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Abstract
This review reports our computational studies of a variety of topics related to conformational analyses and intramolecular dynamic
phenomena. Single and double bonds, open and ring systems, and chiral molecules devoid of chiral centers (atropisomers, propellers,
scorpionates, helicenes, truxenes) will be reported. Studies that followed our contributions and that are related to them will also be
cited. Some curious aspects such as the absence of influence of static fields on absolute chirality, the extension of CIP rules to
supramolecular systems, libration of phenyl groups, and the barrier of 1,16-dehydro[6]helicene will be discussed.
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Introduction

We have been interested in a series of topics that we will
illustrate by a pair of references: (i) heterocycles, mainly
azoles, and often related to their aromaticity [1, 2]; (ii) tautom-
erism, mainly of heterocyclic compounds [3, 4]; (iii) weak
interactions [5, 6]; NMR properties, both chemical shifts [7,
8] and coupling constants [9, 10]; and (iv) crystallography [11,
12]. We will report in this review our results concerning con-
formational analysis and intramolecular dynamic phenomena,
thus excluding intermolecular proton transfers [2, 13].
Obviously, some of these topics overlap.

We have followed Eliel and Wilen book plan [14] with
small adaptations to include most of our contributions:

1. Stereochemistry of alkenes and aza analogs

1.1. CC double bonds
1.2. CN double bonds
1.3. NN double bonds

2. Conformation of acyclic molecules

2.1. CC and CN bonds

2.1.1. sp3/sp3

2.1.2. sp3/sp2

2.1.3. sp2/sp2

2.2. Amines, phosphines, and sulfur compounds
2.3. Atranes

3. Configuration and conformation of cyclic molecules

3.1. Six-membered rings

3.1.1. Carbohydrates
3.1.2. Heterorings

3.2. Other than six-membered rings

3.2.1. Three-membered rings
3.2.2. Four-membered rings
3.2.3. Five-membered rings
3.2.4. Rings larger than six-membered

3.3. Stereochemistry of other related systems
4. Chirality in molecules devoid of chiral centers

4.1. Biphenyls, atropisomerism
4.2. Molecular propellers

4.2.1. Methanes
4.2.2. Borates (scorpionates)

4.3. Helicenes
4.4. Truxenes
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The selection of these topics is based on our interests in
dynamic phenomena but also in those of our coauthors that
often wanted to know if theoretical calculations could provide
a solid foundation to their experimental observations. Among
them are Curt Wentrup (Australia), Artur M. S. Silva
(Portugal), Rosa M. Claramunt (Spain), Krzysztof
Zborowski (Poland), Patricio F. Provasi (Argentina), Juan
Jesús López (Spain), Wolfgang Holzer (Austria), Janet E.
Del Bene (USA), José Luis Serrano (Spain), Manuel Yáñez
(Spain), Christian Roussel (France), Emilio J. Cocinero
(Spain), and others. In this review covering our work from
1989 to 2019, our results will be discussed in rapport with
literature results, in general subsequent to our work.

Stereochemistry of alkenes and aza analogs

CC double bonds

The rotational barriers about CC single, double, and triple
bonds were studied at the B3LYP/6-311++G(d,p) level
[[15]]. Intuitively, one expects that the barrier around a C≡C
bond should be higher than that around a C=C bond, but that
barrier is not physically observable. The conclusion was the
rotational barrier around a CC triple bond could be estimated
to be 355 kJ mol−1 (leading to a double bond) or 645 kJ mol−l

(leading to a single bond). These calculations were compared
with the Cr–Cr quintuple bond [16].

Rotation around the π-C=C double bond, leaving the
σ-(C=C) bond intact, is one of the most fundamental process-
es in chemistry. In the case of the central C=C bond in push–
pull ethylenes 1 with R substituents like COR, CO2R, NO2,
CN, .... The orthogonal state is not a biradical but a zwitterion
[17]. The conformation and barriers of these compounds are
determined by the presence (barriers of ~ 125 kJ mol−1) or
absence (barriers of ~55 kJ·mol−1) of intramolecular hydrogen
bonds (IMHBs). For comparison purposes, the ethylene bar-
rier amounts to 272 kJ mol−1. The energy profiles in function
of the dihedral angle θ follow an empirical equation related to
the Pitzer equation for ethane [14]. For further related studies
on this topic, see [18].

A further example of rotation about central CC bonds was
studied in cases related to Feringa’s molecular rotors [19].

The isomerization barriers of bithioxanthenes 2–4 were
calculated at the B3LYP/6-311++G(d,p) level; in the case of
bis(4H-thiopyran) (5), a planar molecule, complete active
space self-consistent field calculations (CASSCF) were car-
ried out followed by Multi-State CASPT2 calculations on the
singlet and triplet transition states [20]. The barriers for the
singlet 90° were 106.0 (B3LYP/6-311++G(d,p)) and 92.6 kJ
mol−1 (CASPT2). Although there is a difference of 13.4 kJ
mol−1, the conclusion was that the excited states do not affect
the energy barrier at low temperatures. Therefore, the barriers
for the bithioxanthenes 2–4 were calculated at the B3LYP/6-
311++G(d,p) level; these compounds present two conforma-
tions, one boat-like or up/up (uu) and the other chair-like or
up/down (ud), the ud minima being more stable than the uu
ones by about 34 kJ mol−1. Their isomerization mechanisms,

inversion and rotation, have been studied; the rotation mech-
anism is always preferred.

