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Abstract
The multiple-cell approach is discussed as an alternative to the higher-dimensional crystallographic description of
icosahedral quasicrystals. Four types of quasi-unit cells fill the space without gaps and overlappings. Every cell in the whole
tiling is decorated by specific atoms in a particular way and is associated with a triad: type, position, and orientation. The key
features of the proposed approach are the subgroup/coset decomposition of icosahedral symmetry groups in accordance with
the orbit-stabilizer theorem, a strict mathematical formalization of the substitution rules for all types of quasi-unit cells in
the Socolar-Steinhardt tiling, formalization of the recursive inflation/deflation rules, and the eigenvalue-eigenvector analysis
of corresponding substitution matrices. The similar approach can be applied to almost all types of quasicrystals.
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Introduction

Discovery of quasicrystals by Shechtman [1] is now
considered as one of the milestones in the development
of modern crystallography. Shortly before that, Mackay
[2] simulated the diffraction pattern of the Penrose tiling
and made evident its 5-fold symmetry and the presence of
sharp diffraction peaks. Steinhardt et al. [3, 4] provided
the first theoretical explanation of infinite icosahedral
packings and showed that a long-range orientational order
with no translational periodicity can also exist in three
dimensions just in the same way as the Penrose tiling
represents such an example in two dimensions. These
important breakthroughs led to paradigm shift in our
understanding of the nature of chemical structures. Under
the term “crystal” we now understand any solid having
an essentially discrete diffraction pattern. According to the
more strict mathematical definition, an aperiodic crystal
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is a distribution of discrete point masses that has a pure
point Fourier transform. The ordinary crystals are periodic
distributions with periodic spectra, while quasicrystals are
usually self-similar distributions with self-similar spectra.

The atomic structure of quasicrystals is usually described
within the superspace formalism by using the cut-and-
project construction [5–15]. Another approach is based
on the concept of quasi-unit cells [16–22] or overlapping
clusters [23–27]. Additional information on the atomic
structure, spatial arrangement, and linkage of icosahedral
shell clusters in crystalline approximants provides a good
starting point for structure analysis of quasicrystals [28–
31]. Different approaches emphasize different aspects of
quasicrystals, thus mutually reinforcing each other. Taken
separately, none of these methods guarantees that the most
accurate and comprehensive understanding of the nature of
long-range aperiodic order is gained [32]. For the historical
aspects of the discovery itself, development and cross-
fertilization of related ideas and concepts, see [33–35].

Recently, we proposed an approach based on the
recurrent construction of the Socolar-Steinhardt zonohedral
tiling with subsequent decoration of quasi-unit cells with
specific atoms [36–39]. We therefore divided the whole
problem into two separate steps: filling the space with
polyhedra and filling the polyhedra with atoms. The major
advantage of the multiple-cell approach is that the most
problems can seemingly be solved without leaving the real
physical 3D space.
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Four types of golden zonohedra serve as quasi-unit cells:
the prolate rhombohedron, the rhombic dodecahedron, the
rhombic icosahedron, and the rhombic triacontahedron.
They fill the space without gaps and overlappings. Every
cell in the whole tiling is decorated by specific atoms
in a particular way and is associated with a triad: type,
position and orientation. Only the full set of quasi-unit
cells ensures packing homogeneity. Periodic crystals can
be constructed by stacking identical unit cells face-to-
face in perfect alignment in three dimensions. Similarly,
icosahedral quasicrystals can be defined as packings of
identical quasi-unit cells, with a few minor differences: (i)
there are four cell types instead of a single one and (ii)
a special hierarchical packing algorithm is used instead of
lattice translations.

Detailed description of the whole algorithm is provided
below. The key steps are the following:

– A group-theoretical analysis of icosahedral symmetry
paying special attention to the subgroup/coset decom-
position of both I (235) and Ih(m35) icosahedral groups
and to the orbit-stabilizer theorem.

– A strict mathematical formalization of the substitution
rules for all types of quasi-unit cells in the Socolar-
Steinhardt tiling.

– Formalization of the space-filling algorithm based on
recursive inflation/deflation rules.

– Enumeration of general and special positions inside the
cells and on their surfaces bearing in mind their local
symmetry and some additional restrictions.

– Calculation of the packing density and compound
stoichiometry based on the eigenvalue-eigenvector
analysis of the substitution matrix.

– Averaging of the structure factors over quasi-unit cells
based on a procedure similar to the Perron projection.

– Confirmation of the validity of the approach through the
comparison of characteristic clusters and their spatial
arrangement with those obtained by the cut-and-project
method.

Group-theoretical analysis

The subgroup/coset decomposition plays a key role
in understanding both the space-filling and decoration
algorithms. The elements of the stabilizer subgroups send
quasi-unit cells to themselves, hence define the atomic
cell decorations. Otherwise, all the other group elements
generate the orbits of quasi-unit cells and, therefore,
describe the mutual cell arrangement.

Icosahedral symmetry can be described by the two
groups: I and Ih, respectively. The group I consists of
60 orientation-preserving rotations, whereas Ih in addition

includes mirror reflections and improper rotations. Up to
now it was generally believed that Ih is the proper symmetry
group of all the icosahedral quasicrystals, simply because all
the structure refinements were made under such assumption
with the varying degrees of success. On the other hand,
existence of non-centrosymmetric icosahedral quasicrystals
has been neither proved nor disproved so far.

The icosahedral symmetry has been extensively treated
in literature [40–44]. Unfortunately, various authors use
different notations and enumerate the group elements in
different ways. For instance, the group elements may
be interpreted either as rotations and reflections of an
icosahedron or as cyclic permutations depending on the
context. If the main concern is the structure of icosahedral
viruses, the numbering of rotation matrices inherits specific
numbering scheme of capsomers adopted in the description
of viral capsids [45, 46]. On the contrary, enumeration
according to the conjugacy classes is commonly adopted
in solid-state physics [47]. The choice of the default
(standard) orientation of an icosahedron also differs from
paper to paper. That is why the existing multiplication
tables, rotation matrices, and coset decompositions of
the corresponding group-subgroup pairs cannot be used
directly. We followed Litvin [41] in choosing the orientation
of an icosahedron and the vertex numbering scheme (Fig. 1).

The group generators are given in Table 1. In this table,
u = (

√
5+1)/4 = τ/2, v = (

√
5−1)/4 = (τ −1)/2, where

τ = (1+√
5)/2 is the golden mean. The first three elements

generate the group I . The group Ih may be obtained by
adding the inversion element to I .

Any group element may be unambiguously defined in
terms of cyclic permutations of numbered icosahedron
vertices. Both Schoenflies and Hermann-Mauguin notation
may be used to identify the symmetry transformations.

