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Abstract
The current work is focused on in silico modeling of COX-1 inhibitors with enhanced safety gastric profile. A 5-point
pharmacophore model, atom-based 3D quantitative structure-activity relationship (3D-QSAR) and electronic properties were
computed for a series of COX-1 inhibitors. The best pharmacophore model AAHRR.10 consisting of two hydrogen bond
acceptors, one hydrophobic site, and two rings was developed to derive a predictive, statistically significant 3D-QSAR model
at three partial least square factors (R2 = 0.991, SD = 0.059, F = 278.5, Q2 = 0.682, RMSE = 0.325, Pearson’s R = 0.903,
Spearman’s rho = 0.872). The AAHRR.10 hypothesis was validated by enrichment studies employing a custom-made validation
dataset adopting selective COX-1 inhibitors extracted from ChEMBL and decoys generated via DUD methodology. The global
reactivity descriptors, such as HOMO and LUMO energies, the HOMO-LUMO gaps, global hardness, softness, Fukui indices,
and electrostatic potential, were carried out using density functional theory (DFT) to confirm the key structural features required
to achieve COX-1 selectivity. Well-validated AAHRR.10 hypothesis was further used as 3D query in virtual screening of the
DrugBank database to detect novel potential COX-1 inhibitors. Docking algorithm was applied to enhance the pharmacophore
prediction and to recommend drugs for repositioning, which can interact selectively with COX-1.
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Introduction

The main cyclooxygenases (COXs) are COX-1, the constitu-
tive enzyme (“housekeeping enzyme”), and the inducible en-
zyme COX-2 which is responsible for the initiation and main-
tenance of the inflammation process [1]. COXs are responsi-
ble for the biosynthesis of prostaglandins from arachidonic
acid (AA) and mediate pathogenic mechanisms [2]. COX-1
stimulates neovascularization and tumor development in the
ovary [3]; wherefore, selective inhibition of COX-1 can be

helpful as adjuvant therapy for ovarian cancer. Non-steroidal
anti-inflammatory drugs (NSAIDs), the most used classes of
analgesics, are prescribed for the treatment of pain, fever,
acute and chronic inflammation, and some types of cancers
[4]. NSAIDs inhibit both isoforms of COXs, showing various
affinities and selectivities. Several side effects including ul-
cers, gastrointestinal bleeding, deficient coagulation, cerebro-
vascular, cardiovascular, and renal complications, restraint
their use [5, 6]. Selective NSAIDs include COX-1 inhibitors
(aspirin, SC-560, mofezolac, FR122047, etc.) [7], COX-2 in-
hibitors (celecoxib, parecoxib, rofecoxib, parecoxib,
valdecoxib, lumiracoxib, etc.) [8, 9], and the competitive
non-selective ones (ibuprofen, diclofenac, indomethacin,
naproxen, etc.), which inhibit both isoforms showing a pref-
erential trend against COX-1 [10]. Selective COX-2 inhibitors
such as celecoxib and parecoxib display analog pharmacolog-
ical properties but have improved gastrointestinal safety pro-
file compared with traditional NSAIDs [11].

To date, a large number of COX-2 inhibitors (denominated
COXIBs) aimed at diminishing gastrointestinal side effects
[12] have been developed, but limited attention has been paid

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11224-019-01414-w) contains supplementary
material, which is available to authorized users.

* Alina Bora
alina.bora@gmail.com

* Liliana Pacureanu
pacureanu@acad-icht.tm.edu.ro

1 “Coriolan Dragulescu” Institute of Chemistry, Romanian Academy,
24 Mihai Viteazul Ave., 300223 Timisoara, Romania

https://doi.org/10.1007/s11224-019-01414-w
Structural Chemistry (2019) 30:2311–2326

/Published online: 30 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-019-01414-w&domain=pdf
http://orcid.org/0000-0002-8526-7024
https://doi.org/10.1007/s11224-019-01414-w
mailto:alina.bora@gmail.com
mailto:pacureanu@acad-icht.tm.edu.ro


to design selective COX-1 inhibitors with improved gastroin-
testinal profile [7, 10, 13, 14]. COX-1 catalytic activity resides
in the ability to catch AA among ARG120, TYR355, and the
catalytic TYR385. Most of the NSAIDs bearing a carboxylic
acid interact with COXs similarly to AA by making a salt
bridge with the guanidinium group of the ARG120, situated
at the entryway of the hydrophobic binding site channel,
which aligns the aromatic moiety of NSAIDs against
TYR385, at the top of the active site [15]. The structural fac-
tors which determine classical NSAIDs to inhibit preferential-
ly COX-1 are not thoroughly elucidated [16]. Cingolani et al.
[17] identified twenty-one out of the twenty-seven co-
crystalized NSAIDS-COX-1 complexes where the carboxyl-
ate moiety of acidic NSAIDs interacts with the guanidinium
group of ARG120. Regardless of their low selectivity,
NSAIDs appear to bind more tightly to COX-1 with respect
to COX-2, most probably as a result of the energy of the salt
bridge interaction between the carboxylate anion of the ligand
and the guanidinium cation of ARG120 [18]. The design of
selective COX-1 inhibitors relies on the assumption that se-
lective inhibition of COX-1 has to lower pain and inflamma-
tion apart from threatening gastric mucosa [19]. In gastric
epithelial cells, the dominant isoform is COX-1 [20].
However, gastric tissue exposure is not entirely related to
COX-1 inhibition, i.e., 4,5-diarylthiazole and diarylimidazole,
which display carboxylic acid group, showed selectivity for
COX-1 over COX-2 and low propensity to induce gastric
damage [21]. Particularly, NSAIDs with high selectivity for
COX-1 contain diarylisoxazole molecular scaffold. The struc-
tural evidence for COX-1 binding to diarylisoxazoles has been
investigated by X-ray analysis of the COX-1-mofezolac com-
plex that permitted the identification of key binding determi-
nants for structure-activity relationships (SAR) [17]. Hence,
the development of new inhibitors which have substantial
anti-inflammatory effects but prevent gastrointestinal bleeding
remains an open research area [12].