CN double bonds

The C=N group is presented in a variety of structures com-
prising imines, hydrazones, azines, and oximes. Although we
have devoted a paper to hydrazones [21], our main interest
was on azines. This is due that we studied experimentally
these compounds several years ago [22–24] (for a recent re-
view, see [25]). Two papers were devoted to computational
studies of the structure of aldazines and ketazines, part 1 to
simple compounds (6, 7) [26] and part 2 to halogen (8) and
α,β-unsaturated derivatives like 9 [27], including
cinnamaldazine (10) [24].
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In the case of simple azines, B3LYP/6-311++G(d,p) calcu-
lations yield good geometries as well as E/Z ratios and IR
spectra in agreement with experimental results; increasing
the level of the calculations (MP2, QCISD) does not improve
the geometries [26]. In the second paper, only B3LYP/6-
311++G(d,p) calculations were carried out. For simple azines
and for conjugated azines, EE and EEEE conformations, re-
spectively, were preferred. Two mechanism of isomerization
of CN double bonds, inversion and rotation, were studied for
simple imines; in the case of azines, the TS has a “inversion-
rotation” structure corresponding to barriers between 50 and
100 kJ mol−1. The potential surface of 8 (X = F) was calcu-
lated [27].

Two further papers explore the structure of aldazines bear-
ing aromatic substituents (6, R = aryl or heteroaryl). In the first
case, the existence of IMHBs in salicylaldazine (11) and
Lumogen (12) stabilizes the EE dihydroxy isomers but in
the case of 12, the hydroxy-oxo tautomer was observed in
solution by NMR [28].

The structure of aldazines derived from formyl-1H-imidaz-
oles, 13 and 14, some of them double-labeled with 15N, has
been studied by NMR (solution and solid-state) and by X-ray
crystallography [29]. Computational calculations at the
B3LYP/6-311++G(d,p) level were used to determine the con-
formation about CC bonds and the configuration about C=N
ones. Tautomerism and lone pair/lone pair repulsions deter-
mined the preferred structures.

Barriers about C=N bonds in aldimines, oximes,
hydrazones, and azines have been computed at the B3LYP/
6-311++G(d,p) and G3B3 levels [30]. Bond rotation and ni-
trogen inversion processes were compared (see Fig. 1) and in
all cases the inversion process is preferred save in the case of
azines where there is some rotation character. These results
were cited in a paper about the photochemistry of imines [31].

NN double bonds

Somewhat related to azines 13 and 14, the structure of the azo
derivative, 3(5),3′(5′)-azopyrazole (15) was studied theoreti-
cally [32] because the syn/anti isomerization of azobenzene is
the main strategy for modifying the distances in molecular
machines [32] and references therein]. Energy calculations,
13C and 15N chemical shifts, 1H–1H coupling constants, and

Fig. 1 Schematic representation of the rotation and inversion processes in
imines
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electronic spectra reduced the 20 possible calculated struc-
tures to only one, the 3,3′-Z,Z-anti-azopyrazole.

Conformation of acyclic molecules

CC and CN bonds

sp3/sp3

Interested in the relationships between molecular and supra-
molecular chemistry (for instance, extending the Cahn-
Ingold-Prelog rules to supramolecular structures [33, 34]),
we studied the rotational barriers about covalent bonds and
hydrogen bonds, in part icular, comparing 1,1,1-
trifluoroethane (Csp3–Csp3 bond) with the trifluoromethane/
ammonia complex (HB) [35]. These studies were extended to
the extremely rare 3JHH bonds through two heteroatoms (H–
N–N–H and H–N–O–H) [36–38] that were compared to the
4hJHH in supramolecular complexes such as [H3N···H···NH3]

+,
[HOH···NH3] and [HOH···OH2] [39]. Finally, the Karplus re-
lationship was calculated for H3C–(C≡C)n–CH3 systems in
function of the number of CC triple bonds until n = 6; by
extrapolation, it was estimated that for n = 25, the JHH will
amount to 0.1 Hz [40]. These studies have been extended by

other authors to 3JHSi spin–spin coupling constants [41] and to
F–(C≡C)n–F JFF coupling constants until n = 11 [42].

The conformations of other systems where two hetero-
atoms form the pivotal bond have also been studied. The most
reported are X–O–O–Y related to oxygen peroxide (X = Y =
H): racemization process and optical rotatory power (X =H, Y
= CCH, CH3, CF3, t-Bu, CN, F, Cl) [43]; chiral discrimination
in the hydrogen bonded dimers of X–O–O–H (X = H, CH3,
CF3, HCO) [44]; resolution of the optical rotatory power into
atomic contributions (X = H, Y = CH3) [45, 46]; NMR of
homo- and heterochiral complexes of X–O–O–Ywith lithium
cation (X, Y = H, CH3) [47, 48]. The central atoms of the X–
O–O–Y molecule have been replaced by S and Se and their
hydrogen and chalcogen bonds studied [49]. Related to hy-
drazine are the X2–P–P–Y2 molecules, H2P–PH2 and H2P–
PHF; their energy profiles on the rotation about the PP bond
have been computed at the MP2/aug′-cc-pvTZ [50].

