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Abstract
Certain DNA minor groove binders, especially bis-benzimdazole containing compounds, such as Hoechst 33258 and its deriv-
atives, act as potent topoisomerase I inhibitors. The mechanism of action of these drugs is complex and involves hindering the
breakage/reunion reaction of topoisomerase I. In the present work, molecular modeling studies have been performed to develop a
pharmacophore and 3D-quantitative structure–activity relationship (QSAR) model based on bis- and ter-benzimidazoles, in an
attempt to recognize the features that must be present in a molecule for it to behave as a topoisomerase I inhibitor. A data set
comprising thirty bis-benzimidazoles and ter-benzimidazoles, known for their cytotoxicity against the RPMI-8402
lymphoblastoma cell line, has been chosen for this study. A five-point common pharmacophore hypothesis (CPH), with two
acceptors, one donor and two aromatic features, has been derived for pharmacophore-based alignment of the molecules. The
QSAR model, hence generated, shows a reasonable predictive Q2 value of 0.465. The CPH and contour map analyses display
features that render antiproliferative properties to molecules against tumor cell lines, thereby ceasing cell growth. Further, the
pharmacophore model has been utilized to develop lead molecules that can provide stability to the DNA–topoisomerase I
cleavable complex, in turn inhibiting the activity of the enzyme. Virtual screening, followed by docking of obtained hits into
the minor groove of B-DNA, gave three potent drugs, which are already approved drugs. The drug having the best fitness and
binding score was further docked into the DNA–topoisomerase I cleavable complex. The present study opens up a new
dimension in development of drugs for topoisomerase I inhibition.
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Introduction

DNA topoisomerase I plays a significant role in DNA replica-
tion and transcription, as well as in chromosome segregation and
condensation [1–5]. It introduces transient single strand breaks
in the absence of an energy cofactor (ATP independent) and is
therefore required during transcription, especially elongation [4,
6–8]. Topoisomerase I directs DNA cleavage and forms a cova-
lent enzyme-DNA intermediate, called Bcleavable complex.^

This is followed by DNA relaxation and, finally, relegation of
the phosphate backbone to restore the continuity of the DNA.
Thus, topoisomerase I possesses immense importance in almost
all stages of the cell cycle. As a result, the role of mammalian
DNA topoisomerases as molecular targets for anticancer and
antitumor drugs has been explored, and it was found that topo-
isomerase inhibition could curb cancerous cell growth across a
variety of cell lines. However, the mechanism of action of topo-
isomerase I targeting anticancer drugs is very complex [9–17].

Certain DNA minor groove binders are known to act
as topoisomerase I inhibitors. Hoechst 33342 (Fig. 1)
and its analogues act as a structurally unique class of
topoisomerase I poisons [18]. These drugs are known to
hinder the breakage/ reunion reaction of topoisomerase
I, in which the enzyme is reversibly trapped in a state
where the DNA is cleaved [19]. The single-strand DNA
breaks induced by minor groove binding drugs are high-
ly site specific.
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Studies with bis- and ter-benzimidazoles have shown that
their interaction with the minor groove of DNA is essential for
the poisoning of topoisomerase I. A study [20] established that
a 3,4-dimethoxyphenyl bis-benzimidazole derivative of
Hoechst acts as a novel DNA topoisomerase inhibitor with
preference of targeting E. coli topoisomerase I. Recently, a
series of Hoechst 33258 (Fig. 1) based mono- and bis-
benzimidazoles has been synthesized and their E. coli DNA
topoisomerase I inhibition, B-DNA binding, and antibacterial
activity have been evaluated [21]. A 2D-quantitative structure–
activity relationship (2D-QSAR) model, developed on the
topoisomerase inhibitory potency of 5-substituted ter-benz-
imidazoles [22], indicated that the lipophilic activity of substit-
uents at the fifth position of these ter-benzimidazoles can
strongly influence cytotoxic activity. In another study [23],
the topoisomerase I inhibition by bis- and ter-benzimidazoles
was reviewed and individual 2D-QSAR models were generat-
ed for each class of inhibitors. A 3D-QSAR model was also
generated using CoMFA [24] and CoMSIA [25] molecular
field methods. The results were compared with multiple linear
regression (MLR) models. The study reported that the hydro-
gen bond donor efficacy of the minor groove binders is a very
important factor in enzyme inhibition [26].

However, minor groove binding alone is not a sufficient
criterion for topoisomerase I trapping, as distamycin, berenil,
and netropsin (which are good minor groove binders) do not

poison topoisomerase I [27, 28]. It can thus be suggested that
the stabilization of DNA–topoisomerase I covalent complexes
may depend on the capacity of the drug to induce DNA bend-
ing or to stabilize a bent DNA conformation [17, 29].

After it was established that Hoechst 33258 and its deriva-
tives can act as topoisomerase poisons, their cytotoxicity against
the human lymphoblastoma cell line, RPMI-8402, was also
tested by several groups [22, 30–36]. RPMI-8402, established
from the peripheral blood ofHomo sapienswith acute lympho-
blastic leukemia (ALL), is a round single-cell suspension which
grows partly in clumps and forms tumors [37]. The cytotoxicity
of Hoechst derivatives towards these cancerous cell lines opens
up their use as antitumor agents. The topoisomerase I extracted
from these cell lines can be successfully inhibited, and further,
cell growth can thus be hindered.

In the present study, we have developed pharmacophore and
3D-QSAR models based on bis- and ter-benzimidazoles, in an
attempt to recognize the features that must be present in a mol-
ecule for it to behave as a topoisomerase I inhibitor. Further,
virtual screening and molecular docking studies have been per-
formed on external ligand sets extracted from the ZINC data-
base. The obtained hits have been subjected to in silico phar-
macokinetic studies and evaluated on Lipinski’s rule of five in
order to pass the drug acceptability criteria. In all, our
pharmacophore model will represent features that render anti-
proliferative properties to molecules against tumor cell lines.
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Computational details

Pharmacophore building and atom-based 3D-QSAR

We utilized the PHASE1 (Pharmacophore Alignment and
Scoring Engine) module developed by Schrödinger, Inc. to
perform both pharmacophore modeling and atom-based 3D-
QSAR using the Bdevelop pharmacophore model^ workflow.
PHASE thoroughly explores all possible conformations
across rotatable bonds and retains only the most reasonable
conformations. It finds possible pharmacophores using a high-
dimensional, tree-based partitioning algorithm. After this,
alignments of active ligands are done on generated
pharmacophores according to an open, highly configurable
scoring function. Partial least-squares (PLS) regression
[38–40] is used for predicting a significant pharmacophore
model [41, 42]. The alignment of molecules obtained from
PHASE is used as the input for development of an atom-
based 3D-QSAR model.

