MOE
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suggested that the compounds were oriented towards the
gorge of the protein. In active site of the TgROP8, Arg
228 made two π-cation interactions with the naphtha-
lene substituent. Also, Tyr 370 made π-π stacking in-
teractions with naphthalene substituent.

The carbonyl oxygen in the thiazolidin-4-one core formed
hydrogen bond with Pro371 while the nitrogen atom of hy-
drazine moiety could also form a hydrogen-binding interac-
tion with Thr 439. Nevertheless, the ferrocene, naphthalene
and thiazolidinone moieties made Van der Waals interactions
with Glu 275, Ile 337, Gly 440, Glu 442, Tyr 278, Tyr 280,
Asn 376, Val 426, Asp 427, His 295, Val 429, and Met 373.
Therefore, with investigation of docking of all compounds at
TgROP8 active site, obtained results showed that the most
potent compounds with Ferrocene and naphtalene moieties
on thiazolidin-4-one core have more favorable interactions
with TgROP8 and bound with more number of active site
residues in comparison with the less-potent compounds (Fig.
S1 in the Supplementary file). These docking results validated
the contour maps of QSAR models.

Molecular dynamics simulation

The molecular dynamics simulation has been done to eluci-
date behavior of TgROP8 protein upon binding to the ligand
and stability and interaction of ligand-protein throughout the
simulation. The dynamics stability of secondary structure el-
ements and conformational changes in protein-ligand com-
plex were compared with protein of TgROP8 by the root-
mean-square derivations (RMSD) and radius of gyration
(Rg) plots for 10 ns simulations with respect to temperature,
potential energy, kinetic energy, and total energy, and results
showed that this system is in a stable state.

The overall simulation convergence and ligand-protein
equilibration were determined with RMSD of backbone
atoms (Cα, C, and N) that is a measure of the stability

of the structures. The RMSD vs. Time is shown in
Fig. 16.

This plot indicated that The RMSD of backbone (Ca,
C, and N) of protein and protein-ligand complex (56)
reached stability after about 4 and 2 ns of simulation,
respectively, and RMSD value was under 2.0 Å in both
the cases. The RMSD of protein-ligand complex (56)
with an average of 1.51 ± 0.070 Å (mean ± SD) was
converged very close to protein with average RMSD
value of 1.21 ± 0.112 Å was slightly larger than protein.
It seemed that binding of ligand with protein increased
the conformation flexibility of TgROP8 protein.

Rg is a parameter that describes the equilibrium conforma-
tion of the native and the bound systems and is an indicator of
the protein structure compactness.

Rg value as a function of time for protein and protein-
ligand complex (56) were 18.59 ± 0.056 and 18.54 ±
0.100 Å, respectively. The graph showed that Rg of protein
was increased for the first 2 ns of the simulation and then
remained constant and Rg of protein-ligand complex (56)
was constant after 1.50 ns of simulation and larger than pro-
tein As shown in Fig. 17.

Another simple way to measure the stability of ligand-
protein complex is potential energy. The ligand bond protein
potential energy was found to be 202,304.8 ± 167.73 kcal/mol
indicating the stability of the system (Fig. 18).

The simulation results showed that the final structure
and initial docked structure were in the same binding
pocket and ligand-protein conformation was stable, and
docking results were reliable. The 2D representation of
the interaction between compound 56 after 10 ns simu-
lation has been depicted in Fig. 19. This figure indicat-
ed that the interactions between most residues (Glu 275,
Ile 337, Asn 376, Val 426, Tyr 278, Tyr 280, Arg 228,
His 295, Glu 442, Met 373, Pro371, Thr 439, and Tyr
370) and compound 56 in the initial docked and final
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Fig. 16 RMSD between TgROP8
with ligand and without ligand
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Fig. 19 3D representation of
interactions between compound
56 and TgROP8 at the active site
after 10 ns molecular dynamics
simulations
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protein-ligand complex (56) were unchanged. However,
the number of amino acid residues at the active site had
changed in this 3D representation. These binding inter-
actions of compound 56 with Pro 371, Thr 439, Arg
228, and Tyr 370 similar to initial docking might be
helpful to the stability of compound 56 in the active
site of TgROP8 protein.

Conclusion

The 2D-(HQSAR) and 3D-QSAR (CoMFA, CoMFA-RF and
CoMSIA) methods were employed to study a series of
thiazolidin-4-onederivatives as anti-T. gondii agents. The
CoMFA, CoMFA-RF, CoMSIA, and HQSAR models provid-
ed statistically significant results for internal and external val-
idations including q2 values of 0.897, 0.900, 0.910, and 0.924,
r2ncv values of 0.933, 0.935, 0.950, and 0.953, r2pred values of

0.938, 0.998, 0.998, and 0.995, and r2m values of 0.771, 0.725,
0.870, and 0.763, respectively. The CoMFA and CoMSIA
contour maps and the HQSAR fragment contribution map
were explained structure-activity relationship of this series of
anti-T. gondii agents. Also, molecular docking and molecular
dynamics simulation studies were carried out to confirm the
rationality of the derived models. The thiazolidin-4-one core
as scaffold and the bulky groups in the cyclic moieties as
hydrophobic parts were key factors to improve inhibitory ac-
tivity of TgROP8. These results showed good predictive
models for the rational design of novel anti-T. gondii agents
for the treatment of Toxoplasmosis disease.
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