Fig. 1 Numbering of the vertices of an icosahedron
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Additional numbers in parentheses (or additional indices as
subscripts) specify the corresponding vertex permutations.
Strictly speaking, the subscript indices in Hermann-
Mauguin notation are reserved to denote the screw
axes. Since screw axes are incompatible with icosahedral
symmetry, we found that it possible to use subscripts for
specifying the vertex numbers in hope that this will not
lead to the confusion of notation. For example, the cycle
(1)(2 6 5 4 3)(7 11 10 9 8)(12) corresponds to the

counterclockwise rotation around the 5-fold axis passing
through the vertex 1. It is denoted as 51. The cycle
(1 3 2)(4 7 6)(5 8 11)(9 12 10) corresponds to the
counterclockwise rotation around the 3-fold axis normal
to the triangle �123. We denote it as 3132, and so on.
As usual, we assume that counterclockwise rotations are
positive when looking at the icosahedron from the outside.
All group elements are numbered according to conjugacy
classes:

Ih =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E = {e},
12C5 = {51, 52, 53, 54, 55, 56, 54

1, 54
2, 54

3, 54
4, 54

5, 54
6},

12C2
5 = {52

1, 52
2, 52

3, 52
4, 52

5, 52
6, 53

1, 53
2, 53

3, 53
4, 53

5, 53
6},

20C3 = {3132, 3143, 3154, 3165, 3126, 3237, 3387, 3348, 3498, 3459,

32
132, 32

143, 32
154, 32

165, 32
126, 32

237, 32
387, 32

348, 32
498, 32

459},
15C2 = {212, 213, 214, 215, 216, 223, 234, 245, 256, 226, 227, 237, 238, 248, 249},

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= I ;

Ci = {1},
12S3

10 = {51, 52, 53, 54, 55, 56, 5
9
1, 5

9
2, 5

9
3, 5

9
4, 5

9
5, 5

9
6},

12S10 = {57
1, 5

7
2, 5

7
3, 5

7
4, 5

7
5, 5

7
6, 5

3
1, 5

3
2, 5

3
3, 5

3
4, 5

3
5, 5

3
6},

20S6 = {3132, 3143, 3154, 3165, 3126, 3237, 3387, 3348, 3498, 3459,

3
5
132, 3

5
143, 3

5
154, 3

5
165, 3

5
126, 3

5
237, 3

5
387, 3

5
348, 3

5
498, 3

5
459},

15σ = {m38, m49, m37, m48, m27, m15, m16, m12, m13, m14, m34, m26, m45, m23, m56}

(1)

As will be shown below, we have to know the multiplication
tables of both icosahedral groups. The easiest way is to use
the Wolfram Mathematica� Combinatorica package. First,
we use the standard procedure to generate the permutation
group with a given set of generators. Then, we put the cycles
into one-to-one correspondence with their “crystallographic
names” (stored as string variables) and with the rotation
matrices. Next, we look for the required permutation and
apply it to the set of elements to put the elements in the right
order. Finally, we write down the full list of elements and
compute the multiplication tables.

The full set of quasi-unit cells consists of four golden
zonohedra: the rhombic triacontahedron, the rhombic icosa-
hedron, the rhombic dodecahedron, and the prolate golden
rhombohedron (Fig. 2). Marking of the triacontahedron ver-
tices inherits the numbering scheme for the icosahedron.
We draw the reader’s attention to the positions of the local
cell origins. Any quasi-unit cell can be inscribed within
a triacontahedron, so that the local origins of all cells
coincide.

Four types of golden zonohedra are to be inflated by
the scaling factor of τ 3 and deflated back to the original
size [36–39]. In the whole packing, quasi-unit cells can
appear in different orientations, which nevertheless comply
with the global icosahedral symmetry. Therefore, for every
quasi-unit cell, we need to single out one of the possible

orientations, which, hereinafter, we refer to as the standard
or default orientation of specific quasi-unit cell. Purely for
the convenience’s sake, it was preferable that the main
symmetry axes lay in the xy-plane whenever possible (see
Fig. 2).

Consider one of the quasi-unit cells and apply the group
action to it. A special subgroup, the elements of which
send the cell to itself, is called its stabilizer. The remaining
elements generate the orbit of the cell in accordance with
the orbit-stabilizer theorem. Figure 3 shows the orbits of
all quasi-unit cells under the action of group I . Here we
pay more attention to the group I , as the action of Ih

is quite similar and generates the same orbits with the
only difference that twice as much elements make up the
corresponding left cosets and stabilizers.

The stabilizer of the rhombohedron consists of 3
symmetry transformations: the identity element and the 3-
fold axis with its reverse. Therefore, the corresponding
orbit consists of 20 differently oriented rhombohedra. The
stabilizer of the rhombic dodecahedron has 2 elements:
the identity and the 2-fold axis. It can thus be oriented in
exactly 30 different ways. The stabilizer of the rhombic
icosahedron has 5 elements: the identity and the 5-fold axis
with its powers. It can be oriented in 12 ways. The rhombic
triacontahedron has the trivial stabilizer: the group I itself.
Its orbit has the length of 1. There are no additional ways
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Table 1 The generators of the icosahedral groups I and Ih

# Schoenflies notation Hermann-Mauguin notation Cyclic permutation Rotation matrix

2 C5(1) 51 (1)(2 6 5 4 3)(7 11 10 9 8)(12)

⎛

⎜
⎝

1/2 −u v

u v −1/2

v 1/2 u

⎞

⎟
⎠

26 C3(132) 3132 (1 3 2)(4 7 6)(5 8 11)(9 12 10)

⎛

⎜
⎝

−1/2 −u v

u −v 1/2

−v 1/2 u

⎞

⎟
⎠

46 C2(12) 212 (1 2)(3 6)(4 11)(5 7)(8 10)(9 12)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 1

⎞

⎟
⎠

61 Ci 1 (1 12)(2 9)(3 10)(4 11)(5 7)(6 8)

⎛

⎜
⎝

−1 0 0

0 −1 0

0 0 −1

⎞

⎟
⎠

to orient it in space. According to the Cauchy-Frobenius
lemma known also as the orbit counting theorem: 3 · 20 =
2 · 30 = 5 · 12 = 1 · 60 = 60.

Now we can turn to the description of the packing. We
said that every cell can be associated with a triad: type,
position, and orientation. The cell type can be interpreted
as an integer in the range from 1 (rhombohedron) to 4
(triacontahedron). The position is defined as the Cartesian
coordinates of the specific cell’s local origin in the global
coordinate system. In the “Substitution rules” section, we

demonstrate that the position of any cell in an icosahedral
quasicrystal, regardless of its type and orientation, can
always be described by the set of 6 integers. Finally, the
orientation of any cell can be associated with the first group
element of the corresponding coset. In other words, it can
be defined as an integer in the range from 1 to 60. For the
group Ih the first (representative) element of the coset is also
within the range of 1 to 60.

To generate the whole packing, we use consecutive
inflations and deflations. As a result, some of subcells can

Fig. 2 Default orientations of
quasi-unit cells. Four types of
golden zonohedra are inflated
by the scaling factor of τ 3 and
deflated back to the original
size. Stabilizer subgroups are
written down below the cells to
which they relate for both I and
Ih groups, respectively

Struct Chem (2020) 31:485–505488



Fig. 3 Orbits of quasi-unit cells under the action of group I . Symmetry elements next to the differently oriented quasi-unit cells represent the left
cosets of the corresponding stabilizer subgroups

be shared by two or more adjacent supercells [36, 37]. To
avoid the multiple counting, we can delete the redundant cells
and redirect the links to the already existing ones. However,
when performing calculations with substitution matrices, it

might be more convenient to assign weighting factors to shared
cells (sharing factors). We discuss the sharing factors for
cells and atoms in the “Substitution rules” and “Filling the
quasi-unit cells with atoms” sections, respectively.
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Substitution rules

The zonohedral tiling has been invented by Socolar and
Steinhardt [4]. Ogawa pointed out that, in the most general
case, the linear scaling factor of a 3D icosahedral tiling
should be equal to τ 3 [48]. The substitution rules were
derived thirty years later [36, 37].

