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Abstract
Based on the analyses of 1D and 2D NMR spectra techniques, such as H–H COSY, HSQC, and HMBC of 3-[L-threo-2,3,4-
trihydroxy-1-(phenylhydrazono)butyl]- quinoxalin-2(1H)-one in dimethyl sulfoxide solution, it was concluded that this com-
pound exists as a mixture of two isomeric Z- and E- forms I and II rather than the hydrazine imine and diazeny enamine V
tautomers reported earlier. The NMR signals assignment was supported using density functional theory.
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The hydrazone function containing molecules constitutes an
important class of organic compounds. Its ubiquity and versa-
tility can be attributed to its ease of synthesis [1–4] and most
importantly unique structural properties, which enable its ex-
istence in different isomeric forms [5–9]. Isomerism involving
this function group has been extensively investigated in the
recent years [10–13]. Add to that, literature survey showed
that hydrazones possess a wide variety of biological activities
[14–18] besides their utilization as molecular switches,
metallo-assemblies, and sensors [19–21] in which such iso-
meric forms play an imperative role.

We have reported on the structure of the multi component
reaction of L-ascorbic acid 1, o-phenylenediamine 2, and
phenylhydrazine 3 as 3-[L-threo-2,3,4-trihydroxy-1-(phen-
ylhydrazono)butyl]quinoxalin-2(1H)-one or [3-((2S,3S)-2,3,4-
trihydroxy-1-(2-phenylhydrazono)butyl)-quinoxalin-2(1H)-one]
4 rather than the cyclic structure 5 (Scheme 1) [22, 23].

The structure 4 gave the triacetoxy analogue 6, which was
secured by X-ray analysis [24]. Several reports were pub-
lished concerning the syntheses of its analogues and showed
their existence in two tautomeric forms with no definitive
assignments given [25–29]. In 1990, we preferred the assign-
ment of the two forms as hydrazone imine I and diazeny
enamine V [24] as given for similar compounds [30] without
perusing any evidence. Even though several reports were in
support of such tautomerism for similar compounds, [5, 7] we
have decided to re-investigate the isomerization of 4 in di-
methyl sulfoxide solution using extensive 1D and 2D NMR
techniques as well as density functional theory approach. The
results are described and discussed.

Experimental

Synthesis

1H-NMR and 13C-NMR were recorded on Bruker 400 MHz
spectrometers at ambient temperature. Chemical shifts (δ) are
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quoted in parts per million (ppm) and are referenced to the
residual solvent peak: DMSO-d6, δ = 2.50 ppm (1H), δ =
39.52 ppm (13C). In DEPT experiment (135°), the employed
parameters were the following: time domain 65536; FID res-
olution 0.366798 Hz; acquisition mode 1.3631988 s; dwell time
20.800 μs; pre-scan delay 6.00 μs. The parameters in the
COSYGPMFQF: time domain 2048; spectral width 5376.344
Hz; FID resolution 2.625168 Hz; acquisition time 0.1905140 s;
receiver gain 2050; dwell time 93.000 μs; prescan delay 6.00μs.
The parameters in the COSYQF45: time domain 1024; spectral
width 2762.431 Hz. The HSQCETGPSI2 parameters were the
following: time domain 1024; spectral width 5376.344 Hz; FID
resolution 5.250336 Hz; acquisition time 0.0952820 s; receiver
gain 2050; dwell time 93.000 μs; prescan delay 6.00 μs. The

Scheme 1 Synthesis of hydrazone 4

Fig. 1 Illustration for the sixteen possible isomeric/tautomeric forms of 4
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HMBC spectrum was determined with a pulse sequence
GPNDQF: spectral width F2 (1H) 5376.344 and F1 (13C)
22321.429 Hz. Infrared spectra were recorded on Shimadzu
FT-IR 8000S as KBr pellets, the absorption bands (ν max) cm-
1 (Fig. S1). Mass spectra were recorded on Bruker MALDI
microflex mass spectrometer (Fig. S2).

Compound 4 was prepared as described earlier [22, 23].
The TLC, IR, and mass spectra were in agreement with au-
thentic sample prepared earlier [24].

