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Abstract
DFT/B3LYP calculations with full geometry optimizations have been carried out on 1-phenylazo-2-naphthol and their metal
complexes of formula M(MePhNap)2 (M =Ni, Pd, Pt, Cu, Ag, and MePhNap = 1-(− 4-methylphenylazo)-2-naphtol) in their
neutral, oxidized, and reduced forms. The predicted structures provide to the M(II) metal ions the square planar geometry and
distorted azo ligand. The TD-DFT theoretical study performed on the optimized geometry allowed us to predict the UV–Vis
spectra and to identify quite clearly the spectral position and the nature of the different electronic transitions according to their
molecular orbital localization. Large HOMO-LUMO gaps are calculated for all optimized structures suggesting good chemical
stabilities, hence, reproducing the available UV–Vis spectra and compared to that of free ligand. The electronic spectra obtained
in DMSO and ethanol polar solvents predict more important red shifts than those obtained in hexane as nonpolar one.
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Introduction

Azo compounds are very important molecules and have been
the subject of several works in both experimental and funda-
mental research [1, 2], where synthetic textile dyes of the azo
family represent an important part of the world production of
synthetic dyes and are characterized by the presence of the azo
group (–N=N–) [3–5].

Azo derivatives and their metal complexes are essential
pigments for synthetic leather and vinyl polymers.
Furthermore, high-density optical data storage has been a fo-
cus of wide research in the past decades as nonlinear and
photoelectronics [6]. Lately, metal complex dyes have also

attracted increasing attention due to their interesting electronic
and geometrical features in connection with their application
for molecular memory storages, nonlinear optical elements,
printing system, and so on [7–9].

Particularly, metal-azo complex dyes are used in the re-
cording layer of DVD-R (Digital Versatile Disc-Recordable)
disc, are lighter stable, allow for easier control of the wave-
length by selection of the appropriate substituent groups, and
have good thermal stability [10–16]. As known, the metal
complex formation on chromophoric ligands leads to remark-
able shift of UV–Vis absorption spectrum [9, 17–22] accom-
panied by the increasing of the dye fastness [21, 23].

The focus of this investigation is to give a deeper under-
standing on the coordination behavior of these azo molecules
towards the M(II) (M =Ni, Pd, Pt, Cu, and Ag) metal ions
using DFT and TD-DFT methods which are compared to the
available experimental data and different analytical tools.
Indeed, several experimental works have been the subject of
syntheses, spectral characterizations, and X-ray diffraction of
metal-azo complex dyes [24–34].

In addition, potentiometric and spectrophotometric investi-
gations of Co2+, Ni2+, and Cu2+ metal cations connected to
azo dyes have been reported [35]. Up till now, azo conjugated

* Bachir Zouchoune
bzouchoune@gmail.com

1 Laboratoire de Chimie appliquée et Technologie des Matériaux,
Université Larbi Ben M’Hidi - Oum El Bouaghi, (04000) Oum El
Bouaghi, Algeria

2 Unité de Recherche de Chimie de l’Environnement et Moléculaire
Structurale, Université Constantine (Mentouri),
(25000) Constantine, Algeria

Structural Chemistry (2019) 30:691–701
https://doi.org/10.1007/s11224-018-1215-0

Electronic structure and UV–Vis spectra simulation of square planar
Bis(1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes
[M(L)2]

x (M = Ni, Pd, Pt, Cu, Ag, and x = − 1, 0, + 1): DFT and TD-DFT
study

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-018-1215-0&domain=pdf
mailto:bzouchoune@gmail.com


transition metal complexes have been shown to afford new
possibilities en route for redox, optical properties, and mag-
netic due to the role of the d orbitals [9, 36–38].