The set of four golden zonohedra is not the only way
to construct an icosahedral packing. However, the ABCK
Danzer tiling [49] has the inflation factor of τ (see, e.g.,
Ch. 6 in [50]), which is not in line with the experimental
data [12]. The tiling by prolate and oblate rhombohedra
does not preserve the exact icosahedral symmetry and is
thus applicable only on average. That is why Socolar and
Steinhardt made a definitive conclusion that the zonohedral
tiling “must be accepted as one of the necessary subtleties
of the 3D icosahedral construction” [4]. Curiously, the
complete set of four non-overlapping zonohedra has never
been used to interpret the experimental data so far.

At the first glance, the substitution rules [36, 37] seem
to be rather cumbersome. For example, 533 different
polyhedra should be taken into account when deflating
the triacontahedron. It might even seem that such a
huge number of subcells would make the rules almost
worthless—far from it. In fact, the rules are very natural and

simple, because only 12 of 533 polyhedra are independent
(Fig. 4). Allow us to explain the basic principles that govern
the packing geometry.

First, we redefine the equivalence relations between
corresponding quasi-lattice sites. In a generalized sense,
there are only three types of inequivalent sites in
the Socolar-Steinhardt tiling: A, B, and C. Consider a
triacontahedron. It has 12 icosahedral and 20 dodecahedral
vertices, which we refer to as the A and B types,
respectively. As a result of inflations and deflations, any A-
type vertex turns into a star of rhombohedra surrounded by
12 rhombic icosahedra, while any B-type vertex turns into
a similar star but surrounded by 12 rhombic triacontahedra.
All vertices in the whole tiling are equivalent to either A
or B type in this sense. The center of a triacontahedron,
which we refer to as the C-type site, transforms into a
triacontahedron again. More generally, a local origin of any
quasi-unit cell turns into a triacontahedron. None of the self-
similarity operations can change the vertex type. Therefore,
if we consider an ABC triangle in a triacontahedron and
inflate it with a linear scaling factor of τ 3, its vertices
become occupied by two stars and a triacontahedron,
respectively (see Fig. 4).

Second, the icosahedral symmetry should not be
destroyed after deflations. Therefore, only those cells and

Fig. 4 Substitution rules for the triacontahedron: the ABC triangle and 13 independent polyhedra (for the group I ). This number decreases to only
12 independent polyhedra for the group Ih. Enlarged cells illustrate the compliance of the deflation with matching rules
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clusters, which in themselves obey the 2-fold symmetry,
may be stacked along the 2-fold axis. Only those cells,
which in themselves obey the 3-fold symmetry, may
be stacked along the 3-fold axis. Only those cells and
clusters, which in themselves obey the 5-fold symmetry,
may be stacked along the 5-fold axis. This means that
only triacontahedra and rhombic dodecahedra may alternate
along the 2-fold axis when deflating the triacontahedron.
Only triacontahedra and rhombohedra may alternate along
the 3-fold axis. Only triacontahedra and rhombic icosahedra
together with clusters of five rhombohedra or five rhombic
dodecahedra arranged around a common edge may alternate
along the 5-fold axis.

Third, inflations and deflations must not be inconsistent
with the higher-dimensional approach. We emphasize again
and again that both approaches are not contradictory. Surely,
the central part of the tiling obtained by substitutions [39]
coincides with that one obtained by projection [4], the types
of faces and the local matching rules complies with those
described in terms of Ammann plane decorations, and so
forth. As to the packing rules, we would rather give a quote
[4], “The Ammann planes distinguish only three different
types of rhombic faces on surfaces of the unit cells. Two
adjacent cells must be joined along faces with identical
markings and orientations.”

To summarize, the Socolar-Steinhardt tiling is formed
by four types of quasi-unit cells. Three locally isomorphic
packings with exact icosahedral point symmetry can be built
by the same rules. According to this, there exist only three
types of special sites in the packing (A, B, and C). There
are two types of edges (E1 and E2; we mark the second type
edges with arrows) and three types of faces (F1, F2, and F3).
For more details, see [36–38].

When all these reasonings are taken into account, the
solution becomes almost evident (Fig. 4). We encourage the
reader to compare these simple rules and the cell packing
order with those based on the incomplete set of zonohedra
(see Fig. 3 in [11]). The deflation rules can be formally
written in exactly the same way as those for the cell
packing procedure—by specifying the types, positions, and
orientations of subcells. Independent subcells that define
the decomposition rule of a triacontahedron are listed in
Table 2.

We followed Levine and Steinhardt [3] in choosing the
scale, so that the prolate rhombohedron would have unit
volume. The volumes of basic zonohedra are therefore in the
ratio of 1 : 2τ : 5τ : 10τ . The two initial triacontahedron
vertices have coordinates A(1 + τ, τ, 0) and B(1 + τ, 0, 1);
all the others can be determined by applying the group
action to these two initial points. Any edge in the packing
can be associated with one of the 12 vectors, which in turn
can be obtained through rotating an initial vector (τ, 1, 0).
The position of any cell, as well as the position of any vertex
in the entire tiling, can be expressed as a linear combination
of 6 basic vectors with integer coordinates (i + jτ, k +
lτ, m + nτ), as though two incommensurate cubic lattices
would coexist simultaneously—one with lattice constant a

and the other with τa, respectively. Indeed, this statement
holds true for the initial triacontahedron vertices. The same
holds true for any of differently oriented edge vectors.
Therefore, the exact position of any of the quasi-lattice sites
may be defined by six integers.

In Table 2, most of the subcells have the sharing factors
equal to 1. This means that corresponding subcells come
into the supercell as a whole. For the last three subcells, the
sharing factors are fractions less than 1. The corresponding

Table 2 Deflation rule for the triacontahedron

Type Position Orientation Sharing Multiplicity

# Element factor factor

4 (0, 0, 0) 1 e 1 1

2 (2 + τ, 0, 0) 46 212 1 30

4 (2 + 4τ, 0, 0) 1 e 1 30

1 (2, 2 + 2τ, 0) 46 212 1 20

1 (2τ, 2 + 2τ, 0) 20 53
1 1 60

1 (2 + 2τ, 2 + 2τ, 0) 46 212 1 60

3 (2 + 4τ, 2 + 2τ, 0) 46 212 1 12

1 (4 + 4τ, 2 + 2τ, 0) 46 212 1 60

1 (2τ, 2 + 4τ, 0) 1 e 1 20

1 (2 + 2τ, 2 + 4τ, 0) 4 53 1 60

3 (2 + 4τ, 2 + 4τ, 0) 16 52
3 2/5 60

1 (1 + 3τ, 3 + 4τ, τ ) 3 52 1/2 60

1 (1 + 3τ, 3 + 4τ, −τ) 2 51 1/2 60

Struct Chem (2020) 31:485–505 491



subcells are shared by two or more adjacent supercells. In
particular, only 2/5th of the rhombic icosahedron and only
halves of the last two rhombohedra fall within the inflated
triacontahedron under consideration.

The last two rows can be merged when considering the
symmetry group Ih. It is then sufficient to consider only one
of these two rhombohedra with a multiplicity factor of 120.
Thus, the minimal set of independent subcells consists of
only 12 zonohedra. All other subcells in the decomposition
can be derived simply by applying group action to the above
12 independent ones. All we really need is the rotation
matrices and the group multiplication table. It is easy to see
that the sum of all entries in the last column is 533, i.e., the
total number of cells in the decomposition.