Along these lines, our aim is to establish an in silico pro-
tocol able to identify selective COX-1 inhibitors with im-
proved gastric profile and to reveal extensive guidelines for
the rational design of novel molecules. This goal was accom-
plished by developing and validating pharmacophore model,
custom-made dataset design and screening, and docking, and
by density functional theory (DFT) calculations. A
pharmacophore model including essential physicochemical
features to selectively inhibit COX-1 was obtained. The gen-
erated pharmacophore hypothesis was validated by 3D atom-
based QSAR aiming at obtaining comprehensive QSAR
models that will explain the quantitative differences in the
inhibitory activities. The ability of the best pharmacophore
hypothesis to identify selective COX-1 inhibitors from a
custom-made selective-decoy dataset [22, 23] was verified.
Furthermore, we calculated electronic descriptors
(“Electronic parameters” section) to confirm the

pharmacophore points required for COX-1 selectivity. The
validated pharmacophore hypothesis was used to identify
chemical entities from the DrugBank database which were
further suggested for repurposing. The probable interactions
of the repurposed drugs were identified by docking experi-
ments into COX-1 active site.

Computational methods

Dataset selection and preparation

The diarylthiazole and diarylimidazole derivatives as selective
COX-1 inhibitors with improved gastric profile were collected
from the literature [21]. Most active and selective compounds
(7, 8, 15, 16 in Table 1) were used to build the pharmacophore
model. The experimental half maximal inhibitory concentra-
tion (IC50) values were converted to a logarithmic scale (pIC50

= −logIC50). The Marvin tool (ChemAxon) [24] was used for
drawing, displaying, and characterizing chemical structures of
the investigated ligands. The ionization states and tautomers
of each molecule were enumerated using the LigPrep
(Schrödinger) in the pH range of 7.2 ± 0.2 [25]. The con-
formers were generated using default parameters of
ConfGen (Schrödinger) [26] by employing the OPLS2005
force field, and only the lowest energy conformer of each
ligand was kept.

Validation dataset for virtual screening

The performance of virtual screening (VS) approach is mea-
sured by ligand enrichment using benchmarking sets, as
shown by numerous publications [27–30]. The datasets of true
ligands and their related decoys designated for testing VS
methodologies are well-known as validation benchmarking
set [31]. The DUD-E database represents an important source
of standard and custom-made validation datasets that could be
used for the evaluation of VS methods for a wide range of
targets [23]. Instead of using DUD-E COX-1 benchmarking
set, we take advantage of the ChEMBL25 database [22] to
assemble a benchmarking dataset for COX-1 which is focused
on selectivity. This custom dataset was built similarly to
DUD-E actives sets [23] and further used to test the accuracy
of our pharmacophore model. The “duplicate filtering” facility
of Instant JChem [32] was applied to a set of 3949 COX-1
inhibitors downloaded from ChEMBL, resulting in 322
unique compounds with an IC50 ≤ 1 μM. Out of retrieved
322 unique compounds, 59 compounds satisfy conditions:
(i) IC50 ≤ 1 μM related to COX-1 and (ii) the selectivity index
related to COX-2 [22] as SI = IC50COX-2/IC50COX-1 ≥ 10.
Afterward, the selectivity custom dataset was subjected to
scaffold extraction using Instant JChem [32] resulting in 24
distinct Bemis–Murko chemotypes [33]. Their associated
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decoys including 1300 compounds were generated using the
DUD-E free online system (http://dude.docking.org/) [23, 34].

The benchmarking dataset was fitted against the
AAHRR.10 hypothesis and subsequently ranked by the fit-
ness score values. The fitness score is a measure of how well
the selectives and decoys fit with the pharmacophore hypoth-
esis. The compounds showing high values of fitness score
were considered true positives if they are COX-1 inhibitors
or false positives if they belong to the decoy set. For each
compound, the fitness score value is calculated from Eq. 1:

Fitness ¼ W site � 1−Salign=Calign

� �þWvec � Svec þWvol � Svol ð1Þ

were Wsite represents the weight of the site score (default is
1.0), Salign is the alignment score, Calign indicates the align-
ment cutoff (default is 1.2.), Wvec is the weight of the vector

score (default is 1.0), Svec denotes the vector score,Wvol shows
the weight of volume score (default is 1.0), and Svol is the
volume score [35–37].