A data set comprising 30 bis-benzimidazole and ter-
benzimidazole based Hoechst 33258 derivatives (Table S1)
that are known for their cytotoxicity against the RPMI-8402
lymphoblastoma cell line was used in our study. The mole-
cules were chosen keeping in view that they must cover max-
imum diversity under similar biological assay conditions [22,
30–36]. The molecules were geometrically refined retaining
their specified chiralities, and all possible ionization states at
the target pH 7.0 were generated to incorporate the states that
have possibility of existence at the physiological pH. From the
X-ray analysis, it is proven that in the Hoechst molecule, both
–NHs of benzimidazole rings face the minor groove of DNA
and adopt a slightly twisted planar structure in order to form
intermolecular hydrogen bonds with DNA bases [43]. It has
also been found that it requires very little energy (of the order
of a few kJ mol−1) to flip the two benzimidazole rings along
the central bond connecting them [44], and therefore it is not
justified to carry a rigorous conformational search via
PHASE.

After this, the activity threshold was set for these mole-
cules. All IC50 values were converted into pIC50 for conve-
nience. The pIC50 values range from 3.82 to 7.52, and these
values were used to divide the molecules into three categories.
Molecules with pIC50 above 6.20 were tagged active, while
those with pIC50 below 5.60 were labeled inactive (Table S1).
All inhibitors having pIC50 values between 5.60 and 6.20
were considered moderately active. With this threshold, we
obtained 15 actives and 8 inactives, which were used for
pharmacophore generation and scoring [42].

Common pharmacophoric hypotheses (CPHs) were gener-
ated for three to seven variant lists, comprising the
pharmacophore features, hydrogen bond acceptor (A),

hydrogen bond donor (D) (hydrogens bonded to N, O, P, S),
hydrophobic group (H) (alkyl chains, Cl, Br, F, I), negatively
ionizable (N), positively ionizable (P), and aromatic ring (R).
These CPHswere then examined using a scoring function in the
Bscore hypotheses^ panel to obtain best alignment of the active
ligands [42]. After this, a scoring procedure was applied to
identify the pharmacophore from each surviving n-dimensional
box that yields the best alignment of the active set ligands.

The predictive ability of a hypothesis which scored well
with actives but less with inactives was evaluated by correlat-
ing the observed and estimated activity of the training and test
set molecules using PLS analysis. For the QSAR studies,
compounds showing high activities were included in both
the training and test sets, especially in the training set, so as
to provide important information on the pharmacophore
requirements.

Virtual screening and molecular docking

After establishing a pharmacophore model, it is imperative to
identify from a set of known drugs the structures which fit the
model, and are hence likely to bind DNA, thereby stabilizing
the DNA–topoisomerase I complex. A small library of com-
mercially available approved drugs from the ZINC Drug
Database (ZDD) (www.zincdocking.org), comprising 2924
drugs, was chosen for the study. These molecules were first
energy minimized through multiple minimizations using the
OPLS-2005 force field, keeping the force field defined elec-
trostatic treatment tools available in MacroModel,
Schrödinger, Inc.

The enumeration of tautomeric, ionization, and stereoiso-
meric states is an important step in virtual screening. These
states were generated using LigPrep at the physiological pH 7
± 2. A total of 42,071 states were thus generated. These states
were then subjected to BFindMatches to Hypothesis Panel^ in
PHASE, and rigorous conformational search was performed
during the process. The pharmacokinetic drug likeliness and
Absorption, Distribution, Metabolism, Excretion and Toxicity
(ADMET) parameters [45, 46] were then evaluated for the
obtained hits using the QikProp module available in
Schrödinger, Inc.

For molecular docking, we chose the Dickerson Drew
structure of B-DNA complexed with Hoechst 33258 (PDB
ID: 1DNH) [43]. The minimization of the macromolecule
and generation of the receptor grid were carried out on the
same lines as reported in our earlier work [47]. Glide standard
precision (SP) and extra precision (XP) methodologies were
utilized to select the top lead molecules. The Prime MM/
GBSA calculations were also performed using the Ligand
and Structure-Based Descriptors (LSBD) application of the
Schrödinger software package.

In a further step to validate the results, docking studies of
the proposed molecules with the DNA–topoisomerase I1 PHASE, Version 3.0, Schrödinger, LLC, NY2009
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cleavable complex were then performed. Due to unavailability
of the crystal structure of the ternary complex of DNA–
topoisomerase I with the minor grove binder, the binary com-
plex was chosen instead. The starting coordinates of the hu-
man topoisomerase I in complex with a 22-base pair duplex
oligonucleotide having the d(AAAAAGACTTAGAA
AAATTTTT)-3′ sequence (PDB ID: 1A36) were imported
from the Research Col labora tory for St ruc tura l
Bioinformatics (RCSB) Protein Data Bank (www.rcsb.org)
and refined for further work using the protein preparation
workflow in the Schrödinger suite.

Results and discussion

Survival scores—internal and external data set
predictions for CPHs

Thirty Hoechst derivatives with varying activities against
RPMI 8402 cell lines were selected for CPH generation.
Two hundred and twenty three-featured, 337 four-featured,
267 five-featured, 107 six-featured, and 16 seven-featured
probable CPHs were thus generated from the list of variants.
The CPHs of three and four featured variants were rejected, as
they were unable to define the complete binding space of the
large Hoechst based molecules. On applying the scoring func-
tion for five featured CPHs, 75 CPHs belonging to five broad
types AADRR, ADRRR, ADDRR, DRRRR, and ARRRR
survived. The survival as well as survival minus inactive
(Bsurvival-inactive^) scores for each class of hypotheses were
obtained and analyzed. Out of the 75 surviving hypotheses,
the ones that were the best scorers in their respective category,
and also those that aligned on the molecule in the most diverse
ways, are tabulated in Table S2. Further details are provided in
the supplementary information.