Somewhat related to this topic was the exploration of the
methane surface [51]. Seven stationary points of the methane
hypersurface were first explored concerning geometries and
energies to check previous data. On these geometries, absolute
1H and 13CNMR shieldings aswell as 1JCH and

2JHH coupling
constants were calculated. For planar methane, D4h, the rela-
tive energies were 604 (CCD/6-311++G(d,p)), 575
(CCSD(T)/aug-cc-pVTZ), and 558 kJ mol−1 (M05-2x/aug-
cc-pVTZ). Jackowski and Makulski reported these results in
their work towards a 13C scale for MAS NMR spectroscopy
[52].

sp3/sp2

Concerning Csp2–Csp3 single bonds, the libration (restricted
rotation) of phenyl groups in 2-benzyl-1H-benzimidazole (16)
was determined by solid-state NMR (SSNMR) variable

Fig. 2 The 19F NMR spectra of compounds 19a and 19b
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temperature experiments, although this phenomenon is not
observed by X-ray crystallography. The barrier was calculated
to be 59 kJ mol−1, a rather high value compared with the
calculated value for the gas phase (10 kJ mol−1, B3LYP/6-
311++G(d,p)) [53].

Our interest in azoles and benzazoles has resulted in several
conformational papers related to Nsp2 (pyrrole-like)–Csp3

bonds conformations. Compound 16 presents a very unex-
plained behavior in the solid state, being an achiral compound
in solution (due to CC bonds free rotation) and a chiral com-
pound in the solid state (conglomerate) where always the same
enantiomer is present [54, 55].

The double addition of azoles to glyoxal result inmeso and
d,l isomers like 17 in the case of 1H-benzotriazole [56]. Eight
minimum energy conformations were calculated and com-
pared with NMR results in solution in the case of pyrazole.

We have reported a series of studies of N-benzylazoles and
N-benzylbenzazoles. TheN-benzyl as well as otherN-aryl and
N-heteroaryl groups has clear conformational preferences and
the CH2 protons eventual anisochrony is very useful for

dynamic NMR studies (DNMR). Using this approach, the
a l l - s y n c o n f o r m a t i o n o f C 3 - s y m m e t r i c a l
N-(Hetero)arylmethyl triindoles, for instance 18 in the case
of benzyl, was ascertained [57].

Fig. 3 The structure of atranes
(silatranes, phosphatranes, and
related compounds)
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A group similar to the benzyl one but with fluorine instead
of protons is the difluoromethyl that can be used as a chiral
probe [58]; this group was never previously been studied. In
the case of camphor derivatives 19a and 19b, the 19F NMR
spectra correspond to ABX systems of the diastereotopic fluo-
rine atoms (Fig. 2).

A systematic experimental and theoretical study of the
whole family of N-benzylazoles (20–29) and N-benzazoles

(30–37) was carried out and reported in two publications
(compound 29 is unknown and compound 31 is very unsta-
ble, both were calculated) [59, 60]. Using a combination of
X-ray crystallography, and NMR and DFT calculations, the
structure and conformation, including rotational barriers of
these compounds, were determined and the possibility to
observe diastereotopic protons at very low temperatures
discussed.
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One of the few papers concerning Nsp3–Csp2(Ar) bonds
reports the structure of palbociclib (38) [61] (for a review, see
[62]).

sp2/sp2

Some curcuminoids such as 39 present conformational struc-
tures related to rotation about single bonds linking two Csp2

atoms [63], while the conformation of N-heterocyclic
carbenes 40 (and related compounds) depends on the rotation
about two Nsp2–Csp2(Ar) bonds [64]. In this paper was intro-
duced the use of a tesseract (hypercube) of 16 vertices and 32
edges representation that was used by other authors [65].

Amines, phosphines, and sulfur compounds

This topic is related to the previous one when the single bond
involves an sp3 nitrogen atom; for instance, carbenes 40 have

also been studied for imidazolines (no CC double bond) where
the N atoms are clearly pyramidal [64]. The nitrogen inversion
and its relevance in conformational analysis have been studied
in 13 simple amines, 41 to 53, based on calculated chemical
shifts [66].

Open-chain -furanose -furanose

D-erythose (54)

54a 54b 54c



D-threose (55)

55a 55b 55c



Fig. 4 Open-chain and α- and β-furanose configurations of D-erythrose (54) and D-threose (55)
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The position of the N lone pair (LP) of a series of 17 amines
and the 13 represented above plus azatetrahedrane, azacubane,
1-azabicyclo[1.1.0]butane, and azirine has been located with
the help of Bader’s methodology; besides, a geometrical mod-
el based on symmetry was examined [67]. The related P in-
version of phosphines was also studied [68–70].