Computational details

All calculations were performed using the GAUSSIAN 09 W
[31]. Initially a conformational search for obtaining the most
stable conformer was done using the semi-empirical PM3 meth-
od; the most stable conformer was subjected to full geometrical
optimizations using DFT and Becke’s three-parameter hybrid
exchange functional in combination with the gradient-corrected
correlation functional of Lee, Yang, and Parr B3LYP/cc-pvtz
method [32–34]. For all optimizations, the vibrational frequen-
cies were checked for imaginary frequencies to ensure all final
geometries corresponded to a true minimum on the electronic
potential energy surface. 1H-NMR and 13C-NMR shieldings
of the previously optimized compounds have been calculated
using gauge-including atomic orbital GIAO/B3LYP [35–37]
density functional method with cc-pvtz basis set. To evaluate
the relative chemical shifts, the tetramethylsilane (TMS) was
optimized and then its shielding constants were calculated at
the same level of theory. The calculated isotropic shieldings for
TMS are 31.74 for 1H and 185.02 for 13C at the DFT-B3LYP
level of theory, using the basis set cc-pvtz. The inclusion of
solvent (dimethyl sulfoxide) in both structures optimization and
NMR calculations was done via the inclusion of the polarisable
continuum model (PCM) [38].

Results and discussion

Theoretically sixteen isomeric/tautomeric structures hydrazone-
imine-amide (Z and E), hydrazone-imine-iminol (Z and E), di-
azenyl enamine-amide, diazenyl enamine-iminol, and α- and β-
ring-chain forms I–XVI can be written for compound 4 (Fig. 1).

The NMR studies of 4 have not been reported in detailed
before. In the present investigation, the 1H-NMR spectrum in
dimethyl sulfoxide-d6 (DMSO-d6) of 4 was obtained and
shown in supplementary data (Fig. S3) as a mixture of two
isomeric forms in 2:1 ratio (A and B). The structure and atom
labeling of 4 is illustrated in Fig. 2.

1H-NMR

The signals of the exchangeable protons (OHs and NHs)
(Table 1) appeared at δ 4.43, 4.70, 5.12, 6.00, 10.26, 10.68,

and 12.54 ppm as broad singlets of 1.32 H, 1.00 H, 0.33 H,
0.33 H, 0.66 H, 0.33 H, and 1 H intensities, respectively.
While the sugar moiety appeared as two multiplets at δ
3.43, 3.55, broad quartets at δ3.79, 4.01 and doublet at δ
4.77 and 5.27 ppm (see Table 2). The phenyl group pro-
tons showed collapsed two triplet of triplets at δ 6.77 and
6.81, two doublet of doublets at δ 7.09, 7.23, two triplets
at δ 7.19, 7.13, two multiplets at δ 7.35, 7.29, two doublet
of doublets at δ 7.37, 7.32, triplet of doublets at δ 7.50,
triplet of doublets at δ 7.59, doublet of doublets at δ 7.71,
and doublet of doublets at δ 7.85 ppm (see Table 2).
Moreover, assignments based on1H–13C HSQC experi-
ment for hydrogenated aromatic carbons are shown
in Table 3 & for assignments see Fig. S3.

These assignments were supported by the two-dimensional
1H–1H COSYGPMFQF NMR (gradient-selected multiple-
quantum-filtered COSY, Bruker pulse program). The COSY
spectrum of 4 (Fig. S4) confirms the correlation assignments
of H-4"s at δ 3.43, 3.55 (A and B) and H-3"s (A and B) at δ
3.79, 4.01. H-3"s show correlation with H-4" and H-2"s of A
and B at δ 4.77 and 5.27 ppm. Based on the correlation with
protons of H-4", H-3", and H-2" of A and B, one can assign
the exchangeable Hs at δ 4.43 ppm for OHs on (C-2" A and

Fig. 2 Structure 4 with atom labeling scheme

Table 1 Experimental chemical shift and assignment of the
exchangeable protons of compound 4

δ(ppm) Intensity Assignment

4.43 1.32 = 2(0.66) + 0(0.33) 2OH (A)

4.70 1.00 = 1(0.66) + 1(0.33) OH (A) + OH (B)

5.12 0.33 = 0(0.66) + 1(0.33) OH (B)

6.00 0.33 = 0(0.66) + 1(0.33) OH (B)

10.26 0.66 = 1(0.66) + 0(0.33) NH (A)

10.68 0.33 = 0(0.66) + 1(0.33) NH (B)

12.54 1.00 = 1(0.66) + 1(0.33) NH (A) + NH (B)

Struct Chem (2020) 31:1065–1072 1067



C-3" A), 4.70 ppm for OHs on (C-4" A and C-2" B), 5.12 ppm
for OH on C-3" B, and 6.00 ppm for OH on C-4" B (Fig. S5).