Pharmacophore modeling and atom-based 3D-QSAR

Phase software (Schrödinger) was engaged to develop the
pharmacophore hypothesis [35–37]. Pharmacophore chemical
features used contain hydrophobic group (H), aromatic ring
(R), hydrogen bond acceptor (A), the hydrogen bond donor
(D), negative ionizable group (N), and positive ionizable
group (P); no custom features were added. The ligand dataset
(Table 1) was divided into actives (pIC50 > 6.1), inactives
(pIC50 < 5.1), and moderately actives (6.1 > pIC50 > 5.1).
Random selection [35] was employed to split the dataset into
a test set of 6 compounds and a training set of 12 (Table 1). All

Table 1 Chemical structures, experimental and predicted pIC50 values, selectivity index, and fitness score of diarylthiazole and diarylimidazole
analogs, celecoxib, and indomethacin

No. R R1
pIC50exp pIC50pred

SI
¶ Fitness

score

1 -H 5.240 5.270 1.440 2.100

2* -OCH3 5.397 5.690 1.720 2.500

3 -H 5.097 5.170 1.890 2.100

4* -OCH3 5.221 5.740 2.680 2.700

5* -H 5.517 5.870 3.630 1.950

6 -OCH3 5.565 5.560 2.920 2.500

7* -OH -H 6.377 6.380 25.500 2.260

8 -OH -OCH3 6.495 6.490 28.840 3.000
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resulted hypotheses were ranked based on survival, energy,
volume, vector scores, best active alignment, and the number
of site matches [35–37].

Atom-based 3D-QSAR models were generated for the li-
gand set (Table 1) using partial least squares (PLS) regression
based on a grid spacing of 1 Å. To evaluate the quality of all
generated hypotheses, the internal and external validation pa-
rameters were calculated: (i) training set—squared correlation
coefficient (R2), standard deviation (SD), statistical signifi-
cance (P), and Fisher’s test (F); (ii) test set—squared correla-
tion coefficient (q2) and Pearson’s correlation coefficient
(Pearson’s R); (iii) complete dataset—Spearman’s rank corre-
lation (ρ) The Spearman rank correlation indicates the degree
of correlation between experimental and predicted values by

evaluating statistical associations based on the ranks of the
data (Eq. 2):

ρ ¼ 1−
6� ∑d2i
n n2−1ð Þ ð2Þ

where di represents the difference between the ranks of vari-
able Y (activity) and n denotes the number of observations.

Docking

FRED (Fast Rigid Exhaustive Docking; OpenEye) [38–40]
docking strategy was used to exhaustively score all possible
positions of each ligand in the COX-1 active site. The COX-1

No. R R1
pIC50exp pIC50pred

SI
¶ Fitness 

score

9 -H 5.199 5.270 1.760 0.880

10 -OCH3 5.239 5.250 1.790 2.460

11* -H 5.070 5.360 1.540 0.980

12 -OCH3 5.134 5.140 1.920 2.520

13 -H 5.380 5.340 2.450 0.710

14 -OCH3 5.514 5.510 2.720 2.520

15 -OH -H 6.174 6.100 20.070 1.970

16* -OH -OCH3 6.268 6.000 23.280 2.640

17

Celecoxib

4.790 4.730 0.020 1.760

18

Indomethacin

6.149 6.200 15.590 1.390

*Compounds included in the test set; ¶ SI denotes selectivity index

Table 1 (continued)
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receptor and the ligands were treated as rigid structure during
the entire docking process. Ten docking poses were retained
for each ligand conformer.

The co-crystal structure of COX-1 complexed with 2-(3,4-
bis(4-methoxyphenyl)isoxazol-5-yl)acetic acid (mofezolac)
and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6)
(PDB ID: 5WBE) [41] was designated as a template for our
docking study. This structure was selected based on the sim-
ilarity between mofezolac and the most active ligand 8 [21].
Generally, the diarylisoxazole moiety is specific for com-
pounds with high selectivity for COX-1 [41]. The 5WBE
binding site was used as input and prepared for subsequent
grid generation using the Make Receptor (OpenEye) [42].
Active site box (area of the protein where ligands are expected
to bind) with the size of 5775 Å3 and two shape contours
displaying 80/402 Å3 (inner/outer volumes) were generated,
using default parameters without constraints. An RMSD of
0.863 between the atomic coordinates of mofezolac extracted
from 5WBE and the docked conformer validated our docking
protocol.

Subsequently, the most active and selective COX-1 inhib-
itors (compounds 7, 8, 15, 16 in Table 1) and the drugs iden-
tified by AAHRR.10 hypothesis were docked into the 5WBE
receptor. The conformational search ability of OMEGA soft-
ware (OpenEye) with default parameters was employed to
model the ligand conformer ensembles [43–46].

Virtual screening and evaluation techniques

The quality of a pharmacophore is assessed by evaluation of
its ability to detect compounds with known biological activity,
whereas in terms of predictive accuracy, a valuable
pharmacophore model has to identify novel, potential leads
that are appropriate for further development. The selected
pharmacophore model was used as a 3D query to screen the
custom datase t for COX-1. The performance of
pharmacophore hypothesis was evaluated using known indi-
cators (Eqs. 3 and 4) [47, 48]: overall prediction accuracy
(Acc) and the weighted average precision (WPPV) [49, 50].
The WPPV is highly recommended for imbalanced datasets
where the number of decoys is greater than the number of
selectives, as the case of our investigation.

Acc ¼ TPþ TN

TPþ TNþ FPþ FN
ð3Þ

WPPV ¼ PPVCLS 1 � N1þ PPVCLS 2 � N2

N1þ N2
ð4Þ

where TP represents the number of correctly predicted actives/
selectives (true positives), TN accounts for the number of
correctly predicted decoys (true negatives), FP denotes the

number of mispredicted actives/selectives (false positives),
FN stands for the number of mispredicted actives/selectives
(false negatives), and N1 is the number of actives (selectives),
whereas N2 represents the number of decoys.