In recent work, we have studied theoretically the substitu-
ent effects on 1-phenylazo-2-naphtol azo molecule substituted
at the ortho position of the phenyl ring denoted (PhNap) as
shown in Scheme 1 [39], while in this one, we will endeavor
to provide an understanding into the N,O-bidentate chelation
stabilization of 1-(4-methylphenylazo)-2-naphtol (MePhNap)
as ligand in the M(MePhNap)2 transition metal complexes.
Furthermore, the relationship between the differences in ab-
sorption maximum from free ligand to their metal-azo com-
plexes was thoroughly studied. It is worth noting that the
organic ligands containing N and O donors give rise to great
potential for fine control over coordination structural arrange-
ments [40–46].

The density functional theory (DFT) method using the hy-
brid B3LYP functional or other hybrid and GGA ones is pre-
cious in determining the electronic structures, the geometrical
parameters, the bonding, and other properties based on vari-
ous works of monometallic systems [47–56].

Computational details

DFT calculations have been carried out on all complexes with
the 2014.01 version of the Amsterdam Density Functional
(ADF) program [57] developed by Baerends and co-workers
[58–62]. All calculations have been performed with the
hybrid-type B3LYP functional (Becke’s three parameter hy-
brid exchange functional [63] coupled with the Lee-Yang-Parr
nonlocal correlation functional) [64]. The atom electronic con-
figurations were described by a triple-ζ Slater-type orbital
(STO) basis set for H 1s, C 2s and 2p, and N 2s and 2p
augmented with a 3d single-ζ polarization for C and N atoms
and with a 2p single-ζ polarization for H atoms. A triple-ζ
STO basis set was used for the first row transition metals Ni
and Cu 3d and 4s, for second row Pd and Ag 4d and 5s and for
third row Pt 5d and 6s augmented with a single-ζ 4p polari-
zation function for the first row Ni and Cu, a single-ζ 5p
polarization function for Pd and Ag and a single-ζ 6p polari-
zation function for Pt. For the systems containing atoms in
which Z is greater than 41, the scalar relativistic zero-order

regular approximation (ZORA) was used (with the associated
optimized valence basis set). Vibrational frequency calcula-
tion [65, 66] was performed on all the optimized geometries
to verify that these structures are characterized as true minima
on the potential energy surface. Singlet-triplet excitation ener-
gies and the transition dipole lengths were computed using
TD-DFT as implemented in the response [67] code in the
ADF package of programs.

The solvent effect using the Conductor-like Screening
Model for Realistic Solvent (COSMO-RS) developed by
Klamt and co-workers [68] was introduced in the single point
DFT calculations, where the Cartesian coordinates were ex-
tracted from the geometry optimizations.

Representations of the molecular structures were done
using the ADF-GUI [57] and the MOLEKEL4.1 [69] pro-
grams, respectively.

Results and discussion

Optimized structures and MO diagrams

The studied M(MePhNap)2 compounds consist of slightly
distorted square planar geometry of Ci symmetry, allowing
considerable orbital mixing and more flexibility to the metal
coordination sphere, where some of them are characterized
experimentally [31, 32]. The full optimized geometry have
been carried out on the diamagnetic Ni, Pd, and Pt metal
species, where the two substituted azo ligands are symmetrical
through an inversion center occupied by the metal cation
which is tetraconnected via one N atom and one O atom of
each azo dye molecule. Hence, our analysis has been extended
to the paramagnetic Cu and Ag species. For all the studied
complexes, the metal cation is connected to two molecules of
(1-phenylazo-2-naphtol) through N and O atoms providing a
square planar environment of the metal conducting to ML4
complexes. The optimized geometries for Ni, Pd, and Pt com-
plexes showed a perfect square planar arrangement around the
M(II) metal cation as sketched in Fig. 1, while the azo ligand
undergoes substantial modifications losing its nearly flatness
as displayed in Scheme 1 and Fig. 1, because of the fixation of
coordinative bonds and the geometric requirement for the cen-
tral M(II) square plane. The planarity of the different ML4

complexes around the metal is highlighted by the ONON di-
hedral angle of 0° and the linear O–M–O and N–M–N bond
angles of 180° for Ni, Pd, and Pt complexes, in accordance
with the 16-MVE (metal valence electrons) configuration of
the Ni(II), Pd(II), and Pt(II) as d8 metal cations. The computed
M–N bond distances of 1.919, 2.101, and 2.108 Å and M–O
bond distances of 1.842, 2069, and 2.077 Å for Ni, Pd, and Pt
complexes, respectively, are in harmony with the increasing of
the metal radii following the order: Ni < Pd < Pt. It is worth
nothing that for the Pd structure, the optimized parameters are