A good hypothesis is one that not only matches the actives
significantly but also deviates appreciably from the inactives.
The larger the value of the survival-inactive score, the better is
the hypothesis in distinguishing the actives from the inactives
[42]. From Table S2 for the five-featured CPHs, it is observed
that the hypotheses AARRR.22 and AARRR.24 have the least
survival scores (2.858 and 3.364, respectively) as compared to
the other CPHs. Therefore, this feature family (AARRR) can be
safely dropped from further statistical analysis. For the other
hypotheses, some have exactly the same survival scores, with
little or no difference in the survival-inactive score. The same is
also true for the six- and seven-featured hypotheses (Tables S3
and S4). Since there is little to distinguish amongst the various
hypotheses in each variant, we proceeded with 3D-QSAR gen-
eration using all five, six, and seven-featured CPHs.

The QSAR results for the six and seven featured CPHs are
found to be unsatisfactory (Tables S3 and S4). There is great
mismatch between the R2 and Q2 values for these variants,

signifying that the QSAR model is not a good one. Negative
Q2 values are obtained for these CPHs, indicating over-fitting
of data. Despite good regression with the training set mole-
cules (R2), most of the six and seven featured hypotheses show
poor regression coefficient with the test set molecules (Q2).
The Pearson-R values, which are a correlation between the
predicted and observed activities for the test set, are also un-
satisfactory. Though the results for seven featured CPHs are
slightly better than those for six featured CPHs, both show
large deviation in the test set activity predictions and were,
therefore, rejected.

We now discuss the five featured CPHs. To select the best
hypothesis amongst these, different combinations of the train-
ing and test set molecules were generated and analyzed using
PHASE PLS analysis. All the 30 ligands were aligned on each
of these five featured CPHs, and random training (50%) and
test (50%) sets were thereby generated. The summary of the
statistical data of the random set for the selected five featured
CPHs with three PLS factors is listed in Table 1. It can be seen
that all the hypotheses are statistically significant (p < 10−4).

A good QSARmodel is one for which theQ2 values for the
tested ligands are comparable to the R2 values obtained for the
training set ligands. Also, the Pearson-R values should be
greater than 0.5, and RMSE values should be low [41, 42,
48–50]. From Table 1, it is observed that the largest Q2 values
are obtained for ADRRR.98 and AADRR.4. Their Pearson-R
coefficients are also the highest and comparable. These hy-
potheses are therefore better than the others and are thus con-
sidered for further discussion.

A second combination of the training and test set molecules
was generated by applying a 50% random training set selec-
tion. The training set was analyzed using three PLS factors,
and the predictivity of the hypotheses was analyzed with the
test set molecules (Table S6). Here again it is observed that for
both AADRR.4 and ADRRR.98, the statistics are comparable
in one respect or the other. For example, both the hypotheses
have comparable Q2 values (0.3627 and 0.3647, respectively,
for AADRR.4 and ADRRR.98), and it cannot be conclusively
asserted which of the two hypotheses, AADRR.4 and
ADRRR.98, is the better of the two.

In order to gain further clarity in this respect, the above
two hypotheses were tested over an external test set of
ligands. For testing the external test set predictivity of
the CPHs, 277 known topoisomerase I inhibitors were
imported from the Binding DB database (www.
bindingdb.org), along with their IC50 values. The
conformations for these 277 molecules were generated
via the MacroModel conformation search panel using a
mixed MCMM/LMOD (Mixed Monte Carlo Multiple
Minimum/Low Mode) search with distance-dependant di-
electric solvation treatment using the OPLS-2005 force
field. For each molecule, all conformers with maximum
energy difference of 10 kcal mol−1 relative to the global
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energy minimum conformer were retained. A total of
1929 conformations were thus obtained for these 277
ligands.

Using the BFind Matches to Hypothesis^ panel of
PHASE, it was found that the numbers of hits/ligands
matching the two competing hypotheses, AADRR.4 and
ADRRR.98, are 38 and 15, respectively. The activity for
each of these molecules was then predicted. One point to
be emphasized here is that the external data set comprised
all the topoisomerase I poisons and did not specifically in-
clude DNA minor groove binders. Topoisomerase inhibi-
tion can be ascertained via many routes, and stabilization
of the DNA–topoisomerase cleavable complex by the li-
gands is one of them. The lower number of hits obtained is
justified, as the pharmacophore model is built on bis- and
ter-benzimidazoles only, but we have scanned it over the
entire library of topoisomerase poisons, of which Hoechst
derivatives are just a small part. The number of hits also
signifies that these ligands present in the topoisomerase in-
hibitor library can inhibit the enzyme in a similar manner as
the DNA minor groove binders do. It will be of much inter-
est to see the binding affinity of these drugs towards DNA.
As the mechanism of topoisomerase I inhibition via DNA
minor groove binders is still unclear, it will be interesting to
study theoretically the mechanism of Hoechst and its bis-
and ter-benzimidazole derivatives as blocking agents to-
wards the DNA–topoisomerase cleavable complex.

A plot of the predicted activity for each of these molecules
versus their experimental activity for each QSAR model,
along with the corresponding regression coefficients, is pre-
sented in Fig. 2.

From the external data set predictions of the two
pharmacophore models, it is observed that the regression co-
efficient between the predicted and experimental activity is
better for hypothesis AADRR.4. The CPH ADRRR.98, al-
though only a little behind AADRR.4 in terms of R2, was
rejected, as the number of hits obtained for the former (15)
is much less than that for the former (38). Since the internal
data set predictivities (Table 1), as well as external data set
predictions (Fig. 2), are both satisfactory for the CPH
AADRR.4, it emerges as the Bbest^ pharmacophore model
for defining the features required for topoisomerase inhibition
and cytotoxicity towards the RPMI 8402 cell lines. The details
of this pharmacophore model are presented below.

AADRR.4—the pharmacophore model

The features represented in the best pharmacophore model are
two acceptors, one donor, and two aromatic rings. The accep-
tors are the nitrogens of the bis-benzimidazole moiety that
possess lone pairs, while the hydrogen bond donor group is
represented by one of the –NH of the benzimidazole system
(Fig. 3). The two aromatic features are also a part of the bis-
benzimidazole unit. Any molecule with these features at the
specified distance and angle (Tables S7 and S8) is expected to
be a potent drug towards RPMI 8402 cell lines.