The conformation of sulfamide itself, H2N–SO2–NH2 [71],
glibenclamide, a sulfamide derivative, R–HN–SO2–Ar [72],
and rimonabant, a hydrazide [73], was also studied. These
works have been cited several times [74–76].

Atranes

When the three legs of NR3 or PR3 are part of a cyclic system,
the N inversion (amines) and the related P inversion
(phosphines) results in the deformation of a basket (Fig. 3).

Two theoretical publications were devoted to the study of
these compounds, the first one to the study of their

geometrical, energetic, and NMR properties [77], and the sec-
ond one to the modulation of in:out and out:out conformations
in [X,X′,X″] phosphatranes by Lewis acids [78]. This field is
continuing to be very active [79, 80].

Configuration and conformation of cyclic
molecules

Six-membered rings

Carbohydrates

This topic, part of the thesis of Luis Miguel Azofra, was not a
usual topic of our research. In the case of D-erythrose (54) and
D-threose (55), we characterized at the B3LYP/6-311++G(d,p)
level 174 and 170 minima for the open-chain structures of 54
and 55, respectively. G3B3 calculations indicate that the α-

Open-chain Furanose Pyranose

D-ribose (56)

56a

56b 56c

56b 56c

2-deoxy-D-ribose (57)

57a

57b 57c

57b 57c











 

Fig. 5 Left to right and top to bottom: open-chain, furanose, and pyranose configurations of D-ribose and 2-deoxy-D-ribose. The orientation of the
hydroxyl group on the anomeric carbon atom (C1) in the cyclic forms gives the α- (exo face) and β- (endo face) diastereoisomers.
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furanose configuration is the most stable for both D-erythrose
and D-threose. The hydrogen bonds present in these molecules
were classified as 1-2, 1-3, or 1-4, based on the number of C–
C bonds [81] (Fig. 4). In a subsequent paper, the acid catalysis
of the mutarotation mechanism in the two aldotetroses, 54 and
55, was studied at B3LYP/6-311++G(d,p) computational level
in gas phase and in solution employing the PCM–water mod-
el. The acid catalysis has been studied taking into account the
effect of (i) a classical Lewis acid as BH3, (ii) a classical hard-
Pearson acid as Na+, (iii) two classical Brønsted acids such as
H+ and H3O

+, and (iv) the combined strategy using H3O
+ and

one bridge-H2O molecule as an assistant in the proton transfer
[82].

The preceding works were followed by a study of D-ribose
(56) and 2-deoxy-D-ribose (57) carbohydrates. A theoretical
DFT (B3LYP and M06-2X) and MP2 study has been under-
taken considering the five possible configurations (open-
chain, α-furanose, β-furanose, α-pyranose, and β-pyranose)
of these two carbohydrates with a comparison of the solvent
treatment using only a continuum solvation model (PCM) and
the PCM plus one explicit water molecule. In addition, exper-
imental vibrational studies using both nonchiroptical (IR-
Raman) and chiroptical (VCD) techniques have been carried
out. The theoretical and experimental results show that α- and
β-pyranose forms are the dominant configurations for both
compounds (Fig. 5) [83]. This was followed by a full explo-
ration of the conformational landscape of 56 and 57monosac-
charides in the gas phase which has been performed using
DFT methods (B3LYP and M06-2X) [84]. Up to 954 and
668 stable structures have been obtained for D-ribose and 2-
deoxy-D-ribose. For other authors’ contribution to this field,
see [85–92].

uud uuu ts-pppts-udp ts-uup

Fig. 6 Triaziridine (62), minima
(uud and uuu), and transition
states (udp, uup, ppp)

Fig. 7 Optimized geometries of the five configurations considered for the clusters. The ones shown correspond to the hexamer of 66

Fig. 8 Tetrazetidine 67 stationary points Fig. 9 Structures of compound 70
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Heterorings

Some six-membered rings containing elements other than C,
N, and O have been studied. Pyrazaboles 58a–58f have four
possible conformations, i.e., boat, chair, bent, and planar. The
predominance of one of these conformations in the solid state
(X-ray crystallography) depends on the R1 and R2 substitu-

ents. Theoretically (B3LYP/6-311+G** and MP2/6-31G*
computational levels), the boat conformation is an energy
minimum, with the planar and chair conformations as transi-
tion states in an energy diagram. In solution, the compounds
are in a boat conformation (with a boat-to-boat dynamic equi-
librium) irrespective of their crystal structures [93] (see also
[94]).

BODIPY 493/503 59 is a pentamethyl derivative of
the BODIPY skeleton [95]. Compound 59 is a bright,
green fluorescent dye with similar excitation and emis-
sion to fluorescein with several uses in biochemistry, for
staining lipids, membranes, and other lipophilic com-
pounds. Its conformation was optimized at the B3LYP/
6-311++G(d,p) computational level to afford a starting
geometry for calculating NMR properties. Finally, three
six-membered –N=S–S=N– heterocycles 60–62, all of
them non-planar, have been studied theoretically [96].