It would be ineffective to verify every time to which of
the cosets belongs the result of the group multiplication.
Fortunate, we have no need for doing so. We prepare four
copies of the group multiplication table (one for each cell
type) and then go through all entries and replace them by
the first elements of the corresponding cosets (see Fig. 3).
When using such an array of four “modified” multiplication
tables in order to determine the orientation of specific cell
as a result of rotation, one immediately gets the first element
of the coset.

When the decomposition rule for the triacontahedron is
obtained, it is not hard to derive the rules for all the other cell
types simply by analogy [36, 37]. The only complication
appears when considering how the shared subcells are
oriented in space. In this case, we just have to bear in mind
that the edges must connect the vertices of different types
only: A and B.

After the deflation rules for smaller cells in their default
orientation are derived, we apply the group action to them.
We rotate the inflated cells, with all the subcells inside,
about their local origins by representative elements of
the cosets. It is suitable to store the deflation rules as a
special array. Its first 20 entries contain the deflation rules
for rhombohedra, its next 30 entries contain the rules for
rhombic dodecahedra, and so forth, so that totally there are
20 + 30 + 12 + 1 = 63 entries for all cells in all possible
orientations.

Filling the space with quasi-unit cells

In order to generate the Socolar-Steinhardt tiling, we
have to apply an iterative algorithm to initial cell/cells.
We would like to give another quote of Socolar and
Steinhardt [4], “There are three complete packings with a
(single) center of icosahedral point symmetry. One of these
has a triacontahedron at its center, the next shell being
composed of thirty dodecahedra. The other two have a
star at their centers, one having twelve icosahedra as the

next shell, the other having twelve triacontrahedra.” All
the three fundamental icosahedral packings can be obtained
by applying the same inflation/deflation rules. The result
depends only on where the origin is set (Fig. 5). The
corresponding initial cells are listed in Table 3.

The structure of an icosahedral quasicrystal is defined
recursively as a collection of quasi-unit cells. In other
words, the data storage is organized as a rooted tree. We
start with a fictitious root node that points to the common
ancestor. For example, a triacontahedron represents a single
parent when considering the packing centered at the C-type
site. It becomes a common ancestor for all cells in the entire
packing. When considering the A- and B-centered packings,
the stars of 20 differently oriented rhombohedra define the
initial sets of parent cells.

Allow us to describe the C-type tree in more detail. An
initial triacontahedron has 533 children, each of which has
its own descendants according to the deflation rule of the
specific cell, and so forth. If we do not want to deal with
weighting factors and wish to avoid the duplicate counting,
we should delete the redundant shared cells and redirect
the appearing dangling links to the existing cells. Note that,
strictly speaking, the resulting graph will be no longer a
rooted tree after resolving the duplicate counting.

The cell generation algorithm is surprisingly simple (see
Fig. 6 for an illustrative example):

{
Rk = τ 3Ri + giRj

gk = gigj
(2)

Here, Ri and gi denote the position and orientation of an
existing cell (parent), Rj and gj denote the position and
orientation of the cell being generated (child) in the standard
deflation scheme of the parent, and Rk and gk denote the
position and orientation of the child cell in the entire tiling,
respectively.

If we know the deflation rules for the parent cell in its
default orientation, we always can rotate it, with all the
other stuff inside, to get the deflation scheme of the rotated
cell. We have merely to multiplicate the positions and
orientations of subcells with corresponding group element.
When the substitution rules for the rotated cells are derived,
the remainder of the tree generation procedure becomes
quite evident.

We reiterate that, when determining the cell orientations,
we do not perform the actual matrix multiplication. To get
the result, we take one of four “modified” multiplication
tables and find the number of the required group element at
the intersection of the corresponding row and column.

One more advantage of the algorithm should be noted.
Once generated, the cell positions do not change anymore.
The packing grows step by step, shell by shell, but adding
new cells does not affect the existing ones.
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Fig. 5 Initialization of the space-filling algorithm. Three locally iso-
morphic packings with exact icosahedral point symmetry can be built
by applying the same inflation/deflation rules depending on where
the origin is set. The innermost shells of the perfect icosahedral

packings can be formed either by a star of 20 rhombohedra surrounded
by 12 rhombic icosahedra, by a star of 20 rhombohedra surrounded by
12 triacontrahedra, or by a triacontahedron surrounded by 30 rhombic
dodecahedra

Filling the quasi-unit cells with atoms

There is a widespread perception that “the atomic deco-
ration of the tiles may not be uniform all over the tiling”
[51] and that “quasicrystals cannot be defined as packings
of identical unit cells” [23]. Our primary goal is to show
that the uniform decoration of quasi-unit cells is, neverthe-
less, possible. We are also going to demonstrate how the
groups I and Ih can be separated from each other through
the appropriate cell decoration.

We specify the sets of special and general positions,
similar to Wyckoff positions in conventional periodic
crystals: inside the cells, on the faces, on the edges, and
at the vertices (see Table 4). The valid decoration scheme
must be consistent with the cell symmetries, local matching

rules, and some additional restrictions caused by the local
isomorphism of the tiling [39].

First, as we have already mentioned, the symmetry group
of each cell is the subgroup of the given group. Distribution
of atoms inside the cells must obey the corresponding sta-
bilizer subgroup. For example, considering the decoration
of zonohedra by the Ammann planes, Socolar and Stein-
hardt showed that the decorated rhombic dodecahedron has
only two planes of reflection symmetry. “The dodecahe-
dron itself has a third mirror plane, but this symmetry is
not respected by the Ammann plane decoration” [4]. More
generally, at least three of four quasi-unit cells are not
centrosymmetric, even for the group Ih.

It is quite surprisingly, but the vast majority of structure
refinements have been made up to now under an assumption

Table 3 Initialization of the space-filling algorithm

Origin Type Position Orientation Multiplicity

# Element factor

A 1 (−1 + τ, τ, 0) 1 e 20

B 1 (1, 1 + τ, 0) 46 212 20

C 4 (0, 0, 0) 1 e 1
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Fig. 6 Illustration of the recursive space-filling algorithm. The initial
triacontahedron is a common ancestor for all cells in the tiling. In the
current step, the rhombic dodecahedron (the small green cell) is con-
sidered as an example of the parent cell. It has been generated in the
previous step by applying the inflation/deflation rules to a triacontahe-
dron. Its position and orientation are Ri and gi , respectively. As a result
of inflation, the origin of the inflated parent cell shifts to τ 3Ri . The
rhombic icosahedron (the small blue cell) is one of those cells, which
are to be generated in the current step. It is a child cell of the rhombic

dodecahedron and a descendant of the initial triacontahedron. Its posi-
tion and orientation in the standard deflation scheme of the rhombic
dodecahedron (right) are Rj and gj , respectively. The group element
gi acts on the rhombic dodecahedron and rotates it as a whole with
all the other stuff inside. The position and orientation of the child cell
become giRj and gigj , respectively. Finally, the position and orienta-
tion of the newly generated cell with respect to the global coordinate
system become τ 3Ri + giRj and gigj , respectively