In order to give more detailed explanation for the assign-
ment of the exchangeable protons, the values of the peaks
intensity have been divided according to the ratio 2:1 of the
isomers A and B, respectively (Table 1). In addition, as indi-
cated from the calculated chemical shift, that OHs are more
shielded than NHs have also been considered. Accordingly, the
peak at δ 4.43 ppm represents two hydroxyl groups of isomer A.
While peak at δ 4.70 represents an overlapped peak for one
hydroxyl group of each isomer. The other two hydroxyl group
of minor isomers (B) appeared at δ 5.12 and 6.00 ppm, while its
NHs appeared highly deshielded at 10.68 and 12.54.

Although the spectrum was clear for the aliphatic region, it
showed a complicated pattern in the aromatic region. The
1H–1H COSYGP45 was then used instead (Fig. S6) and it
was possible to assign the phenyl and quinoxalinyl protons
(Table 2). The expected splitting patterns of H-5 and H-8 as
well as H-6 and H-7 should be the same. From the computa-
tional data, H-5 is the most deshielded one which appeared at
δ 7.85 and 7.71 ppm for A and B isomers, respectively. As
COSY indicates the correlation with coupled protons, it was
concluded that the protons located at δ (7.35, 7.29), (7.59,
7.50), and (7.37, 7.32) are correlated to each other and they
were assigned for (H-6 A & B), (H-7 A & B), and (H-8 A &
B), respectively. (Fig. S6).

13C-NMR

The spectrum showed twenty-nine signals for both isomeric
forms A & B (Fig. S7). From the DEPT 135 experiment (Fig.

S8), the CH2, CH, and quaternary carbon signals were ob-
served and overlapping of signals was confirmed.

1H–13C HSQC

In DMSO-d6, the signals owing to C-4", C-3", and C-2" atoms
of 4were observed in the HSQCNMR spectrum at the δ 62.50
(A & B), 73.19 (A), 73.09 (B), and 72.76 (A), 70.62 (B),
respectively (Fig. S9). The CH aromatic carbons were
assigned based on their correlation with corresponding Hs
(Fig. S10) and summarized in Table 3.

1H–13C HMBC

The long-range HMBC (Fig. S11) cross peaks of 4 in DMSO-
d6 showed correlation between hydrazono NH 10.26 & 10.68
and C-1" δ 145.09 (A) and 144.63 (B), respectively, in addi-
tion to a clear correlation between the NH at δ 10.26 and C-2‘,
C-6’ at δ 112.80 (Fig. 3). These findings ruled out structures
V–XII which lack the hydrazono proton.

Moreover, existence of correlation between H-2" 4.77 & 5.27
and C-1" δ 140.05 (A) and 140.83(B), respectively, secured the
assignment of the C-1” resonance. Furthermore, the experimental
chemical shift of C-1” (δ 140.05 (A) and 140.83(B)) is in accor-
dance and good agreement with the calculated shift for C-1” (≈

Table 2 Experimental and calculated 1H-NMR chemical shifts for
compound 4 as a mixture of I and II

Z-isomer E-isomer

Assignment Exp.2 Calc.b Exp.2 Calc.b

Ha-4″, Hb-4″ 3.43 3.82, 3.92 3.55 3.77, 3.99

H-3″ 3.79 5.28 4.01 4.95

H-2″ 4.77 5.11 5.27 4.43

H-4′ 6.77 7.29 6.81 7.01

H-2′ & H-6′ 7.09 7.18, 7.45 7.23 6.81, 7.85

H-3′ & H-5′ 7.19 7.66, 7.45 7.13 7.35, 7.45

H-7 7.59 7.85 7.50 7.81

H-8 7.37 7.40 7.32 7.35

H-6 7.35 7.66 7.29 7.62

H-5 7.85 8.09 7.71 7.97

MAEC (ppm) 0.41 0.12

aExp. is the experimental chemical shift in dimethyl sulfoxide
bCalc. is the calculated chemical shift
cMAE is the mean absolute error Fig. 3 Structure 4 with carbon-hydrogen atoms correlation