Other than six-membered rings

Three-membered rings

The conformational landscapes of triaziridine and the water
trimer supramolecular system were calculated (Fig. 6)
[B3LYP/6-311+G(3df,2p)] and compared; also the
monofluoro and monochloro derivatives were calculated
[97]. Both systems behave similarly; more importantly, even
though in the former the energy required to induce conforma-

Fig. 10 6-6, 5-6, and 5-5 atropisomers. The C–Hs can be replaced by Ns and the N–Hs by Os or Ss

Fig. 11 a, b Structures of the two
transition states of 88
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tional rearrangements is much smaller than that needed for
typical molecular systems, there is a fairly good linear rela-
tionship between both magnitudes. Theoretical studies on
triaziridine have been pursued at higher levels [98].

The rotation/inversion barriers of formamide (63), N-for-
myl aziridine (64), and N-formyl azirine (65) were calculated
[MP2/6-311++G(d,p)]. The results provide a quantitative pic-
ture of the influence of ring strain on the properties of amides,

with special emphasis on the effects associated with nitrogen
pyramidalization [99]. Related to this problem, the chemistry
of bridged lactams has been reviewed [100] and the confor-
mational aspects of cyclic peptides derived from aziridine-
containing amino acids have been studied [101].

Diaziridine 66 has two conformations a (1R,2S) and b
(1S,2S); the optical rotatory power of 66b has been calculated
(B3LYP/6-311++G(2d,2p) andMP2/6-311++G(d,p)) [102] as
well as the barrier that separated 66a of 66b by a TS =
149.6 kJ mol−1, conformer b being 25.1 kJ mol−1 more stable
than a. Five different topologies of the cluster that present two
HB interactions per monomer have been considered (Fig. 7
shows the optimized ones for the hexamer). The preferred
conformation 66b is consistent with that of the 1,2,3-
trisubstitued diaziridines [103].

The results show that the clusters with alternated chiral
molecules are the preferred ones and that the proton transfer
proceeds with low energetic barriers in the protonated sys-
tems. Proton transfer along the chains can invert stepwise
the chirality of the molecules producing what we have called
racemization waves [104].

Four-membered rings

Similar studies than those reported previously on triaziridines
and water trimers (section “Three-membered rings”) were car-
ried out for tetrazetidine (67) (Fig. 8), water tetramers [97],
and their monofluoro and monomethyl derivatives.

Five-membered rings

Molecular dynamics studies of 3-oxohexahydro-
indolizino[8,7-b]indole derivatives (68) were carried out in
order to study their potential as novel β-turn mimetics [105,
106]. While 68a and 68b are able to adopt type II′ β-turn
conformations, in the case of 69a–69c, they show extended
conformations of non-standard folding.

Another publication belonging to this section concerns the
study of 1,3,5-triphenyl-Δ2-pyrazoline (or 4,5-dihydro-1H-
pyrazole, 70). Figure 9 shows that the X-ray structure (this

compound crystallizes as a conglomerate) and the optimized
one (B3LYP/TZVP) are very similar [107]. Compound 70 has
been proposed as organocatalyst via iminium activation [108].
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Rings larger than six-membered

The minimum energy conformation of the seven-membered
ring B of colchicine (71), a compound that continued to be
much studied [109], has been calculated at the B3LYP/6-

311++G(d,p) level showing agreement with the X-ray struc-
ture and providing torsion angles consistent with vicinal
1H–1H spin–spin coupling constants (Karplus equation) [110].

Seven-membered rings containing two nitrogen atoms are
called diazepines, the most common are the benzo[e][1,4]-
benzodiazepines, like chlordiazepoxide, diazepam, loraze-
pam, and many others. In our case, we have studied the
benzo[b][1,4]benzodiazepines. In benzodiazepines 72 [111],
73 [111, 112], and 74 [113] and in diazepines 75a and b [114]
and 76 [115], tautomerism and ring inversion (none of these
seven-membered rings are planar) have been computed at dif-
ferent levels.

A conformational analysis of of 2,3,6,7-tetrahydro-
azepines was carried out with MM3 and CHARMm

molecular mechanics, and AM1 semi-empirical, as well
as Hartree–Fock and local density functional (LDF) ab
initio methods [116]. Similar geometrical characteristics
were found with all methods although there are impor-
tant differences in the rank order of the relative energies.
The importance of the solvation of these compounds in
the affinity for the dopamine D1 receptor was also stud-
ied [117].

Fig. 12 A six-blade propeller Fig. 13 A three-blade propeller
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The ability of a series of six- 77 and seven-membered
ring structures 78 to mimic the properties of an ideal γ-
turn has been studied by means of three molecular simi-
larity indices [118]. In general, the compounds with

seven-membered rings show good overall molecular sim-
ilarity indices when compared to an ideal inverse γ-turn
while six-membered rings provide good overall similari-
ties with classic and inverse γ-turns.