Several evaluation metrics (Eqs. 5 and 6) were computed
using an in-house developed program denoted Evaluation
Tool In ChemInformatics (ETICI) [51]. The overall discrimi-
native power for the pharmacophore hypothesis was described
by the area under the receiver operating curve (ROC-AUC)
[47]. The AUC (Eq. 5) is a measure of the number of actives
recovered at any threshold of the hit list, where an AUC of 1
shows the perfect separation between actives (selectives) and
decoys. The model performance in the VS test (the early en-
richment indicators) was evaluated by calculation of the addi-
tion of the early enrichment true positive rates (TPR) at 0.5, 1,
2, 5, and 10% of false positive rates (FPRs) (Eqs. 6–8).

AUC ¼ 1−
1

TPþ FN
∑

TPþFN

i¼1
FPRi ð5Þ

TPRx ¼ TPR at x%FP;where x

¼ 0:5%; 1%; 2%; 5%; 10% ð6Þ

TPR ¼ TP

TPþ FN
ð7Þ

FPR ¼ FP

TNþ FP
ð8Þ

where TPR denotes the fraction of correctly predicted actives/
selectives and FPRi designates the ratio of the number of
mispredicted inactives to the total number of inactives when
the ith active in the ranking list is retrieved.

Computational repurposing

The conventional drug discovery and development are
confronted with several challenges such as financial
problems, long period of time and multiple steps, and
most importantly high attrition rate in preclinical and
clinical phases [52]. Detecting new usages for approved
drugs and even crowdsourcing of candidate compounds
are turning into a promising new endeavor [53]. This
scenario seems to be successful and was currently ac-
knowledged by drug agencies, i.e., National Institute of
Health (NIH), USA; European Medicine Agency
(EMA); and Medical Research Council (MRC), UK,
which elaborated policies for research funding to inves-
tigate repurposing of drugs [54]. In silico approaches
such as pharmacophore and molecular docking [30,
55] identified several approved drugs as actives against
new targets, which simplify the repositioning for other
diseases [56, 57]. The selected drugs that overlapped all
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five features of the AAHRR.10 were docked in the
5WBE active site to identify the most suitable orienta-
tion and compound binding ability.

Electronic parameters

The conformations of the most active and selective four
diarylthiazole and diarylimidazole derivatives (7, 8, 15,
16) and celecoxib (17) were used as input for DFT
studies. The calculated global reactivity descriptors such
as the highest occupied molecular orbital (HOMO), the
lowest unoccupied molecular orbital (LUMO), the
HOMO-LUMO gap energy (ΔE), ionization potential
(IP), electron affinity (EA), electronegativity (χ), the
global hardness (η), chemical potential (μ), softness
(S), electrophilicity (ω), atomic Fukui indices, and atom-
ic electrostatic potential charges (ESP) (Eqs. 9–15) were
used (i) to evaluate the reactive sites and the influence
of the substituents on the electronic structure of the
compounds and (ii) to explain their biological activity/
selectivity. All DFT calculations were performed using
Jaguar module (Schrödinger) [58, 59]. Complete geom-
etry optimization was assessed using DFT with the

Becke three-parameter exchange potential and Lee-
Yang-Parr correlation functional (B3LYP) [60, 61] using
6-31G** basis set [62].

The HOMO orbitals are related to a strong capability to
donate electrons (high-energy values) and are straightforward-
ly correlated with the probability of electrophilic attack. The
LUMO orbitals are associated with a strong capability to ac-
cept electrons (high-energy values) and are directly associated
with the likeliness of nucleophilic attack [63, 64]. The IP and
EA descriptors estimate similarly the predisposition of a mol-
ecule to accept or donate electrons [63, 65]. The energy dif-
ference between the HOMO and LUMO (ΔE = EHOMO −
ELUMO) gives information regarding chemical reactivity and
stability of the molecule [66]. A large ΔE related to global
hardness indicates high stability of the molecule, concomitant-
ly with low reactivity, and vice versa [65]. The inverse of the
global hardness is defined as softness, S [67]. Chemical po-
tential (μ) describes the escaping tendency of the electron
density from the equilibrium state while the negative of the
μ, the electronegativity (χ), indicates the ability of an atom in
a molecule to attract electrons to itself [68]. The global de-
scriptors were computed according to the following equations
(Eqs. 9–15):

Fig. 1 The pharmacophore
hypotheses AAHRR.10 mapped
on the most active compound (a);
inter-feature distances, acceptor
groups A1 and A2 (pink), rings
R9 and R10 (orange), and hydro-
phobic H6 (green) sites (b)

Table 2 The statistical parameters obtained for the atom-based 3D-QSAR model

ID No. SD* R2* F* p* RMSE& Q2& Pearson’s R& Spearman’s rho§

AAHRR.10 1 0.233 0.812 43.100 6.32E−05 0.373 0.448 0.683 0.878

2 0.134 0.944 75.600 2.36E−06 0.307 0.627 0.920 0.876

3 0.059 0.991 278.500 1.98E−08 0.325 0.682 0.903 0.872

*Training set; # test set; § the whole dataset

No., number of PLS factors; SD, standard deviation of the regression; R2 , the coefficient of determination; F, the ratio of the model variance to the
observed activity variance; p, the significance level of variance ratio; RMSE, the root-mean-squared error for the test set predictions; Q2 , analogs to R2

based on the test set predictions; Pearson’s R, the value for the correlation between the predicted and observed activities for the test set; Spearman’s rho is
Pearson’s correlation coefficient on the ranks of the data
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IP ¼ −EHOMO ð9Þ
EA ¼ −ELUMO ð10Þ

μ ¼ −
IPþ EA

2
¼ EHOMO þ ELUMO

2
ð11Þ

χ ¼ IPþ EA

2
¼ −

EHOMO þ ELUMO

2
ð12Þ

η ¼ IP−EA ¼ ELUMO−EHOMO ð13Þ

S ¼ 1

η
ð14Þ

ω ¼ μ2

2η
ð15Þ

The Fukui indices are associated with the tendency of
atoms to lose or accept electrons [69]. These indices specify
which atoms in a molecule are more susceptible to a nucleo-
philic or an electrophilic attack [70]. The Maestro module
(Schrödinger) was used to visualize the influence of the above
parameters [71]. These calculations could provide useful

features for designing new COX-1 inhibitors with the en-
hanced gastric profile.