Table 4 Inequivalent positions in icosahedral quasicrystals

Position Coordinates Local symmetry and multiplicity

I Ih

Triacontahedron 235 m35

general position (x, y, ±z) − − 1 120

general (dextro) (x, y, +z) 1 60 − −
general (laevo) (x, y, −z) 1 60 − −
in plane m38 (x, y, 0) − − m 60

in plane m45 (x, 0, z) − − m 60

on 2-fold axis 245 (0, 0, 0) → 2 30 2mm 30

(1 + τ, 0, 0)

on 3-fold axis 3348 (0, 0, 0) → 3 20 3m 20

(1, 1 + τ, 0)

on 5-fold axis 54 (0, 0, 0) → 5 12 5m 12

(1 + τ, τ, 0)

at origin (0, 0, 0) 235 1 m35 1

Rhombic icosahedron 5 5m

general position (x, y, z) 1 5 1 10

in plane m38 (x, y, 0) − − m 5

on 5-fold axis 54 (−1, −1 − τ, 0) 5 1 5m 1

→ (1 + τ, τ, 0)

Rhombic dodecahedron 2 2mm

general position (x, y, z) 1 2 1 4

in plane m38 (x, y, 0) − − m 2

in plane m45 (x, 0, z) − − m 2

on 2-fold axis 245 (1 − τ, 0, 0) 2 1 2mm 1

→ (1 + τ, 0, 0)
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Table 4 (continued)

Position Coordinates Local symmetry and multiplicity

I Ih

Rhombohedron 3 3m

general position (x, y, z) 1 3 1 6

in plane m38 (x, y, 0) − − m 3

on 3-fold axis 3348 (1 − τ, −τ, 0) 2 1 2mm 1

→ (1, 1 + τ, 0)

Faces

F1, general position 1 4 m 4

long diagonal 2 2 2mm 2

short diagonal 2 2 2mm 2

center 222 1 mm2 1

F2, general position 1 2 m 2

long diagonal 2 1 2mm 1

F3, general position 1 2 m 2

short diagonal 2 1 2mm 1

Edges

E1, general position 5 1 5m 1

E2, general position 5 1 5m 1

Vertices

A, at the center of a star 235 1 m35 1

B, at the center of a star 235 1 m35 1

C, at the center of a triacontahedron 235 1 m35 1

that the cells are nevertheless centrosymmetric. For exam-
ple, opposite faces of the rhombohedral units are usually
treated as similar, even though it is theoretically forbid-
den. So-called c-linkage of Tsai clusters is interpreted in
terms of interpenetrating triacontahedra, though triaconta-
hedra never overlap in the Socolar-Steinhard tiling, and so
on. Entrenched stereotypes prevent further progress. In gen-
eral, quasi-unit cells do not coincide in both right-side-up
and upside-down orientations. None of the cells has an
inversion center for the group I , and therefore so must be
the atomic decorations.

Second, the local matching rules appear in the higher-
dimensional approach as a natural consequence of the
different decorations of faces by the Ammann planes. Our
inflation/deflation rules are consistent with the Ammann
grid [36], the same must relate to the decorations of faces by
atoms. In other words, if we have decorated a single face,
then we are obligated to apply the similar decoration scheme
to all equivalent faces, regardless of whether they belong to
the same cell or to another.

Third, the atomic decoration scheme should not depend
on which of three sites (A, B or C) is assigned to the origin
of the packing. For example, if the origin is set at the C-type

site, there is the only 2-fold axis passing through the face F1,
namely normal to the face. On the other hand, if the origin
is set at the B-type site, another 2-fold axis appears, namely
passing along its long diagonal. Surely, atomic decorations
of faces cannot depend on the coordinate system chosen
and should thus be common to all variants due to their
local isomorphism. This leads to the conclusion that, when
considered locally, the decorated face F1 should have either
222 or mmm symmetry for the groups I and Ih, respectively.
Decorated faces F2 and F3 have either 2 or mm2 symmetry
with principal axes parallel to the long and short diagonals
of the rhombuses, respectively.

The inequivalent atomic positions are listed in Table 4.
Any single point generates the corresponding full set under
the group action. We choose characteristic points in the
xy plane or close to the xy plane, whenever possible, to
specify the inequivalent positions within the quasi-unit cells.
The alternative settings (e.g., in the xz plane or close to z

axis) are also possible. Figure 7 will be helpful to better
understand the choice of fundamental domains for different
quasi-unit cells. Here m12 denotes the mirror plane that
swaps the vertices 1 and 2. It coincides with the yz plane.
The mirror planes m38 and m45 coincide with the xy and xz
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Fig. 7 Possible choices of the
fundamental domain in a
triacontahedron. For the group
I , it might be a region enclosed
within a pyramid and bounded
by the axes 51, 3132 and 3126.
Two enantiomorphic forms can
exist: dextro, when an atom in
general position falls within the
upper part of the domain, and
laevo, when an atom falls within
the lower part. Another possible
choice is a region bounded by
the axes 54, 3154 and 3459. For
the group Ih, it might be a
region bounded by the axes 51,
3132 and 212. Another possible
choice is a region bounded by
the axes 54, 3154 and 245

planes, respectively. The 2-fold axis 212 swaps the vertices
1 and 2, too. It coincides with the z axis. The axis 245

coincides with the x axis.
Consider the local symmetry of faces in more detail

(Fig. 8). For the group I , a 2-fold axes passes through the
center of F1 as it is the face of a triacontahedron. Another
2-fold axis passes along the long diagonal as it is the face of
a rhombohedron, while 20 rhombohedra may be assembled
into a star. If two 2-fold axes exist, then a third 2-fold axis
appears. The local symmetry of the face F1 is thus 222. The
local symmetry of the faces F2 and F3 can be found in a
similar way, namely by considering the different choices of
the packing origin.

It seems to be incompatible that the local symmetry
of triacontahedron faces is higher than just a single 2-
fold axis. The multiplicity of general atomic positions on
faces is twice as large compared to the positions inside the
triacontahedron very close to the surface. How can it be
that, when an atom is slowly approaching the surface, its
multiplicity suddenly doubles? The simple answer is: when
an atom is approaching the surface from inside, another
atom is approaching the paired position from outside.

Imagine, for example, a tetrahedrally bounded atom on
the surface of a triacontahedron with three bonds directed
inward to the cell and one bond directed outward from the
surface. Then, there will be a pair of atoms with single bonds
directed outwards and another pair of atoms with single
bonds directed inwards. For the group I , we mark such
positions with open and solid circles, respectively. Note that
this difference disappears for the group Ih due to the local
mirror plane passing through the face. For the group Ih, the
number of equivalent positions close to the surface does not
double when the position approaches the face.

Marking of the general positions on cell faces for the
group I is shown in Fig. 9. Such marking spots, in fact,
provide yet another tool for the formulation of the matching
rules (compare with [22]) and must be, therefore, mutually
consistent with all the four types of quasi-unit cells. If
two quasi-unit cells are placed face-to-face next to each
other, then the opposite marking spots must coincide, and
furthermore, open circles must coincide with solid circles
and vice versa. They may be interpreted as key-lock-pairs.
A face with two wide-set spots does not fit the one with
two narrow-set spots and also the one with four spots. So,

Fig. 8 Local symmetry of faces
for the group I
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Fig. 9 Marking of the general positions on the cell faces for the group I . The marking spots act as key-lock-pairs when stacking quasi-unit cells
face-to-face

when returning to the problem of how to fill the quasi-
unit cells with atoms, we emphasize the following: The
directed chemical bonds must obey the symmetry rules and
we should take into account not only the inequivalent sites
themselves but also the local site symmetries when placing
the atoms on the faces.