In Fig. 4, all the thirty molecules are superimposed on the
model AADRR.4, and it is found that almost all molecules
superimpose on the pharmacophore model with pretty good
accuracy. As the Hoechst molecule contains a central core of
the bis-benzimidazole moiety, the presence of two acceptors,
one donor, and two aromatic ring features in our

Table 1 Summary of atom-based
3D-QSAR statistics with three
PLS factors for selected five fea-
tured CPHs

Hypothesis SD R2 F p RMSE Q2 Pearson-
R

AADDR.1 0.4486 0.8680 24.1 3.87 × 10−5 0.8529 0.3300 0.6027

AADDR.9 0.4492 0.8677 24.1 3.92 × 10−5 0.8514 0.3324 0.6039

AADRR.14 0.4514 0.8664 23.8 4.14 × 10−5 0.8478 0.3380 0.6076

AADRR.4 0.4134 0.8879 29.1 1.59 × 10−5 0.7623 0.4648 0.7361

ADDRR.35 0.3685 0.9110 37.5 4.53 × 10−6 0.9139 0.2308 0.5494

ADDRR.62 0.4510 0.8666 23.8 4.10 × 10−5 0.8492 0.3358 0.6066

ADDRR.7 0.3657 0.9123 38.2 4.17 × 10−6 0.9118 0.2343 0.5488

ADDRR.8 0.4486 0.8681 24.1 3.86 × 10−5 0.8505 0.3337 0.6058

ADRRR.98 0.4079 0.8909 29.9 1.37 × 10−5 0.7622 0.4650 0.7349

DDRRR.17 0.3677 0.9113 37.7 4.43 × 10−6 0.9092 0.2386 0.5506

DDRRR.174 0.3692 0.9106 37.3 4.63 × 10−6 0.9196 0.2211 0.5422

DDRRR.198 0.3601 0.9150 39.5 3.52 × 10−6 0.9015 0.2514 0.5601

DDRRR.78 0.3674 0.9115 37.8 4.38 × 10−6 0.9077 0.2412 0.5554

DRRRR.321 0.3632 0.9135 38.7 3.87 × 10−6 0.9021 0.2504 0.5607

SD standard deviation of the regression, R2 value of the regression, F variance ratio, p significance level of
variance ratio, RMSE root–mean–square error, Q2 value of Q2 for predicted activities, Pearson-R correlation
between the predicted and observed activity for the test set

Struct Chem (2019) 30:1185–1201 1189



pharmacophore model is an indicator that these features could
be important in deciding the biological activity of Hoechst
derivatives.

The fitness score is a measure of how well a conformer
matches a pharmacophore model [41, 42]. The fitness scores
of all the molecules with respect to the model AADRR.4 and
the predicted and experimental activities are listed in Table S9.
Compound S# 24 with the maximum possible fitness score of
3.00 is presented in Fig. 5. As stated earlier, all the ligands fit on
the pharmacophore model with sufficient accuracy (Fig. 4),
which is also confirmed from the fact that even the lowest fitness
score value (2.41; Table S9) is appreciably good (> 80%).

In Fig. 6 are presented the scatter plots of predicted versus
experimental pIC50 for two different combinations of training
and test set molecules—one with random 50% training set
selection and the other with random 70% training set selec-
tion. A reasonable correlation is observed between the R2 and
Q2 values within both the sets. Moreover, the validity of this

model had already been confirmed by the good regression
coefficient obtained for an external data set (Fig. 2a).

Interpretation of contour maps

In the QSAR visualization panel, contour mapswere found for
hydrogen bond donor, hydrophobic/non-polar part, and elec-
tron withdrawing groups, but no contour maps could be found
for hydrogen bond acceptor groups. This implies that the pres-
ence of hydrogen bond acceptor groups in bis-benzimidazoles
and ter-benzimidazoles hardly makes any contribution to the
biological activity of these ligands. In other words, the posi-
tion of the heterocyclic N atom in the benzimidazole lacks
significance as far as cytotoxicity is concerned. These contour
maps generated from pharmacophore model AADRR.4 give
an idea regarding positioning of various groups in 3D space in
the absence of the receptor.
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Fig. 2 Scatter plots for the predicted and experimental pIC50 values, along with the corresponding regression coefficient values, for models aAADRR.4
and b ADRRR.98 applied to the external test set of molecules
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Fig. 3 Model AADRR.4 representing features a distances and b angles
between them. Acceptor is indicated as a light red sphere A1 and A3 with
lone pair vectors; donor D5 is indicated by a light blue sphere centered on

the H-atom with an arrow pointing in the direction of a potential H-bond.
R12 and R13 represent the aromatic rings features denoted by orange
rings
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Figures 7, 8, and 9 illustrate the hydrogen bond donor,
hydrophobic, and electron withdrawing properties of the mod-
el superimposed on the most potent molecule S# 13 and the
least potent molecule S# 20. The colored regions in the con-
tour maps denote the placement of substituents/groups that
would increase or decrease the activity of drug. The orange
colored regions (Fig. 7) denote the 3D space where the pres-
ence of a hydrogen bond donor will cause increment in the
activity of drugs against topoisomerase I inhibition, whereas
the green colored regions indicate decrement in the same.

It can be seen that both the ligands are ter-benzimidazoles,
and only one benzimidazole ring, Bz1 (Table S1), is respon-
sible for the enhancement of the biological activity of these
ligands, as this is the only group that overlaps the orange
colored regions (Fig. 7). No other position of hydrogen bond
donor seems significant. In addition, the presence of a hydro-
gen bond donor at the third benzimidazole ring, Bz3
(Table S1) seems unfavorable for the activity (Fig. 7), as this
overlaps the green region. This is in agreement with a proposal
[26] that the central imidazole –NHmoiety contributes less to
the activity in comparison to the equivalent groups on the
other two benzimidazoles.

Apart from the –NH of benzimidazole rings, the pres-
ence of a hydrogen bond donor at the fifth position of
the benzimidazole Bz3 in ter-benzimidazoles also de-
creases the activity. The molecule S# 20 is the least
potent topoisomerase inhibitor, as the presence of the –

OH group at this position overlaps with the green re-
gions of the QSAR model.

Figure 8a, b shows regions around the most and least
potent topoisomerase I inhibitor with respect to
hydrophobic/non-polar groups. The yellow regions reflect
the positions where the presence of non-polar groups (such
as aromatic rings/aliphatic chains) increases the topoisom-
erase activity. The presence of a –CH3 group on the ali-
phatic piperazinyl ring in Hoechst 33342 also falls in this
yellow region. As far as the ter-benzimidazoles are con-
cerned, the most potent molecule S# 13 contains the non-
polar pyridine ring, which overlaps with the yellow region,
thereby increasing the activity. Similarly, ligand S# 30 has
two hydrophobic phenyl rings at the fourth and fifth posi-
tions of the benzimidazole ring Bz3 (Table S1), which
overlap with the yellow region of the QSAR model, and
hence, this molecule possesses significant activity.