5,6,11,12-Tetrahydrodibenzo[a,e]-cyclooctene or
-[8]annulene (79) has three conformations: chair, twist-boat,
and twist [119]; using GIAO/B3LYP/6-31G* calculations to-
gether with 1H and 13C DNMR experiments, the long-
standing problem of its conformation has been solved and
the interconversion barriers determined. The two most stable
conformations, chair and twist-boat, have similar energies and
interconvert through processes having activation energies
about 42 kJ mol−1 slightly dependent on the solvent. The

different conformations have different sizes and that has been
used to prepare a thermal contracting polymer [120, 121].

The tetraindoles 80 show ring inversion when R = H, inver-
sion inhibited byN-substitution [122]. These multi-indole struc-
tures are part of the PAHs (polycyclic aromatic hydrocarbons)
[123]. Conformational analysis of eight-membered rings con-
taining four 81 or two N atoms, 82 and 83, was carried out
(B3LYP/6-311++G(d,p)) and compared with 75 [124]. The en-
ergy profiles are similar to those determined experimentally.
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A few rings larger than 8-membered have been studied. The
12-membered ring derivative 84 has played an important role in
the history of the conformational analysis. B3LYP/6-311++
G(d,p) calculations allow to determine four minima and four
TSs; the calculated ring inversion barrier, 42.6 kJ mol−1, is in
excellent agreement with the measured barrier 41.4 ± 0.8 kJ
mol−1 [125]. Sixteen-membered ring 85 and 18-membered rings
86 and 87 were studied (DNMR and crystallography) and their
ring barriers measured and calculatedwith theAM1Hamiltonian
[126]. Compounds related to 86 and 87 but with o-phenyl groups
instead of p-phenyl ones have been reported [127, 128].

Chirality in molecules devoid of chiral centers

Biphenyls, atropisomerism

We have studied several of the ten possible situations of
Fig. 10 in a paper covering many situations [129] and a

review reporting the literature until 2011 [130] (see also
[131]). The nomenclature used in Fig. 10 to define each
central bond includes the atoms involved in the bond and,
between parentheses, the number of atoms in each ring.

Two papers were devoted to C(6)–C(6) systems, the
first one to 1,1′-binaphthalenes bearing at positions 2,2′
CH(OH)CF3 substituents (three stereoisomers, R,S,S;
R,S,R; and R,R,R and their enantiomers, combining axial
and central chirality). B3LYP/6-31G(d) calculations were
used to determine the mechanism of formation of the diols
by reduction of the double COCF3 derivatives [132]. The
static and dynamic properties of BINOL (1,1′-bi-2-naph-
thol) and its conjugated acids and bases were studied
using mass spectrometry, microwave rotational spectros-
copy, NMR in superacid media, and MP2/6-311++G(d,p)
calculations [133]. Our calculated BINOL barrier was
used to discard a hypothetical mechanism [134].

Table 1 Racemization barriers of
helicenes in kilojoules per mole Helicene Experimental Calculated Our calculations a

[4] 125 – 18.8 [197]; 16.7 [198] 18.3
[5] 126 102.9 [192] 103.3 [197]; 102.1 [198] 102.0
[6] 127 151.5 [192] 157.3 [197]; 154.4 [198] 155.4
[7] 128 174.5 [192] 175.7 [198] 175.0
[8] 177.4 [192] 178.7 [198] 175.6
[9] 182.0 [192] 184.9 [198] 169.6
1-Methyl[6] 183.3 [199] 180.0
2-Methyl[6] ~ 151.5 [199] 156.2
1,16-Dimethyl[6] 184.1 [199] 181.0
2,15-Dimethyl[6] 162.3 [199] 163.5
2-Bromo[6] 152.7 [200] 148.8
2,15-Dibromo[6] – 156.9
1,2,3,4-Tetrafluoro[6] 162.8 [193] 159.3
Dehydro[6]helicenes
129a 71.1 [201] 66.7
129b 133.9 [201] 191.0
129c 136.4 [201] 211.9
129d 138.0 [201] 233.1
129e 136.7
129f 217.7

a B3LYP/6-31G(d)
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Lamotrigine (88), the treatment of choice for epilepsy and
bipolar disorder, is a racemate of rapid interconverting enantio-
mers [135]; this was established by 1H NMR at 600MHz in the
presence of ABTE (Virgili′s [(S,S)-α,α′–bis(trifluoromethyl)-
9,10-anthracenedimethanol] chiral auxiliary) and B3LYP/6-
311++G(d,p) calculations. The predominance of the diamino
structure proved relevant for the study of the hydrolysis of
Lamotrigine-N2-glucuronide in wastewater [136].

We have calculated the barrier to the rotation about the
C6–C1′ bond through a near-planar structure that corresponds
to a racemization process. There are two possibilities that corre-
spond to diastereomers: that the Cl atom at position 20 is on the
side of N1 (Fig. 11a) and that it is on the side of the 5-NH2 (Fig.
11b). The barriers are almost the same, 61.9 and 62.1 kJ mol−1,

respectively, therefore in the range that can be measured by
dynamic NMR (DNMR) in the presence of a chiral additive.
Using this technique, we have determined in CDCl3 a value of
ΔG‡

TC = 62.4 kJ mol−1, the agreement being excellent.
Compound J147 (89) is one of the most promising com-

pounds to treat Alzheimer’s disease [12] and it was used to
design a series of 1,2,3-triazoles 90 whose conformational
preferences were calculated [137].