We draw attention to an interesting fact. Consider four
atoms in general positions on the faces F1 and shift them
a little inward and outward from the surfaces. If one pair
moves inward from the surface, the other moves outward,
and vice versa. If we consider each of them in turn, we
get an example of two icosahedral enantiomorphs, at least
theoretically.

Enumeration of other specific positions seems to be
unproblematic. The only complication is the accurate
accounting of sharing factors. Positions on the faces are
characterized by the sharing factors of 1/2. The sharing
factors for atoms on the edges and at the vertices are
presented in Fig. 10. This data is necessary for the
calculation of chemical composition.

Composition stoichiometry

In order to calculate the packing density and compound
stoichiometry, we firstly need to know the relative

frequencies of quasi-unit cells, which in turn may be found
by applying the Perron projection to the transpose of the
substitution matrix [39]:

lim
k→∞

(
1

τ 9
MT

)k

= v ⊗ wT. (3)

Here, τ 9 represents the cube of the linear scale factor and is
nothing but the Perron-Frobenius eigenvalue, M is the tiling
substitution matrix, while the result of the Perron projection
is the Kronecker product of its left and right eigenvectors v
and w, respectively. Recall that every row of the transposed
substitution matrix indicates how many quasi-unit cells of
the initial size are required to build up the inflated cells, the
volume of which becomes τ 9 times greater.

The eigenvectors read:

v = (1, 2τ, 5τ, 10τ)

w = 1

10
(6 − 2τ, −11 + 7τ, 10 − 6τ, −3 + 2τ) (4)

The components of the vector v are the relative cell volumes,
whereas the components of the vector w are their absolute
appearance frequencies. The vector w shows how many
cells there are per unit volume in the tiling on average. All

Fig. 10 Sharing factors for atoms on the edges and at the vertices
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the frequencies can be expressed through the golden ratio as
binomials with rational coefficients.

The simplest way to calculate the vector w is to take the
substitution matrix and square it several times:

1

τ 9
MT = 1

τ 9

⎛

⎜
⎜
⎜
⎜
⎝

21 3 2 2
5 1 3

5

68 11 6 2
5 5 3

5

170 20 17 15

340 30 36 31

⎞

⎟
⎟
⎟
⎟
⎠

exponentiation
by squaring−−−−−−−−−−−→ . . . → v ⊗ wT

(5)

Even after the 3rd squaring the resulting matrix does not
change much anymore. The 4th iteration corresponds to
the 24 = 16 consecutive inflations so that the averaging
occurs over the region with linear dimensions ∼1010 times
as large as the initial cell size. The 4th iteration guarantees
that the averaging region is macroscopic in size. The first
row of the obtained matrix provides the required occurrence
frequencies.

If an atom occupies a certain position (see Table 4),
we need to calculate the occupancy vector p taking into
account all equivalent sites. Four components of the vector
p are the numbers of specific atoms in the cells of each
type, respectively. We need to multiply the corresponding
multiplicity and sharing factors and sum the products over
the cells taking into consideration the numbers of faces,
edges, and vertices if necessary. For example, if certain
atoms occupy the vertices A, the occupancy vector is given
by p = ( 1

2 , 2, 3, 3). If, conversely, the vertices B are
occupied, p = ( 1

2 , 1, 3, 7). Well, all that remains is to take
the dot product:

d = (p · w) (6)

The value of d shows how many atoms of a given sort
exist per unit volume, when the volume of an elementary
rhombohedron is assumed to be 1.

To calculate the X-ray density, we have merely to execute
the similar procedure for all the occupied positions and for
all sorts of atoms. Another interesting observation is that
stoichiometric coefficients can always be expressed through
the golden mean. The composition of conventional periodic
crystals is given by the ratio of two or more integers. The
stoichiometric composition of icosahedral quasicrystals is
given by the ratio of algebraic integers, namely belonging

to the ring of quadratic integers Z

[
1+√

5
2

]
= a + bτ of

the field Q(
√

5) [52]. In other words, their composition can
always be expressed through the binomials of τ with integer
coefficients.

Of course, this relates to the exact stoichiometric com-
position of perfect quasicrystals. Intermetallic compounds

usually have wide homogeneity regions in phase diagrams.
Icosahedral quasicrystals are no exception and can also
exhibit the deviations from stoichiometry like any other
chemical compounds of variable composition (berthollides).

Diffraction pattern

Diffraction patterns of icosahedral quasicrystals are charac-
terized by the sets of aperiodically arranged sharp diffrac-
tion peaks (Bragg peaks). Our goal is to provide a tool,
which enables the calculation of structure factors without
leaving the real physical space. When considering diffrac-
tion of plane waves within the kinematic theory of scat-
tering, we have to deal with similar terms in the form of
fj exp[i(krj )], where rj and k represent the vectors in
direct and reciprocal space, respectively, and fj are the
atomic scattering factors. Scattering by rotated quasi-unit
cells can be described by terms fj exp[i(kĝrj )]. The sym-
metry transformation g is considered here as an operator.
The action of the group element can be interpreted either as
the left-action on the real vector, or as the right-action on
the reciprocal vector. The first approach forces us to con-
sider all the differently oriented cells as independent ones
so that the total number of cells becomes as large as 63 (see
Fig. 3). The second approach does not lead to an increase in
the number of cells but entangles the reflexes with equiva-
lent sets of Miller indices. We have opted for the increased
basic set.

The calculation procedure is as follows. Suppose we have
chosen an appropriate decoration scheme for all cells. At the
first step, for a given scattering vector k, we calculate the
partial structure factors Fk for every quasi-unit cell bearing
in mind the difference between the rotated cells:

Fk =
∑

j

fj exp[i(krj )] (7)

Here, fj and rj are the atomic scattering factor and the
position of the j th atom in the kth cell. The atomic
coordinates are given with respect to the local coordinate
systems. Rotation of cells occurs about their local origins.
Atomic scattering factors should be multiplied by sharing
factors when necessary.

Let us temporarily denote the initial structure factors
as F

(0)
k . Then, inflate and deflate the cells and consider

their partial structure factors F
(1)
k again. Continue the

inflations and deflations up to infinity. Every time, the linear
cell dimensions become τ 3 times larger, whereas the cell
volumes become τ 9 times larger. The atomic form factor is
defined as the Fourier transform of the scattering density.
The structure factor of a single cell is, in turn, the Fourier
transform of the scattering density and splits into the sum
of atomic form factors multiplied by corresponding phase

Struct Chem (2020) 31:485–505498



factors. The structure factor of an inflated supercell is, in
turn, the Fourier transform and splits into the sum of the
structure factors of subcells multiplied by corresponding
phase factors, and so forth:

F
(0)
k =

∑

j

fj exp[i(krj )]

F
(1)
k =

∑

j

F
(0)
j exp[i(kRj )]

F
(2)
k =

∑

j

F
(1)
j exp[i(k · τ 3Rj )]

. . .

F
(n+1)
k =

∑

j

F
(n)
j exp[i(k · τ 3nRj )] (8)

Here, Rj is the position of the j th subcell in the
decomposition of the kth supercell. The partial structure
factors of initial cells play the role of atomic scattering
factors in corresponding equations as if the quasi-unit cells
were “composite” atoms which comprise the supercells.

We see that the partial structure factors of the inflated
quasi-unit cells are represented by the linear combinations
of the initial ones. Therefore, we can write this set of linear
equations in the matrix form.