The low topoisomerase I activity of the minor groove bind-
er S# 20 (Fig. 8b) is due to its inability to interact with the
hydrophobically favored yellow region. The compound is
small in size and so does not contain large hydrophobic sub-
stituents at the specified yellow regions, causing poorer activ-
ity. On the other hand, the pink colored region falling on the –
NH of the first benzimidazole ring (extreme left) indicates that
the polar groups are favored at this position and any hydro-
phobic groupwould result in lowering of activity against topo-
isomerase inhibition.

Fig. 4 Alignment of molecules
on AADRR.4

Fig. 5 Best pharmacophore
model AADRR.4 aligned with
molecule S#24 having the best
fitness score
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Figure 9 denotes the effect of electron withdrawing groups
on the cytotoxicity of these ligands towards RPMI 8402 cell
lines. The electron withdrawing groups lying in the cyan re-
gion enhance molecular activity, while those present in the
purple region result in lowering of activity. Amongst all the
ligands considered in this study, the activity of molecule S# 4
is significantly good (Table S9) due to the presence of the
electron withdrawing –NO2 group at the fourth position of
bis-benzimidazole, which overlaps with the cyan region. In
the most potent inhibitor S# 13, the hydrophobic group is
present at the fifth position of the benzimidazole ring Bz3
(Table S1), which plays an important part in the enhancement
of its activity. Hence, the presence of an electron withdrawing
group at this position would decrease the cytotoxicity of the
molecule due to its overlap with the purple colored region, as
illustrated in Fig. 9a.

In Fig. 10 are presented the combined effects of H-bond
donor, hydrophobic group, and electron withdrawing groups
on the activity of the molecules—S# 13 and S# 20. The pres-
ence of these groups in the blue colored regions enhances the
activity, while their presence in the red colored regions de-
creases activity.

From Fig. 10a, it is clear that, for the most active
molecule, there are maximum blue colored regions over-
lapping the available features in the molecule, while for
the least active ligand (Fig. 10b), the number of features
overlapping with the unfavorable red regions is greater.
We conclude that, for a molecule to be an active inhib-
itor of topoisomerase I, the H-bond acceptor, H-bond
donor, and hydrophobic groups should preferably lie in
the blue colored regions with minimal presence in the
red region.
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Fig. 6 Scatter plots for the predicted versus experimental pIC50 values for the AADRR.4 QSARmodel applied to the a 50:50 and b 70:30 combinations
of training and test set molecules
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Fig. 7 Atom-based 3D-QSAR model based on a most potent topoisom-
erase inhibitor and b least potent topoisomerase inhibitor, illustrating the
hydrogen bond donor feature. The orange regions denote where hydrogen
bond donor groups increase the cytotoxicity of molecules towards RPMI

8402 cell lines, and the green regions denote 3D space where hydrogen
bond donor decreases the cytotoxicity of molecules towards RPMI 8402
cell lines
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Following the alignment of the Hoechst derivatives on the
pharmacophore and 3D-QSAR model, we proceeded towards
virtual screening.

Virtual screening

Finding the matches to hypothesis AADRR.4

To further validate the pharmacophore model AADRR.4 and
to find the lead molecules from the known drug database that
can inhibit the topoisomerase I enzyme, we performed a
query-based search on the 42,071 states generated of the
2924 drugs. A total of 1197 molecules were obtained as hits.
The maximum value of the fitness score obtained was 1.92.
The distribution of molecules in the various fitness score
ranges is given in Table 2.

It is observed that, out of the 1197 molecules, there are 221
(~ 19%) that exhibit fitness scores ≥ 1.50 (i.e., 50%). The low
percentage can be explained on the basis that we are in search
of drugs that resemble DNA minor groove binders based on
bis- and ter-benzimidazoles. The aim is to search for an alter-
native mechanism induced by DNA minor grove binders in
the inhibition of the topoisomerase enzyme. Usually, topo-
isomerase I inhibitors attack the enzyme site; however, topo-
isomerase I poisoning can also be achieved by the drug

attacking both DNA and the enzyme at the site of cleavage.
Therefore, fitness cannot be the sole criterion in determining
new leads, and hence docking plays a significant role in enu-
merating the results, and therefore, we proceeded with
docking studies in three stages. The first part is the docking
of the obtained hits within the minor groove of B-DNA (PDB
ID: 1DNH). The second part is docking of bis- and ter-
benzimidazoles (used to obtain the pharmacophore model)
within the minor groove of B-DNA to correlate the binding
pattern between the proposed drugs and bis- and ter-
benzimidazoles (the known minor groove binders). The third
part is an attempt to actually mimic the real system by docking
one of the best proposed drugs within the minor groove of
DNA complexed with topoisomerase I (PDB ID: 1A36).

ADMET properties and docking studies of obtained hits
within the minor groove of B-DNA

We chose the crystal structure of the Dickerson–Drew DNA
dodecamer d(CGCGAATTCGCG)2 in complexation with
Hoechst 33258 (PDB ID: 1DNH) [43], obtained from the
Protein Data Bank (www.rcsb.org), for docking analysis of
the hits. Hoechst 33258 is known as a prominent minor
groove binder that displays specific binding towards the
adenine–thymine (AT)-rich region of the minor groove of B-

)b()a(

Fig. 8 Atom-based 3D-QSAR model based on a most potent topoisom-
erase inhibitor and b weak topoisomerase inhibitor illustrating the
hydrophobic/non-polar feature. The yellow regions denote where hydro-
phobic groups increase the cytotoxicity of molecules towards RPMI 8402

cell lines, and the pink regions denote where hydrophobic groups de-
crease the cytotoxicity of molecules towards RPMI 8402 cell lines

)b()a(

Fig. 9 Atom-based 3D-QSARmodel based on the most potent topoisom-
erase inhibitor (a) and weak topoisomerase inhibitor (b) illustrating the
electron withdrawing feature. The cyan regions denote where electron
withdrawing groups increase the cytotoxicity of molecules towards

RPMI 8402 cell lines, and the purple regions denote where electron with-
drawing groups decrease the cytotoxicity of molecules towards RPMI
8402 cell lines
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DNA [43]. Therefore, the docking studies were carried out by
replacing Hoechst 33258 with the obtained hits. This was
done in order to understand the interaction modes of these
ligands with the AATT rich sites of DNA. The preparation
and minimization of the macromolecule were performed as
described in our previous work [47]. The initial analysis and
filtering were performed using the standard precision (SP)
docking protocol [51]. Table S10 gives the distribution of
ligands in the various glide-SP score ranges, along with the
number of molecules (within each range) that have fitness
scores ≥ 1.50. The glide scores are all negative, and the highest
magnitude of the glide-SP score is − 11.24 and the least mag-
nitude is − 0.69.