Results

Pharmacophore modeling

In order to investigate the pharmacophoric space of
diarylthiazole and diarylimidazole derivatives, all possible
five-featured pharmacophore hypotheses were generated.
Among the 29 hypotheses, six displays significant statistics
parameters from atom-based 3D-QSAR point of view. The
AAHRR.10 hypothesis, including two hydrogen bond accep-
tors, one hydrophobic site, and two rings (Fig. 1a), mapped on
the most active compound 8 displayed the best values for
survival score (3.639), site score (0.950), and vector score
(0.980). The distances between the pharmacophore sites of
the AAHRR.10 reported in Å are shown in Fig. 1b.
Compound 8 matches exactly the AAHRR.10 with a perfect
fitness score value of 3 (Table 1). This hypothesis was retained
for in-depth investigation.

Fig. 3 Overlay of mofezolac
bound conformation extracted
from co-crystal 5WBE (carbon
depicted in cyan) and its
pharmacophore fitted conforma-
tion (carbon depicted in brown)
(a); overlay between
pharmacophore fitted conforma-
tion of mofezolac (carbon
depicted in brown) and the most
active compound 8 (carbon
depicted in cyan) (b)

Fig. 2 Plot of experimental
versus predicted pIC50 values for
atom-based 3D-QSAR model
AAHRR.10; the black circles il-
lustrates training set compounds,
whereas gray triangles depict test
set compounds

Struct Chem (2019) 30:2311–2326 2317



Atom-based 3D-QSAR

An atom-based 3D-QSAR model containing three PLS
factors was developed to validate the AAHRR.10 hy-
pothesis (Table 2 and Fig. 2). The R2 value of 0.991
for the training set suggests that the matrix of descrip-
tors and the matrix of the experimental inhibitory activ-
ities are strongly correlated. The large values of the
Fisher test (F) and low values for the significance level
of variance ratio (p) and for the standard deviation of
the regression (SD) indicate a statistically significant
3D-QSAR model. Also, the good predictive abilities of
the model were highlighted by the Q2 value of 0.682
and the Pearson R value of 0.903, for the test set. The
Spearman rank correlation value higher than 0.8 sug-
gests a high positive correlation between the experimen-
tal and predicted activities (Table 2).

Moreover, the AAHRR.10 was validated in terms of
active conformation prediction by overlaying mofezolac
conformation matched on AAHRR.10 with its experi-
mental structure [17, 42] resulting in RMSD of 1.152
Å (Fig. 3a). In a similar manner, the mofezolac and
compound 8 conformations matched on the AAHRR.10
showed favorable hydrophobic zones localized on phe-
nyl rings where the presence of methoxy substituent
increase inhibitory activity (Fig. 3b).

The AAHRR.10 was employed to generate the contour
plot analysis in order to establish the positions of the

substituents, which are responsible for biological activity.
The contour maps including hydrophobic, electron-with-
drawing, and hydrogen bond donor effects for the most
active compound 8 and the least active compound 17
were plotted (Fig. 4a–f). The most favorable regions are
depicted in blue, whereas the detrimental features are ren-
dered in red.

For the most active compound 8 (Fig. 4a), the hy-
drophobic favorable blue region is dispersed over the
entire molecule, but the most definite area is delineated
by the phenyl ring R9 and its substituent methoxy. On
the contrary, the least active compound 17 (Fig. 4b)
exhibits a non-favorable hydrophobic area spread on
the entire molecule along with a small hydrophobic fa-
vorable area localized on R9, thiazole ring and its sub-
stituent at position 3. Concerning the electron-
withdrawing properties (Fig. 4c, d), the presence of blue
cubes reveals that the oxygen atoms belonging to car-
boxylic and methoxy groups of compound 8 can act as
hydrogen bond acceptor. This interaction is supported
by X-ray complex of COX-1 with mofezolac [17, 41]
where the oxygen atom which belongs to the carboxyl
group of the isoxazole substituent interacts by means of
hydrogen bond and salt bridge with the nitrogen atom
of the guanidine side chain of ARG120 and oxygen by
a hydrogen bond with TYR355. In addition to these
well-known H bond interactions, two carbon–hydrogen
bond interactions were observed: LEU352 with the

Fig. 4 Hydrophobic non-polar space for the most active compound 8 (a)
and the least active compound 17 (b). Electron-withdrawing effect for the
most active compound 8 (c) and the least active compound 17 (d).

Hydrogen bond donor field for the most active compound 8 (e) and the
least active compound 17 (f)

Struct Chem (2019) 30:2311–23262318



carbon atom and HIS90 with the oxygen atom of the
methoxyphenyl group corresponding to the hydrophobic
area H6, (Fig. 5A) [72]. The presence of favorable blue
cubes in the region of the –NH– group of 8 (Fig. 4e)
indicates that hydrogen bond donor property of this
group will favor the increase of potency.