Ten structures corresponding to two heterocycles C–C
bonded, C(5)–C(5) 91, were studied theoretically [MP2/6-
311++G(d,p)] to see if chalcogen–chalcogen interactions
(conformation 91b) determined the preferred conformation.
It appears that they are important although dipole–dipole ef-
fects also contribute [138].

A review was published covering the conformational as-
pects of meso-tetraarylporphyrines (92) [139], not only with
aryl but also with heteroaryl groups like pyridines and C-
substituted pyrazoles yielding four atropisomers (α,α,β,β;
α,α,α,β; α,β,α,β; and α,α,α,α) that are conformationally sta-
ble at room temperature although they interconvert in solution

at high temperatures [140]. The conformation of 2,2′-, 3,3′-,
and 4,4′-bipyridines as well as their monoprotonated and
diprotonated forms was studied with particular emphasis on
their NMR chemical shifts and conformational barriers [141]
(see also [142]). The rates of enantiomerization of chiral 2,2′-
bipyridines with restricted rotation 93a and b were calculated
[B3LYP/6-311++G(d,p)] [143].
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The most studied series in this section belong to Het(N)–
Ar(C) compounds; only one was a six-membered heterocycle
(a pyrimidin-2-thione) [144] cited by Roussel in [145], all the
others were N-arylazoles N(5)–C(6). The addition of imidaz-

oles and benzimidazoles to quinones affords mono (94, 95)
and disubstituted derivatives (96–99) and related compounds;
meso and d,l compounds are formed [146].

The reaction of hexafluorobenzene with sodium
benzimidazolates affords hexakis (benzimidazol-1′-yl) ben-
zenes 100 as the only products. These compounds, called
propellenes [147] by analogy with hexaphenylbenzene

[148–150] (Fig. 12), present eight possible conformations de-
pending on the up/down position of the benzimidazolyl resi-
due; three of them have been characterized c, f, and g [151].

All of the above systems have been studied, each one
presenting specific situations: 101 is an example of or-
thogonal interaction between the N atom of the nitro
group and the N2 atom of the azole (besides pyrazoles,
triazoles, tetrazoles, indazoles, and benzotriazoles have
been studied) [152, 153]. N-Arylindazoles, both 1H 102
and 2H 103, were examined starting from X-ray structures
reported in the Cambridge Structural Database [154]; the
search includes aza-derivatives (N atoms instead of CH
groups in the six-membered ring) [155]. The 1,2,3-tri-
azole 90 present also a conformation about an N–C bond

[137]. A series of 2-, 3-, 4-, 2,4- (like 101), 2,6-, and
2,4,6-nitro-pyrazoles and indazoles were examined with
special emphasis on the X-ray structures [156]. The chem-
ical shifts of 2-phenyl-2H-benzotriazole (104) in the solid
state were calculated with the GIPAW and GIAO-PCM
(DMSO) and both methods compared; only for 15N
SSNMR chemical shifts GIPAW proved better [157].
Finally, the atropisomerism of 105 was studied showing
the influence of hydrogen bonding on the racemization
rates that were determined by treatment of the plateau-
shape chromatogram during chromatography on chiral
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support [158] (for similar results, see [159]). An example
of the much less frequent case where instead of an aryl
ring there is a six-membered heterocycle concerns 2,4,6-
tris(1H–pyrazol-1-yl)-1,3,5-triazine, a compound present-
ing polymorphism, pseudopolymorphism, and co-crystals
[160].

Molecular propellers

In this section, we will discuss three-blade propellers
(Fig. 13) much more common than the previous six-
blade ones [14, 161, 162]. Usually, they are tris-azolyl

derivatives related to trisarylmethanes [163–166]; the
tetrakisazolyl derivatives, related to tetrakisarylmethanes
[167–169], are less common.

Methanes

In 1994, Breitmaier et al. published a paper where Grignard
alkylation of aldehydes occurs with very large enantiomeric
excess due to the effect of the static magnetic field of an NMR
spectrometer [170]. Since this result seems improbable, we
carry out a reaction that we feel will be much more sensitive
to chiral induction [164].

The reaction of 2-methyl-1H-benzimidazole (106)
with chloroform in the conditions of PTC affords the
tris(2-methylbenzimidazol-1-yl)methane (107) as a race-
mic that by 1H NMR in the presence of Pirkle’s alcohol
was proved to be a 50:50 mixture of both enantiomers.
The enantiomers were separated by chromatography on
microcrystalline cellulose triacetate [171]; they are sta-
ble with a racemization barrier of 120 kJ mol−1 at 343
K. When the reaction was carried out inside of an NMR
spectrometer (7.05 T), we obtain again a 50:50 mixture,
i.e., no enantioselectivity. We sent our paper to
Angewandte Chemie where it was rejected based on
“the journal does not published negative results.” We
sent it immediately to Heterocyclic Communications
[172] where it was received on June 30, 1994.