From Table S10, it is evident that the number of ligands
with good fitness along with an appreciable docking score is
small (only ~ 10% of the ligands lie in the range − 12.00 < G
score ≤ − 5.00). Therefore, we subjected all the ligands having
glide score ≤ − 5.00 and fitness score ≥ 1.50 to the extra pre-
cision (XP) docking methodology [52]. The complete data for
glide-XP docking, along with fitness score, predicted activity
and predicted IC50 in micromolars of the 116 ligands is tabu-
lated in Table S11. It is observed that the docking score re-
duces drastically in XP docking. For example, for ligand Z1,
the magnitude of the glide-XP score decreased to − 9.24 from
− 11.24 in glide-SP.

Now, before proceeding to the discussion on binding, it is
important to predict the pharmacokinetic profile of these li-
gands. We used the QikProp module available in Schrödinger
to calculate the ADMET properties. Out of the 116 states of

the ligands, QikProp successfully processed 103 (Table S12)
and failed to predict descriptors for the remaining 13 states of
ligands (Fig. S1). All these 13 states of ligands possess a
negatively charged carbon atom, which is unusual for any
drug molecule. Moreover, QikProp does not process ligands
that are either odd electron systems or charged. Out of these 13
failed ligands, seven are different structural forms of the li-
gand dasatinib (ZINC21982951), three are different structural
forms of ZINC19632618, two are different structural forms of
ZINC12503187, and one belonged to ZINC13916432.
Hence, we proceed with the discussion of 103 ligands. As
most of the hits are commercially available drugs, they pos-
sess acceptable ADMET properties. Nevertheless, on screen-
ing these compounds, some of the drugs (26 out of 103) vio-
lated Lipinski’s rule of five. This could be due to the fact that
some drugs do not have good oral bioavailability and perme-
ability. Therefore, a suitable drug need not cross the threshold
imposed by Lipinski’s rule of five and biomacromolecules can
also be administered parenterally [53, 54].

The predicted activity IC50 of obtained hits that qualify in
QikProp ranges from 0.36 to 35.48 μM. LogPo/w, the n-
octanol-water partition coefficient, is a measure of the
hydrophobicity/lipophilicity of a compound [55, 56]. From
Table S12, we can see that almost all the drugs have high
logPo/w values, which indicates that these compounds are
lipophilic in nature. This is also supported by the low solubil-
ity of these drugs in aqueous solution (logS value). Out of 103,
22 drugs have logS values below the permissible range, i.e., −
6.5 to 0.5. Apparent Caco-2 cell permeability, which is a mea-
sure of the ability of a drug to cross the gut–blood barrier, and
apparent MDCK cell permeability, which predicts the perme-
ability for the blood/brain barrier, are high for the drugs hav-
ing logPo/w values greater than 6. This suggests that lipophi-
licity enhances the chance of the drug to cross these cell bar-
riers. Also, the predicted skin permeability, logKp, and predict-
ed binding to human serum albumin, logKHSA, are also
found to lie within the acceptable range for these drugs
(Table S12).

A major concern arises on observing that the IC50 value for
the blockage of HERG K+ channels for almost all the drugs
(93 out of 103) is below − 5 (Table S12). The human ether-a-

)b()a(

Fig. 10 3D-QSAR model for the a most active ligand S# 13 and b ligand with least activity S# 20 (Blue color indicates favorable regions, while red
cubes indicate unfavorable regions for activity.)

Table 2 Distribution of molecules according to their fitness scores

Fitness No. of ligands

Fitness score < 0.00 12

0.00 ≤ Fitness score < 0.50 136

0.50 ≤ Fitness score < 1.00 229

1.00 ≤ Fitness score < 1.50 599

1.50 ≤ Fitness score < 2.00 221

2.00 ≤ Fitness score ≤ 3.00 0

1197

1194 Struct Chem (2019) 30:1185–1201



go-go related gene (HERG) K+ channel, best known for its
involvement in the electrical activity of the heart that coordi-
nates the heart’s beating, is a molecular target responsible for
the cardiac toxicity of a wide variety of drugs [57]. A low
value of logHERG indicates high cardiac toxicity of drugs
[58]. Similarly, there are 21 molecules having low (< − 3)
predicted brain/blood partition coefficient (logBB)
(Table S12). This could be due to the fact that these drugs
are too polar to cross the blood/brain barrier. A correlation
of − 0.8348 between logPw and logBB for these 21 molecules
validates the explanation. Therefore, a hydrophilic drug finds
difficulty in crossing the lipophilic blood/brain barrier.

The top scorer ligand Z1 having the highest glide score and
Emodel (− 124.50 kcal mol−1) could not be filtered in QikProp.
However, ligand Z5, a state of this drug commercially known
as dasatinib (ZINC21982951) qualifies as a drug with signif-
icant binding parameters.

Keeping all the parameters viz. fitness score, predicted
IC50, binding energy, scoring functions and ADMET proper-
ties in mind, three drugs are proposed as DNA–topoisomerase
I complex inhibitors. These are dasatinib (Z5), lapatinib (Z25),
and novobiocin (Z22) (Fig. 11).

Dasatinib, sold under the brand name sprycel, is a tyrosine
kinase inhibitor having immense applications in chemothera-
py medication, especially chronic myelogenous leukemia
(CML) and acute lymphoblastic leukemia (ALL) [59]. One
of its states, Z5, with total charge + 1, is found to fit well on
the AADRR.4 pharmacophore model with fitness score 1.88

(Fig. 12). Geometrically, it is observed that it complements the
curvature of the DNA helix and hence can effectively bind in
the minor groove.