Table 3 Aromatic CH carbon (in ppm) assignment from 1H–13CHSQC

Assignment A B

H-5/C-5 7.85/128.78 7.71/128.26

H-6/C-6 7.35/123.29 7.29/123.11

H-7/C-7 7.59/130.72 7.50/129.80

H-8/C-8 7.37/115.40 7.32/114.96

H-2′, 6′/C-2′, 6′ 7.09/112.80 7.23/112.56

H-3′, 5′/C-3′, 5′ 7.19/128.99 7.13/128.88

H-4′/C-4′ 6.77/119.30 6.81/119.80

1068 Struct Chem (2020) 31:1065–1072



143 ppm) of structures I–IVand quite far from the calculated shift
(~ 100 ppm) for the sp3 carbon arised from cyclization of the
sugar moiety in cyclic structures XIII–XVI. Accordingly, struc-
tures XIII–XVI were ruled out. Also, the 2D spectra showed the
presence of correlation between the H-5 δ 7.85 and 7.71 for both
isomers and the carbon at δ 132.23 confirming that this resonance
belongs to C-10. On the other hand, the correlation between H-8
δ 7.37 and 7.32 and δ 131.85 and 131.42, respectively, lead to
assigning this resonance to C-9. This leaves the remaining δ
153.70, 154.22, and 154.24 for C-3 and C-2 which their assign-
ments were secured by the theoretical calculation (Table 4).

The stability of the quinoxalin-2(1H)-one structure (I and
II) over the 2-hydroxyquinoxaline (III and IV) in dimethyl

sulfoxide solution could be explained by the complexation
of 4 with dimethyl sulfoxide as a solvent via intermolecular
hydrogen bonding that prefer N-H—O than O-H—O due to
steric effect (Fig. 4).Moreover, dimethyl sulfoxide was report-
ed to preferentially stabilize the more polar structures [39]
which is the case in I and II over structures III and IV as
indicated from their dipole moments. The complexation to
the solvent was detected from 13C-NMR which showed two
sets of resonances of dimethyl sulfoxide corresponding to
complex structures with A and B (Fig. S12). Thus, structures
III and IV are ruled out.

Table 4 Experimental and calculated 13C-NMR chemical shifts for
compound 4 as a mixture of I and II

Z-isomer E-isomer

Assignment Exp.a Calc.b Exp.a Calc.b

C-4″ 62.50 72.03 62.50 58.90

C-2″ 72.76 74.16 70.62 76.66

C-3″ 73.19 82.16 73.09 67.97

C-2′ & C-6′ 112.80 118.96, 118.96 112.56 100.52, 103.13

C-8 115.40 119.70 114.96 105.13

C-4′ 1119.30 127.09 119.80 110.31

C-7 130.72 137.68 129.80 122.94

C-5 128.78 135.80 128.26 120.74

C-3′ & C-5′ 128.99 135.70, 135.23 128.88 119.11, 119.66

C-6 123.29 129.40 123.11 114.96

C-9 131.85 139.20 131.42 121.57

C-10 132.23 139.20 132.23 123.71

C-1″ 140.09 143.15 140.83 133.24

C-1′ 145.09 150.70 144.63 134.71

C-2 154.22 160.03 154.24 142.70

C-3 153.70 160.20 153.70 143.39

MAEa (ppm) 6.80 7.19

aExp. is the experimental chemical shift in dimethyl sulfoxide
bCalc. is the calculated chemical shift
cMAE is the mean absolute error

Fig. 4 Possible representations of
4-dimethyl sulfoxide complex
structures showing the intermo-
lecular hydrogen bonding

Fig. 5 The optimized structures of E- and Z-isomers of compound 4
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Molecular structure and optimized geometry