LEU352, ALA527, and LEU531 form π-alkyl interactions
with phenyl ring from position 4, with phenyl ring from posi-
tion 3, and with the nitrogen atom of isoxazole ring (A1 point
on AAHRR.10). ILE523, LEU352, VAL349, and ALA527
display π-sigma interactions with isoxazole and phenyl rings

at positions 3 and 4 of mofezolac. As can be seen in Figs. 3b
and 5A [72], the two aromatic rings R9 and R10 (AAHRR.10)
correspond to phenyl rings located at positions 3 and 4 of
isoxazole ring of mofezolac, forming hydrophobic interac-
tions with the hydrophobic region delineated by ALA527,
LEU531, ILE523, LEU352, and VAL349. Hence, the
pharmacophore hypothesis developed (A1, H6, R9, and
R10) was confirmed by mofezolac interactions with COX-1;
moreover, the 3D-QSARmodel is statistically reliable and can
be used for the design of novel COX-1 inhibitors within the
current framework.

Fig. 5 (A)Interactions of 2-(3,4-bis(4-methoxyphenyl)isoxazol-5-
yl)acetic acid (mofezolac) with COX-1 binding site residues (5WBE)
[17, 41] illustrated as (a) 3D and (b) 2D versions; (B) the docked complex
of 2-[[4,5-bis(4-methoxyphenyl)-1,3-thiazol-2-yl]amino]acetic acid

(compound 8) with COX-1 binding site residues illustrated as (a) 3D
and (b) 2D versions ; the (A) and (B) legends describe [71] the conven-
tional hydrogen bond (green), hydrophobic π-sigma, π-alkyl and π-
stacked (purple, pink and magenta), and salt bridge (orange) interactions
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Virtual screening

In order to validate the discriminatory ability of AAHRR.10,
we performed a VS test against custom-made dataset for
COX-1. ROC-AUC; %TPR at 0.5%, 1%, 2%, 5%, and 10%
FPs; Acc; and WPPV metrics were calculated to assess the
ranking of the selectives in the enrichment list (Table 3). The
evaluation parameters expressed by AUC resulted from run-
ning AAHRR.10 model yield values greater than 0.7 showing
reasonable discriminative performance regarding the retrieval
of selective COX-1 inhibitors. The values of early enrichment
evaluation parameters indicate a good recognition of selec-
tives at 0.5 to 10% TPR. The Acc values indicate a good
accuracy of the model when five “essential” pharmacophore
features were considered. The values closest to 1 for WPPV

metric reveal a high classification power of the model.

The good values of evaluation parameters associated with
the five “essential” pharmacophore features (Table 3) suggest
the selective character of the AAHRR.10. Thus, the alignment
of the top four selectives and decoys ranked according to
fitness score is shown in Fig. 6. As mentioned above, the
presence of a hydrogen bond acceptor/donor group in a posi-
tion corresponding to position 5 of the isoxazole ring of
mofezolac, capable to form hydrogen bond or salt bridge in-
teractions with ARG120, is very important for affinity and
selectivity towards COX-1. In the case of selective com-
pounds, the substituents matching this position are overlapped
(Fig. 6a) while in the case of the decoys, no substituent at this
position was present (Fig. 6b).

Molecular docking

Aiming at investigating structural prerequisites which
drive affinity and selectivity towards COX-1, a docking
experiment of selective compounds (7, 8, 15, 16) was
carried out. The docking outcomes were compared with
experimental interactions of COX-1 selective inhibitor,
mofezolac (Fig. 5A). These selective COX-1 inhibitors
showed the same orientation and binding pattern to that
of mofezolac (Fig. S1). Both, compound 8 and
mofezolac are polar and ionizable molecules. The inter-
actions of the most active compound 8 observed into
COX-1 binding site are similar to those which involve
the X-ray coordinates of mofezolac (Fig. 5B). Thus,
oxygen atoms of the carboxylate group interact via hy-
drogen bonds with ARG120 and TYR355. Likewise, a
carbon–hydrogen bond occurs between 4-OCH3 group
bound to the phenyl ring attached at position 4 of thi-
azole ring and LEU352. A π-σ interaction was observed
between the thiazole ring and ALA527. π-Alkyl con-
tacts were registered with VAL349 (thiazole ring),

Fig. 6 The overlap of the top-
ranked four selectives (a) and de-
coys (b) on AAHRR.10 hypothe-
sis (the carbon atoms of the most
active compound 8 are shown in
cyan)

Table 3 The performance of the AAHRR.10 hypothesis against the
custom-made dataset

Evaluation parameter Pharmacophore features*

A B

%TPR at 0.5% FPs 12.500 33.333

%TPR at 1% FPs 12.500 33.333

%TPR at 2% FPs 12.500 33.333

%TPR at 5% FPs 18.750 33.333

%TPR at 10% FPs 25.000 33.333

WPPV 0.972 0.967

Acc 0.558 0.833

AUC 0.622 0.706

SD AUC 0.077 0.117

AROCE-AUC 0.378 0.520

*A—Four “essential” pharmacophore features; B—Five “essential”
pharmacophore features
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phenyl ring of –C6H4-4-OCH3 substituent at position 5
of thiazole ring with VAL349, ALA527, and LEU352.
Amide-π staking interaction takes place between
GLY526 and phenyl substituent at position 5 of the

thiazole ring. Our docking outcomes regarding the most
active compound complete the docking simulations of
Abdelazeem et al. [21].