We define a special matrix S which we can refer to as
the scattering substitution matrix [39]. If a specific cell
in a specific orientation appears in the decomposition, the
respective phase factor appears at the intersection of the
corresponding row and column. Of course, the phase factors
should be multiplied by the sharing factors for the shared
subcells. We emphasize that the differently oriented quasi-
unit cells should be counted as separate ones at this stage.
The matrix S is thus a 63 × 63 matrix. We go through all
entries of the array of rules and fill the entries of the matrix
S by corresponding sums of the products of the phase and
sharing factors.

The kinematic theory of scattering neglects the multiple
diffraction effects. We have thus reasons to expect that
the following procedure results in the required (complex)
weighting factors for the averaging of partial structure
factors:

F(n+1) = S(n) · . . . · S(1)S(0)F(0) =
(

n∏

k=0

S(k)

)

F(0) (9)

Each inflation is accompanied by a volume increase.
On the other hand, the intensity of the diffracted beam is
proportional to the volume of the irradiated homogeneous
medium. Therefore, to normalize the intensities to the
volume of an initial rhombohedron, we should divide each

matrix S(k) by a factor of τ 9, write down a respective
sequence of matrix products, and then find its limit:

. . . · S
(n)

τ 9
· . . . · S

(1)

τ 9
· S

(0)

τ 9
=

∞∏

k=0

S(k)

τ 9
(10)

This sequence converges very fast. Even the 6th inflation
corresponds to the micrometer-sized grains so that about
five consecutive matrix multiplications ensure averaging
of the coherently scattered waves over several millions of
quasi-unit cells.

Strictly speaking, this procedure is not the Perron
projection, though it is very similar to it. The matrices
S(k) differ from each other due to the factors of τ 3 (see
Eq. 8). Their entries are complex, not real. We expect that
the dominating eigenvalues of all matrices S(k) are equal to
τ 9, but we cannot prove it. We also cannot prove that the
matrix sequence necessarily converges with n → ∞, and
namely to the degenerate matrix all rows of which differ
from each other by constant (complex) factors only. At the
moment, we shall confine ourselves to saying only that
further investigations are needed.

If we do not focus on the pure mathematical aspects, we
can conclude that, finally, the computation of the average
structure factors splits into the following steps: First, we
calculate the column vector, which entries are the partial
structure factors, whereby the differently oriented quasi-unit
cells should be counted as different ones. Then, we compute
the scattering substitution matrices and create the special
matrix sequence as described above. Next, we find the limit
of that sequence and write down the first row from the
resulting matrix. It contains the required complex weighting
factors. Finally, we take the dot product of both vectors to
obtain the average structure factor for the Bragg peak under
consideration.

Characteristic clusters and their spatial
arrangement

Conventional approaches to solve the Patterson map
immediately in higher dimensions may not always be
appropriate for interpretation of atomic positions in
real space within the standard cut-and-project procedure.
Indeed, when describing the generation of the Fibonacci
chain by strip projection, Steurer and Haibach [53] write
the following: “The physical space V‖ is related to the
eigenspace of the substitution matrix S associated with
its eigenvalue λ1 = τ . The perpendicular space V⊥
corresponds to the eigenspace of the substitution matrix
S associated with its eigenvalue λ2 = −1/τ . Thus, the
physical space scales to powers of τ and the perpendicular
space to powers of −1/τ .” The further apart are two
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Fig. 11 An example of the cell decoration scheme. (A) The centers of A-stars, (B) the centers of B-stars, (C) the centers of triacontahedra, (D)
positions on the diagonals of such rhombohedra which are surrounded by three rhombic dodecahedra, and (E) positions on the 5-fold axes of
rhombic icosahahedra

equivalent points in physical space after inflations, the
closer are the corresponding points in perpendicular space.
In particular, this means that those closely spaced peaks
on the Patterson map, which are usually interpreted
as unreasonable in physical space in comparison with
the shortest interatomic distances, may be allowed in
perpendicular space V⊥. This has prompted us to search
for uniform and simple rules to fill the quasi-unit cells with
atoms without appealing to higher dimensions.

Figure 11 shows such an example. We consider the
Socolar-Steinhardt tiling and suppose that the cells are
filled as follows. Some atoms, say of the type A, occupy
the centers of the complete A-stars. Similarly, atoms B
occupy the centers of the B-stars. Atoms C occupy the
centers of triacontahedra. Further, we search over the
entire tiling for special clusters of four rhombohedra and
three rhombic dodecahedra. Such clusters together with
neighboring triacontahedra were usually interpreted as c-
linkage of overlapping triacontahedra up to now. We place
the atoms D inside each of such clusters somewhere on
the long diagonal of the central rhombohedron. Next, we
place the atoms E somewhere on the 5-fold axes of initial
rhombic icosahedra. Note that rhombic icosahedra generate
equivalent positions on the edges E1 of inflated cells.
Finally, we apply the similar decoration scheme to all the
four types of quasi-unit cells (Fig. 12). The special features
of the as-obtained packing are as follows.

The Tsai cluster appears from the triacontahedron as a
result of the cell decoration. It consists of four consecutive
shells: the dodecahedron, the icosidodecahedron, the
icosahedron and the outer thiacontahedron with additional
atoms on its edges. The Tsai cluster is centered with a
C-type atom. The 2nd shell is built of C-type atoms too
and has the fixed size. The relative size of the 1st and
the 3rd shells may vary. The smaller the 3rd (icosahedral)
shell is, the closer the corresponding atoms in the last
(triacontahedral) shell to the mid-points of the edges are and
also to the B-type vertices. If we choose the position of the

E-type atom so that it coincides with the local origin of the
rhombic icosahedron, the 2nd and 3rd shells join into an
icosahedron with triangulated faces. Such packing geometry
is characteristic of the Mackay cluster.

All cells inherit the decoration scheme of the Tsai
cluster. A half of the Tsai cluster appears inside the
rhombic icosahedron. A smaller wedge slice predefines
the decoration of the rhombic dodecahedron. A very small
triangle piece of the Tsai cluster predefines the decoration
of the rhombohedron (Fig. 12). Distribution of atoms within
the three of four cells is strongly non-centrosymmetric.

There are no pairs of interpenetrating triacontahedra
in our model, because the second of them is, in fact,
a composite sphere-like cluster of seven subcells with
integral 3-fold symmetry (see Fig. 11). Such assumption
predetermines the asymmetric positioning of triacontahedra
within the inflated rhombohedron: one triacontahedron is
situated at the local cell origin on the long diagonal, whereas
the other three triacontahedra are situated on the edges
on the opposite side. Such type of mutual arrangement
of triacontahedra in icosahedral quasicrystals has been
reported earlier by Audier et al. [54].

No disordered tetrahedra exist inside the Tsai clusters.
Moreover, what we mean is that such tetrahedra appear
due to the erroneous identification of sphere-like 3-fold
clusters, when such clusters are wrongly equated with
interpenetrating triacontahedra and forcibly fitted to higher
symmetry.