Optimized geometries of the two isomers I and II of compound 4
are shown in Fig. 5. The atomic labeling of the two isomers is
shown in Figs. S13 and S14 in the supplementary data. The
optimized geometrical parameters (bond length, angles, and di-
hedral angles) are listed in Table S1 which reveals that the ge-
ometry of E-isomer II enables it to form two intramolecular

hydrogen bonds. The first one is between the last two hydroxyl
groups of the sugar moiety (O..H-O with bond distance of 2.061
Å). The second one is between the oxygen of the carbonyl of the
quinoxaline ring and the hydrogen of NH of the hydrazone moi-
ety (O....H-N with distance of 1.850 Å). This was obviously
noticed in the bond length of the hydrazone N-H where E-
isomer II has relatively longer N-H (1.028 Å ) than in Z-
isomer I (1.016 Å ). Another observation is that hydrogen bond-
edNHof E-isomer II vibrates at lowerwave number (3293 cm-1)
relative to that of the Z-isomer (3512 cm-1). This should be clear
because hydrogen bond lengthens and weakens the N-H bond
making it vibrates or stretches at lower energy.

Calculated NMR spectra

Experimental and DFT-calculated chemical shifts (with respect
to TMS) for all carbons and non-exchangeable protons of the Z-
and E- isomers (I and II) of compound 4 are listed in Tables 2
and 4. The mean absolute error (MAE) is used to measure how
close the calculated and experimental chemical shifts. Since the
DFT-calculated chemical shifts for exchangeable protons is not
reliable because it depends very highly on the dynamics, solva-
tion, concentration, temperature, and etc. of the sample, it is not
included inMAE calculations. MAEs were found to be 0.12 and
0.41 ppm as a result of comparison for experimental and calcu-
lated 1H-chemical shift of E- and Z-isomers, respectively, indi-
cating quite similarity for the practical and predicted 1H-NMR
chemical shifts. On the other hand, MAEs for carbon chemical
shifts were found to be greater than 2 ppm for both isomers. This
obviously shows the larger deviation of carbon chemical shifts
from the experimental data than those of proton chemical shifts.
To ensure that B3LYP findings for carbon chemical shifts are still
in good agreement with the experimental data, their relationship
was drawn in Fig. 6. It was found that there is an excellent linear
relationship between the experimental carbon chemical shift and
the theoretical shift with a linear correlation coefficient of R2 =
0.98 and 0.97. This reveals slightly good fitting of the data.

DFT-calculated 1H-NMR chemical shifts for exchangeable
protons are listed in Table 5. The calculations showed that the
hydrogen of hydrazono NH of the E-isomer (appeared at
11.00 ppm) is more deshielded relative to that in the Z-isomer
(appeared at 7.89 ppm). This could be explained on the basis
that E-isomer is characterized by the N-H….O hydrogen
bond. This HBmakes the hydrogen located between two elec-
tronegative elements, namely, nitrogen and oxygen which
makes hydrogen resonates at relatively high chemical shift
causing the relative deshielding.While theZ-isomer lacks this
effect. Furthermore, hydrogen atom of the hydroxyl group
bonded to (C-2") in E-isomer appeared at 3.50 ppm which is
obviously more deshielded than that of the Z-isomer (3.00
ppm) due to the hydrogen bond formation in the former iso-
mer. It is also noticed that OHs are more shielded than NHs for
the two isomers (Table 5).
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Fig. 6 Plot of 13C exp. chemical shift vs calc. chemical shifts for
compound 4

Table 5 DFT-calculated 1HNMR chemical shifts (ppm) for exchange-
able protons of compound 4

Z-isomer E-isomer

OH (C-2″) (H38) 3.00 3.50

OH (C-3″) (H37) 1.44 1.33

OH (C-4″) (H36) 0.45 135

NH (N1) (H27) 7.44 7.90

NH (N2⁗) (H39) 7.89 11.00

Symbols between brackets represent the atom labeling in theoretical
calculation
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Conclusion

The 1D and 2D NMR spectral data analysis confirmed the
existence of compound 4 as an isomeric mixture of Z and E
forms I and II rather than the hydrazone imine and diazeny
enamine tautomers, and complete assignment for carbon and
hydrogen atom signals is reported. Accordingly, the previous
reported work should be corrected. It is worth noting that our
present finding is in accordance with recently published work
for similar system [40].
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