Docking studies revealed that Z5 successfully fits in the
minor groove of B-DNA with − 104.99 kcal mol−1 model
energy score (Emodel) and − 8.10 glide score. It has been
proved that, for DNA–ligand interactions, there exists a good
correlation between the glide score, glide energy, and Emodel

[47]. Since Emodel combines the glide score, the non-bonded
interaction energy, and the excess internal energy of the gen-
erated ligand conformation, we will explain the results based
on Emodel.

The complex formed between double stranded B-DNA and
Z5 is quite stable. The Gibbs energy of binding of the ligand
Z5 to DNA was found to be − 47.14 kcal mol−1 indicating
maximum stabilization as compared to other proposed drugs
(Table 3). The stabilization is due to various interactive forces
such as electrostatic interactions and hydrogen bond forma-
tions. The N–H linker in between the thiazole and pyrimidine
rings of the ligand forms bifurcated hydrogen bonds, one end
of which is linked to O2 of the thymine (dT7) of one DNA
strand and the other with O2 of the thymine (dT19) of the
complementary DNA strand (Fig. 13a–c). The existence of
bifurcated hydrogen bonds was confirmed by measuring the
hydrogen bond angle between the hydrogen bond donor, hy-
drogen, and the hydrogen bond acceptor. The bond distances
of NH…O(dT7) and NH…O(dT19) were found to be 2.572 Å
and 2.423 Å, respectively (Fig. 13c). The bond angles

Z5 Dasatinib (2.52 μM) 

Z25 Lapatinib (4.68 μM) 

Z22 Novobiocin (0.77 μM) 

Fig. 11 Structures of the
proposed DNA minor groove
binders which can act as
topoisomerase I inhibitors, along
with their respective predicted
IC50 values
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betweenN…H…O(dT7) and N…H…O(dT19) were found to
be 140.7° and 128.5°, respectively, affirming the formation of
bifurcated hydrogen bonds, since hydrogen bond angles for
bifurcated interactions typically lie between 120° and 160°.
This feature of the drug forming bifurcated hydrogen bond
with DNA strands resembles Hoechst 33258 [43].

The pharmacokinetic profile of Z5 displayed no violation
of Lipinski’s rule of five and therefore it can be orally admin-
istered. Its percentage human oral absorption in the GI tract is
84%. All the predicted properties, except logHERG and
logBB, were found to be in the permissible range (Table S12).

The second proposed drug, novobiocin (Z22), having
minimal predicted IC50 of 0.77 μM, is a known inhibitor
of DNA gyrase and topoisomerase IV [60, 61]. It is also
known as albamycin or cathomycin, which is an
aminocoumarin antibiotic that is produced by the actino-
mycete Streptomyces niveus [62]. This drug fails terribly in
the pharmacokinetic profile (Table S12) with three viola-
tions of Lipinski’s rule of five but displays remarkable
binding properties within the minor groove of B-DNA
(Table 3). Hence, it is proposed that this drug may be ad-
ministered intravenously and not orally. Next is lapatinib
(Z25), an established orally active drug for breast cancer
and other solid tumors [63]. It interrupts both epidermal
growth factor receptor (EGFR) and HER-2 tyrosine ki-
nases [64, 65]. None of the proposed drugs are known
inhibitors of topoisomerase I. However, all three of them
show anticancer properties against various cell lines and
are shown to affect various DNA enzymes.

Docking of bis-benzimidazole and ter-benzimidazole
containing molecules within the minor groove of B-DNA
and comparison with the proposed drugs

After obtaining the three lead molecules which bind signifi-
cantly within the DNA pocket, it is imperative to compare
their binding interactions with the known DNA binders.
These are the bis- and ter-benzimidazole-containing drugs that
also display cytotoxicity against the RPMI-8402 cell line. It is
well established that bis-benzimidazole and ter-benzimidazole
containing drugs specifically trap DNA–topoisomerase I re-
versible cleavable complexes in various cancerous cell lines
[21, 28, 33, 34, 36] and hence are potential candidates in
antitumor chemotherapy. The analysis of the pharmacokinetic
profile of these drugs revealed the same (Tables S13 and S14).
Seventeen of the 30 ligands followed Lipinski’s rule of 5 with
no violations, while the remaining ligands displayed up to 2
violations in the same. This is mainly due to poor aqueous
solubility of these drugs. However, up to two violations of
Lipinski’s rule are permitted.

In order to gain more insight, we performed glide-XP
docking of these drugs (Table S1) within the prepared B-
DNA. Docking results, along with the fitness score, exper-
imental and predicted activities, are given in Table S15.
Surprisingly, ligand S# 24, which has the highest fitness
score of 3.00 on the pharmacophore model AADRR.4, did
not turn out to be the best binder (glide score − 7.85 and
Emodel − 110 kcal mol−1). On the other hand, ligand S# 3,
having fitness score 2.53, has the second lowest predicted

Fig. 12 Pharmacophore model
AADRR.4 aligned with molecule
Z5 having the best fitness score

Table 3 Comparative study of ligands for their binding affinity towards DNA

Title FS GS EvdW Ecoul Emodel Eint H-bond Lipo ΔGbind

Dasatinib (Z5) 1.88 − 8.10 − 56.05 − 18.35 − 104.99 12.53 − 1.08 − 5.94 − 47.14
Novobiocin (Z22) 1.80 − 6.50 − 41.05 − 15.08 − 75.60 5.90 − 1.63 − 4.26 − 34.57
Lapatinib (Z25) 1.80 − 6.40 − 57.08 − 17.17 − 114.08 4.96 − 0.17 − 7.78 − 37.89
Hoechst derivative (S# 3) 2.53 − 9.01 − 48.45 − 12.6 − 99.37 2.88 − 1.55 − 6.66 − 22.75

EvdW, Ecoul, Emodel, Eint, and ΔGbind are in kilocalories per mole

FS fitness score, GS glide score
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activity of 0.03 μM (Table S15) and appears to be the most
potent amongst all 30 ligands, with appreciable binding
parameters (Table S15). This is a derivative of Hoechst

33342, where the piperazine ring is replaced by a
piperdinyl ring (Fig. S2). It has been experimentally shown
to report good topoisomerase mediated DNA cleavage.

)b()a(

(c) 

Fig. 13 aA two-dimensional interactive diagram of Z5 within the AATT
pocket of DNA showing formation of hydrogen bonds between Z5 and
DNA (purple colored solid lines). b A three-dimensional view of Z5

embedded in DNA. c Displaying interaction of Z5 with only dT7 and
dT19 involved in bifurcated hydrogen bonds (yellow colored dashed
lines)
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The ratio of [Hoechst 33342]/[Drug] was 0.5, where
[Hoechst 33342] and [Drug] are the concentrations that
cause 50% cleavage of DNA in the presence of calf thymus
topoisomerase I [35]. Table 3 shows comparative docking
results for the three proposed drugs and a known inhibitor
S# 3 within the AATT rich region of B-DNA.