Although Heterocyclic Communications continue to be
published, the first issue where our paper appeared
was not included in the Web of Science. Shortly after-
wards, Breitmaier’s paper was withdrawn [173–176]. A
series of papers were published on this topic in subse-
quent years, by ours [177, 178] and by other groups
[179, 180]. Among the derivatives studied, experimen-
tally (X-ray) and theoretically, was 108 [181]. A com-
prehensive review on poly(pyrazol-1-yl)methanes up to
2017 was published [182].

The reaction of 3(5)-methyl-1H-pyrazole with CHCl3 af-
fords four tris(pyrazol-1-yl)methanes 109 in proportions that
obey a (a + b)3 model (a = 3-methyl; b = 5-methyl) with great
accuracy. Isomer 109-555 was prepared from tris pyrazol-1-
yl)methane (110) [183].
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When the reaction was carried out with CCl4, the propor-
tion of tetrakis derivatives does not follow an (a + b)4 polyno-
mial expansion, probably due to steric effects in the last step,
going from Mepz3Cl to Mepz4C [184].

Borates (scorpionates)

Following Trofimenko’s seminal work [185, 186] and
sometimes collaborating with him [7, 187], we have

devoted some publications to the study of scorpionates
mainly using NMR data and conformational analyses:
fluxional behavior of 111 and 112 [188], multinuclear
NMR and space groups 113–115 [189], crystallography
and SSNMR of the thallium salts of scorpionates 116–
117 with a discussion of the 11 motifs observed for
tetrakis scorpionate derivatives [190], and the structure
of four thallium tris(1H-pyrazol-1-yl)hydroborates 118a–
118d [191].
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Helicenes

Helicenes are fascinating molecules [14, 162, 192] (for two
recent publications related to our work, see [193, 194]) that we
have studied three times. Hexaaza[5]helicenes 119 racemize

(M/P helix conversion) by a classical mechanism and not by a
ring opening 120/ring closing one [195]. The kinetic parame-
ters are ΔH = 17.6 kJ mol−1 and ΔS = 53.8 J mol−1 K−1.

The racemization barriers of the 1-aza series 121–124
were calculated at the M05-2x/6-31G(d) level. The
[4]helicene 121 is planar; for the three others, the bar-
riers are 57.0 (122), 141.1 (123), and 181.6 kJ mol−1

(124); the experimental value of 123 is 134.7 kJ mol−1

[196]. Dimers linked by alkaline cations (Li+, Na+, K+)
were calculated to study the chiral distinction between
homochiral and heterochiral dimers.
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We have in process the calculation of the barriers of
helicenes reported in Table 1.

In the process of preparing [7]circulene (130), Yamamoto
et al. went through 1,6-dehydro [6]helicenes 129a–129d [201]
determining the X-ray structure of 129c and the racemization
barriers of the four compounds (Table 1). Contrary to the
barriers of helicenes that the calculations (different levels)
reproduce with accuracy (Table 1), those of 1,6-
dehydro[5]helicenes 129 (except 129a, the less hindered) are
grossly overestimated (increasing the level of the calculations,
up toMP2 and CCSD does not solve the problem). A possible
explanation is that the TS involves an open-shell diradicaloid
structure.

The results of Table 1 shows that with a moderate level of
calculation (M05-2x/6-31G(d)), the experimental results are
well reproduced: Removing 129b to 129d, we obtain, Exp.
= (1.012 ± 0.008) B3LYP/6-31G(d), n = 12, R2 = 0.999. The
deviation of compounds 129b to 129d can be calculated
adding a dummy to be 78 ± 6 kJ mol−1.

Truxenes

The only representative of this section are truxenes
131 , an in te res t ing fami ly of concave shape
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hydrocarbons [202] that have been much studied by
their proximity to fullerenes [123, 203, 204]. Truxene
derivatives may be considered molecules with three
helicene regions.

Conclusion

The great diversity of structures, 1–131, added to the different
techniques (solution and solid-state NMR, chiral reagents for
enantiorecognition, dynamic NMR (DNMR) in the presence
of a chiral additive, X-ray crystallography, circular dichroism,
vibrational circular dichroism, chiral chromatography, kinet-
ics, equilibria, etc.) were tied together by theoretical calcula-
tions. They provided a rationale for the measured values and,
at the same time, allow predicting unmeasured properties.

The future of chemistry is tied to the progress in computa-
tional chemistry. The number of possible structures, being
much larger that the elemental particles in the Universe
[205] and the biased distribution of known molecules in the
multidimensional space of chemical structures [206, 207],
obliges to develop theoretical methods of prediction of prop-
erties (physical –materials– and biological –drugs–) to attain
these compounds that will protect the humanity in the future.

This review reports many examples of the success of the-
oretical chemistry in explaining known properties; a step fur-
ther is necessary to predict properties of unknown com-
pounds. This should be the main conclusion of this review.
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