Some of the A-type vertices of the Tsai clusters are not
occupied. Return to Fig. 4. We suggested that only those of
the A-type vertices are occupied that are the centers of stars.
However, some vertices do not transform into complete A-
stars after the first deflation, namely those of them to which
the arrows point, irrespective of whether the arrows denote
the E2 edges of the cell under consideration or the arrows
point to the cell vertices from outside. Such vertices should
be thus unoccupied. This ambiguity can be removed after
two consecutive inflations and deflations.
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Fig. 12 Decoration of quasi-unit cells. As a result, the Tsai cluster appears from the triacontahedron. Other cells inherit the decoration scheme of
the Tsai cluster

Now we set the origin of the global coordinate system at
the A- and B-type sites, respectively, and apply the similar
decoration scheme. As a result, we obtain the remaining
two locally isomorphic packings and two additional families
of multi-shell icosahedral clusters (Fig. 13). Any of them
appears infinitely many times in the packing alongside with
the Tsai clusters.

The sequence of shells and their relative size almost
completely reproduce the structure of characteristic clusters
found in Al-Pd-Mn quasicrystals [11]. Moreover, we have
an interesting observation: if the C-type sites are occupied
by the Tsai clusters, then the A-type sites are occupied by
the Bergman clusters.

Recall that we introduced only two variable parameters:
the position of the atom D on the 3-fold axis and the position
of the atom E on the 5-fold axis. The relative shell size
of any shell in any cluster is either determined by one
of these parameters or fixed. We see that the structures
of characteristic clusters reproduce “in general” the main

structural motifs of known icosahedral quasicrystals and
their approximants [10, 11, 51, 55–58], especially when
bearing in mind that some of the shells can swap.

The next interesting feature is the spatial arrangement
of the Tsai clusters (Fig. 14). They can form icosahedra,
dodecahedra and icosidodecahedra when stacked face-to-
face. A dodecahedral hierarchical shell of Tsai clusters
surrounds the A-type site. An icosahedron, whose vertices
are occupied by the Tsai clusters, surrounds the B-type
site. A fascinating hierarchical cluster of clusters appears
around the C-type site. The central Tsai cluster, which is
represented by a single point in Fig. 14, is surrounded by
an icosidodecahedron, whose vertices are occupied by the
Tsai clusters. In turn, it is surrounded by a hierarchical
cluster of clusters—icosidodecahedron, whose vertices are
occupied by icosidodecahedra, whose vertices are occupied
by the Tsai clusters. Positions of the Tsai clusters between a
central icosidodecahedron and the ring of icosidodecahedra
are strongly ordered and inherit the decoration scheme of
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Fig. 13 Multi-shell structure of characteristic clusters centered at the sites A and B in the case when the C-type sites are occupied by the Tsai
clusters

rhombic dodecahedra (see the remarkable wedge slices in
Fig. 12). In projection along the 5-fold axis, the clusters
form characteristic patterns of decagons and pentagons.

This picture almost exactly reproduces the main struc-
tural motif of the Yb-Cd family of icosahedral quasicrystals

[12, 14]. The key differences are the following: (i) The
spatial arrangement of the Tsai clusters actually lacks the 5-
fold symmetry in a standard model especially in the region
between the central icosidodecahedron and the ring of icosi-
dodecahedra. Our model does not have this disadvantage
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Fig. 14 Spatial arrangement of
Tsai clusters. They form
self-similar hierarchical clusters
of clusters: icosidodecahedra,
whose vertices are occupied by
icosidodecahedra, whose
vertices are occupied by the Tsai
clusters. In projection along the
5-fold axis, they form
characteristic patterns of
decagons and pentagons

(compare with a dense plane of triacontahedral units pro-
jected along the 5-fold axis, see Fig. 5 in [12]). (ii) The
innermost disordered tetrahedral units inside the triaconta-
hedron do not appear in our model. On the contrary, a C-type
atom appears at the center of the cluster. (iii) In the com-
monly accepted model, the icosahedral shell is assumed to
be occupied by the ytterbium atoms, whereas the mid-edges
of the triacontahedron are occupied by cadmium. In con-
trast, both positions are interrelated in our model, so that
we expect that they should be occupied by similar atoms.
(iv) There are a lot of partially occupied positions in a stan-
dard model, as well as positions with mixed occupancies,
because a substitutional disorder in atomic occupation is an
intrinsic property of such chemical compounds. (v) Hundreds
of variable parameters are usually needed in practical refine-
ments [14]. Only two parameters define the relative atomic
positions in our model.

What we mean to say is that “the truth is somewhere in
between”.

Results and discussion

The multiple-cell approach includes the group-theoretical
analysis of the packing symmetry, selection of an appropri-
ate set of quasi-unit cells, formulation of the substitution
rules, formulation of the space-filling algorithm, enumer-
ation of inequivalent atomic positions in quasi-unit cells
and formulation of corresponding decoration rules, selec-
tion of an appropriate cell decoration scheme and, finally,
the construction of the packing with subsequent analysis of
substitution matrices both in real and reciprocal space. The
similar approach can be applied to almost all types of qua-
sicrystals (see, e.g., [59]). For example, if the Penrose tiling
is laid down on the basis of the packing, two right prisms
with rhombic bases may be used as quasi-unit cells. We
hope that such approach could give a new insight into the
general problem of aperiodicity [60–62].

Both I and Ih symmetry groups can be considered within
the multiple-cell approach; meanwhile, both left-handed
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and right-handed enantiomorphic forms can be resolved for
the group I at the stage of cell decoration. For example, we
can imagine a hierarchically built skewed icosahedron (see,
e.g., a geometric model of the papilloma viral capsid [63])
and put it inside the largest quasi-unit cell, a half of it—
inside the smaller cell, a wedged slice—inside the even smaller
one, and a small triangle piece put inside the rhombohedron,
so that such procedure results in a non-centrosymmetric
quasicrystalline packing of viral capsomers.

The next interesting question is the shape of the Brillouin
zone. This problem has been extensively treated by both
theoretical and experimental methods. In particular, selected
area diffraction from artificial aperiodic structures has been
used for the Brillouin zone visualization. Toroidal topology
of fundamental domains has been widely discussed in this
regard [64–67]. On the other hand, icosahedral quasicrystals
obey the icosahedral symmetry both in real and reciprocal
space. In the same manner as four quasi-unit cells fill the
real space, the four Brillouin subzones can fill the reciprocal
space. Recall that the Brillouin zone contains all irreducible
representations, which are indexed with a wave vector k. It
may not necessarily be a single bounded set.

The calculation technique based on the scattering
substitution matrices can provide the researchers with the
effective tool for the description of scattering phenomena
and manipulation of optical fields in deterministic aperiodic
nanostructures [68], as well as facilitate further progress in
the field of photonic quasicrystals [69, 70]. Another possible
area of application lies in the architectural acoustics,
particularly in designing the sound shielding and acoustic
ceiling systems [71].

Conclusion

The multiple-cell approach is proposed as an alternative
to the higher-dimensional crystallographic description of
icosahedral quasicrystals. Four types of golden zonohedra
serve as quasi-unit cells. They fill the space without gaps
and overlappings. Every quasi-unit cell is decorated by
specific atoms and associated with a triad: type, position,
and orientation. Both I and Ih symmetry groups can be
distinguished at the stage of cell decoration. Both the Tsai
and the Bergman clusters appear as a result of a simple five-
component decoration scheme. The mutual arrangement
of characteristic clusters is in a good agreement with the
known icosahedral structures.
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12. Takakura H, Gómez CP, Yamamoto A, de Boissieu M, Tsai AP

(2007) Nature Mater 6(12):58
13. Yamada T, Takakura H, Euchner H, Gómez CP, Bosak A, Fertey
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