Drug bank screening

In order to identify approved and investigational drugs, the
AAHRR.10 was used as a template to screen the DrugBank
database [73]. The prioritized drugs according to fitness score
criterion include drugs which are under testing in various clin-
ical phases: DB08383 (2.741), DB12009 (2.575), DB08356
(2.574), DB08392 (2.534), DB06964 (2.492), and approved
drug Tofisopam (DB08811) (2.100) (Figs. 7 and 8). All six
prioritized drugs satisfied the 5-point pharmacophore features.
Tofisopam is already approved for the treatment of anxiety
and alcohol withdrawal [73]. Of the five prioritized drugs,
only DB12009 has been evaluated in trials for the treatment
of pain, trauma, neurodynia, dental pain, and hyperalgesia
[73].

Further, docking of the six shortlisted drugs within COX-1
active site of 5WBE enabled us to prioritize DB08392 and
DB06964 due to the hydrogen bond interactions with
ARG120. The reproduction of the conventional hydrogen
bonding interaction with ARG120 and TYR355, and the hy-
drophobic interactions with ALA527, with LEU352 and
ILE523 residues similar to mofezolac, were noticed (Fig. 9
[72]).

Fig. 7 Chemical structures of the investigational drugs and Tofisopam (DB08811) proposed for repurposing using AAHRR.10 hypothesis

Fig. 8 The investigational drugs and Tofisopam overlaid on the
AAHRR.10 hypothesis (the most active compound 8 is shown in cyan)
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All selected drugs experience hydrophobic interactions be-
tween aromatic and heteroaromatic rings and binding site res-
idues. π-Alkyl and π-sigma interactions were observed also
with VAL116, VAL349, LEU359, PHE518, and LEU531 of
COX-1 channel, whereas DB08811 makes a carbon–
hydrogen bond with more polar SER353. For DB08356, no

essential H bond interactions and steric bumps were visual-
ized. The analysis of drug-COX-1 interactions displayed sev-
eral sites of unfavorable steric bumps: (i) DB08383—sulfur
and carbon atoms of thiophene ringwith carbon atom ofmeth-
yl group of VAL116 (4.2 Å and 1.9 Å), and between carbon
atom of methyl group and carbon atom of methyl group of

Fig. 9 The interactions of
prioritized drugs with COX-1
residues (PDB ID 5WBE):
DB08383 (a), DB12009 (b),
DB08356 (c), DB08392 (d),
DB06964 (e), and Tofisopam
(DB08811) (f); hydrogen bond
(green), hydrophobic (purple),
and salt bridge (orange)
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ILE517 (2.02 Å) (Fig. 9a) [72]; (ii) DB12009 carbon atom of
methyl group and carbon atoms of side chain of LEU531
(2.13 Å and 1.74 Å), carbon atom of methylene group with
carbon atom of side chain of LEU531 (1.79 Å), and carbon
atom of 4-methanesulfonyl group with oxygen atom of C=O
group of GLY526 (2.07 Å). The steric bumps provide infor-
mation about the rigidity and bulkiness to promote energy
favorable positions of the ligand binding to COX-1 active
channel. However, the molecular size of ligands represents a
crucial element to accommodate into the COX-1 active site,
since COX-1 (316 Å3) active site is smaller than in COX-2
(394 Å3). Nevertheless, a number of hydrogen bonds and
hydrophobic interactions are registered with essential binding
site residues while the steric hindrance restricts favorable in-
teractions. Hence, we can assume that DB08383 and
DB12009 are not interesting for prioritization as COX-1
ligands.

To sum up, DB06964 and DB08392 are the most plausible
to inhibit COX-1 in a selective manner due to hydrogen bond
interactions with ARG120 and a higher number ofπ-alkyl and

π-sigma contacts, which fixed the compounds in the active
site.

Electronic parameters

According to frontier orbital theory, the shapes and symme-
tries of the HOMO and LUMO orbitals are essential features
in predicting the reactivity and stability of a compound in a
chemical reaction or ligand-receptor interactions [41]. The
calculated electronic features are listed in Table 4. Maps of
HOMO and LUMO orbitals, the blue color indicates positive
lobes while red color designates negative lobes, are plotted
onto the molecular surface of the most active compounds (7,
8, 15, 16) and celecoxib (17) completed by average local
ionization, electrostatic potential and charge distribution pro-
files (Fig. 10 and Fig. S2).

Analyzing the HOMO energy and the biological activity
values of the COX-1 selective inhibitors and celecoxib
(Tables 1 and 4), an inverse correlation is clearly observed,
suggesting that the HOMO of the selective inhibitors may

Fig. 10 The 3D HOMO and
LUMO orbital profiles, the orbital
energy values, and the energy gap
(a); the electrostatic potential
profiles (b); the charge distribu-
tion profiles (c); and the average
local ionization (d) for the most
active compound 8

Table 4 The calculated electronic features: E-HOMO, E-LUMO,
HOMO and LUMO gap energies (ΔE), ionization potential (IP),
electron affinity (EA), electronegativity (χ), electronic hardness (η),

global softness (S), the chemical potential (μ), and electrophilicity index
(ω) for the most active compounds (7, 8, 15, 16) and celecoxib (17)

No. E-HOMO (eV) E-LUMO (eV) ΔE IP EA χ (eV) η (eV) S (eV) μ (eV) ω (eV)