It can be seen that the Gibbs energies of binding for the
three proposed drugs are better than that for S# 3. Dasatinib
stands out amongst all as far as the glide score, Emodel, and
Gibbs energy of binding parameters are concerned (Table 3).
Therefore, dasatinib (Z5) is proposed to be the most potent
drug for DNA–topoisomerase I enzyme inhibition via binding
through the DNAminor groove, and hence, further studies are
performed with this drug.

Docking of dasatinib (Z5) into the human
DNA–topoisomerase I cleavable complex

Aiming towards finding a drug that can catalytically inhibit
the topoisomerase I enzyme via a lesser known mechanism,
we performedmolecular modeling studies on the ternary com-
plex. The ternary complexes available in the protein data bank
comprise of enzyme, nucleic acid, and an intercalator binding
nucleic acid (PDB IDs: 1TL8 and 1K4T). Due to unavailabil-
ity of the crystal structure of any ternary complex having a
ligand binding the minor groove of DNA, we chose a crystal
structure of a binary complex for our work. The crystal struc-
ture comprises 22 dodecamer sequenced DNA (5′-AAAA
AGACTTAGAAAAATTTTT-3′)2 and human topoisomerase

I (PDB ID: 1A36). The active site of the cleavage reaction
consists of the DNA bases thymine (dT10 or dT−1) and ade-
nine (dA11 or dA+1) and residues Arg488, Arg590, His632,
and Tyr723 of the enzyme topoisomerase I. The phosphodies-
ter bond between dT−1 and dA+1 is cleaved and relegated with
the help of His632 and Tyr723 [66].

Further, it has been shown that, unlike other agents such as
camptothecins and indolocarbazoles that interact at the cleavage
site via intercalation between − 1 and + 1 base-pairs, bis-
benzimidazoles derivatives display inhibition by attacking the
minor groove. The binding of the drug occurs at a distal position,
i.e., + 4 to + 8 base pairs downstream from the cleavage site [67].

These drugs, and especially Hoechst derivatives, prefer the
AATT rich region of the minor groove. Since our entire focus
was on developing the lead molecules that bind within DNA
similar to Hoechst derivatives, we chose the AATT rich site
within a 22-base pair duplex oligonucleotide ((5 ′-
A−10A−9A−8A−7A−6G−5A−4C−3T−2T−1A+1G+2A+3A+4A+5A+

6A+7T+8T+9T+10T+11T+12-3′)2). Making use of the results ob-
tained in [67], we prepared the receptor grid by choosing the
base pairs starting from + 6 to + 9 positions from the cleavage
site. The box was made at the centroid of the residues dA16 to

Fig. 14 2D interactive diagram
displaying hydrogen bonds
(purple arrows) and π–π stacking
(green line) between Z5 and the
DNA–topoisomerase cleavable
complex

(5'-AAAAAGACTTAGAAAAATTTTT-3')2

Cleavage site
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dT19 of one strand and dA104 to dT107 of the complemen-
tary strand (Fig. S3).

Glide-XP docking with a van der Waals radius scaling
factor of 1.0 and charge scale factor of 1.0 was performed.
This was done in order to soften the potential of the non-
polar parts of the receptor. The glide score was found to
be − 7.78 with Emodel − 82.64 kcal mol−1. The ligand
seems to prefer the AAAA/TTTT sequence over the
AATT sequence, as depicted by the four hydrogen bonds
it forms with the adenines and thymines of both strands
(Fig. 14; Fig. S3). Table S16 gives the hydrogen bond
distances formed between Z5 and the DNA bases. Also,
there exist some π–π stacking interactions between the
adenine (dA14) and pyrimidinamine groups of Z5 (shown
with green line in Fig. 14).

The Gibbs energy of binding for the complex was found to be
− 33.65 kcal mol−1, suggesting stable complex formation. This
was also verified by calculating the OPLS-2005 energies of the
minimized enzyme–DNA binary complex (PDB: 1A36),
dasatinib (Z5), and the ternary complex of Z5-DNA–topoisom-
erase I obtained after XP-docking, using the following Eq. (1).

EStablization ¼ Eternarycomplex� Ebinarycomplex þ EZ5
� � ð1Þ

The energies of the binary complex, ligand Z5, and ternary
complex were found to be − 9581.6, − 52.7, and −
10,173.6 kcal mol−1, respectively. The stabilization energy
was thus calculated as − 539.3 kcal mol−1. Though the complex
formed is stable, many aspects on the interaction still need to be
explored. Therefore, further analysis on the binding mode and
mechanism of inhibitory action of the drug Z5 on the DNA–
topoisomerase I complex is the purview of our next work.

Conclusions

Molecular modeling studies were performed to develop a
predictive CPH and used for alignment in atom-based 3D-
QSAR studies. A five-point CPH AADRR.4, with two
hydrogen bond acceptors, one hydrogen bond donor, and
two aromatic features, for pharmacophore-based align-
ment of molecules was derived using PHASE. This hy-
pothesis was selected from a pool by correlating the ob-
served and estimated activity for the training and test set
molecules using PLS analysis. The QSAR model, so gen-
erated, showed a reasonable predictive Q2 value of 0.465.
The contour maps of the models were analyzed to give
structural insight for activity improvement of future novel
topoisomerase I inhibitors. The CPH also provides a pow-
erful template for virtual screening and design of new
DNA directed topoisomerase poisons. Virtual screening
and docking methodologies were utilized to find lead
molecules that bind in a manner similar to bis- and ter-

benzimidazoles. Three drugs, namely dasatinib, lapatinib,
and novobiocin, are proposed to have the best DNA bind-
ing properties. Dasatinib, having the optimum fitness and
binding score with predicted activity of 2.52 μM, shows
stabilization towards the DNA–topoisomerase I cleavable
complex. Unlike Hoechst derivatives, dasatinib prefers
AAAA/TTTT over the AATT region of double stranded
DNA in complexation with the enzyme. The mechanism
of action of the drug is complex and requires various
methodologies for complete understanding. However, this
study enables us to explore a new path in the development
of novel anticancer agents.
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