7 − 5.196 − 0.964 4.232 5.196 0.964 3.080 4.232 0.236 − 3.080 1.211

8 − 4.853 − 0.694 4.159 4.853 0.694 2.774 4.159 0.240 − 2.774 0.925

15 − 5.387 − 0.708 4.679 5.387 0.708 3.048 4.659 0.214 − 3.048 0.993

16 − 4.950 − 0.446 4.504 4.950 0.446 2.698 4.504 0.222 − 2.698 0.808

17 − 5.599 − 1.723 3.876 5.599 1.723 3.661 3.876 0.258 − 3.661 1.729
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transfer easier its electrons to some residues in the active site
of COX-1 for binding. The calculations show that compound
8 displays the highest HOMO energy (− 4.853 eV) which is in
good agreement with its affinity (0.32 μM). Heteroaromatic
rings including nitrogen and sulfur can act as electron donors
or acceptors to the residues in the COX-1 binding site.
Electron donor thiazole and imidazole rings display the
highest electron density of the HOMO (Fig. 10). The phenyl
rings corresponding to R9 and R10 in AAHRR.10 exhibit a
high electronic density of HOMO that favors hydrophobic
interactions. The influence of the HOMO energy on the bio-
logical activity can be rationalized in terms of charge transfer,
π···π, or π···σ stacking between phenyl rings of ligands and
the binding site residues. A smaller energy gap between
HOMO and LUMO orbitals assigned to most active molecule
8 (ΔE of 4.159) illustrates that the molecule is more active,
while the larger energy gap of molecule 15 (ΔE of 4.679)
indicates high chemical hardness and lower activity, according
to the maximum hardness principle (Table 2, Fig. 10) [74].
The large energy gap of a molecule is unfavorable for the
electron to be excited from HOMO to LUMO, which leads
to a weaker affinity of the COX-1 inhibitors. The larger value
of ω indicates also higher reactivity of the chemical system,
which can be correlated to biological activity [75]. The aver-
age local ionization for the most active compound 8 (Fig. 10)
is localized around the carboxyl group, suggesting the favorite
site for electrophile attack which provides selectivity towards
COX1 by interaction with ARG120 and TYR355. For the
most active ligands (Table 4), the inhibitory activity is directly
correlated with η (r2 = 0.949) andΔE (r2 = 0.947) metrics and
inversely correlated with the S parameter (r2 = 0.952) (Figs. 10
and S3). These observations are in accord with the previous

investigation which states that the inhibitory properties of
drugs on enzymes is governed by an absolute harness or ab-
solute electronegativity [76].

In accord with AAHRR.10, thiazole and imidazole rings
display a hydrogen bond acceptor A1 (Fig. 3b). The most
active compounds 7 and 8, having the LUMO located over
the phenyl and methoxyphenyl rings (R9 and R10 on
AAHRR.10), suggest the susceptibility of the molecules to-
wards nucleophilic attack. The ESP and the charge distribu-
tion profiles highlight the negative potential regions around
the oxygen atoms of the carboxyl group extended over the
nitrogen atom of the methylcarbamic acid chain and the nitro-
gen atom of thiazole and imidazole rings. The investigation of
ESP is helpful because it influences the initial stages of ligand-
receptor interactions and allows prediction of the functional
sites [77].

The plots of Fukui indices (Fig. 11) emphasizes the atomic
sites susceptible to nucleophilic or/and electrophilic attack. The
significant values that correspond to the highest peaks of the
Fukui indices were plotted into the callouts. As can be seen from
Fig. 11, the atomic Fukui values also correlate with the ESP and
charge distribution plots. These outcomes are consistent with the
pharmacophore analysis, which illustrates the participation of
these moieties in the key ligand-receptor interactions and certify
the relationship between electronic properties and potency of
diarylthiazole and diarylimidazole analogs.

Conclusion

In the current study, the pharmacophore models, 3D atom-
based QSAR, the custom-made dataset screening, docking,

Fig. 11 Plots of the reactivity Fukui indices for compounds 7, 8, 15, 16, and 17, where f_NN_HOMO (green line) and f_NN_LUMO (orange line)
indicate fukui_electron density_HOMO and fukui_electron density_LUMO, respectively
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and DFT calculations were achieved based on a series of
known diarylthiazole and diarylimidazole COX-1 inhibitors.
The best pharmacophore model, AAHRR.10, consisting of
two hydrogen bond acceptors, two rings, and one hydropho-
bic feature, was validated by (i) 3D atom-based QSAR, (ii)
resembling the mofezolac interactions with COX-1 (5WBE),
and (iii) the custom-made selective/decoy set. The validation
results showed a high correlation between experimental and
predicted IC50 values (R2 = 0.991), satisfactory predictive
ability (Q2 = 0.682, and Pearson’s R = 0.903), and good dis-
criminative performance regarding the retrieval of selective
COX-1 inhibitors (AUC = 0.706). These validation outcomes
confirmed that AAHRR.10 was the best hypothesis to differ-
entiate the selective COX-1 inhibitors from decoys.Moreover,
the AAHRR.10 was used as a 3D query in the DrugBank
virtual screening process. Based on the pharmacophore
screening, docking analysis, and ligand-protein interactions
studies, two investigational drugs, DB06964 and DB08392,
have been suggested for repurposing. The impact of electro-
static features of diarylthiazole and diarylimidazole units on
their COX-1 inhibitory activity was highlighted using DFT
calculations. The global reactivity descriptor outcomes have
successfully validated the key pharmacophore features of
AAHRR.10. The HOMO-LUMO gap energy was subse-
quently used to probe the strength and stability of the molec-
ular interactions for the most selective ligands. Accordingly,
this theoretical approach can be useful in the development of
new selective inhibitors of COX-1 with the improved gastric
profile.
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