Scheme 1 the Optimized structure of (1-(4-methylphenylazo)-2-naphtol)
denoted (MePhNap) and its atoms numbering
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comparable to those observed experimentally [31] as gathered
in Table 1 and comparable to those reported in recent work
[33, 34]. The calculated C–C bond distances ranging from
1.38 to 1.42 Å (Scheme 1) suggest a delocalized scheme with-
in the phenyl and naphtyl rings for Ni, Pd, and Pt complexes
as shown in Fig. 1. As clearly shown in Fig. 1, both azo dye
molecules are oriented to each other by 105, 98, and 95° for
Ni, Pd, and Pt species, respectively, due to the steric repul-
sions, thus avoiding the planarity of the different complexes. It
is important to note that the orientation between the azo li-
gands is more marked for the 3dNi transition metal than those
of 4d and 5d ones. The N–N bond distance of 1.269 Å for the
azo group in the free molecule undergo lengthening for Ni
complex becoming equal to 2.272 Å, but slightly shortened
in Pd and Pt complexes becoming equal to 2.266 and 2.265 Å,
respectively. The MO diagrams for the diamagnetic
Ni(MePhNap)2, Pd(MePhNap)2, and Pt(MePhNap)2 com-
plexes are shown in Fig. 2, exhibiting large HOMO-LUMO
gaps of 3.15, 3.08, and 3.07 eV, respectively, suggesting good
chemical stability. For the three neutral Ni(MePhNap)2,
Pd(MePhNap)2, and Pt(MePhNap)2 complexes, the LUMOs
are ligand character, while the HOMOs are weakly metallic
orbitals showing a contribution not exceeding 10% in each
case. It is interesting to note that the orbitals with considerable
metal based are located relatively at low energies, particularly,
71ag (31%), 73ag (15%), and 74ag (40%) for Ni(MePhNap)2;
71ag (30%), 73ag (35%), and 74ag (30%) for Pd(MePhNap)2;
and 71ag (30%), 71ag (30%), 73ag (20%), and 74ag (20%) for
Pt(MePhNap)2 which are principally nonbonding orbitals.

The opt imized geometry of the paramagnet ic
Cu(MePhNap)2 and Ag(MePhNap)2 complexes are sketched
in Fig. 3 and Fig. 4. For the optimized neutral Cu(MePhNap)2
structure having 17-MVE configuration in its doublet spin
state (S =½), the Cu–N and Cu–O bond distances of 2.020
and 1.921 Å are comparable to the experimental ones of av-
erage values of 1.999 and 1.924 Å, respectively, and the N–
Cu–N and O–Cu–O bond angles are of 180° [32]. The NONO
plane centered by the copper dication of 0° corresponds to
ML4 square planar geometry, while the azo dye molecules
are oriented to each other by 98°. The one electron oxidation
gives rise to the [Cu(MePhNap)2]

+ structure of 16-MVE con-
figuration which is isoelectronic with the neutral Pd and Pt
complexes and exhibiting a significant HOMO-LUMO gap of

1.66 eVas clearly shown in Fig. 5. This oxidation leads to the
Cu–N and Cu–O bond distances lengthening from 2.020 and
1.921 Å to 2.259 and 1.983 Å, respectively, but keeping the
same square planar geometry. The neutral Ag(MePhNap)2 17-
MVE structure consists of an ML4 square plane, in which the
N–Ag–N and O–Ag–O are linear and Ag–N and Ag–O bond
distances are of 2.275 and 2.215 Å. The one electron reduction
of the square plane Ag(MePhNap)2 structure without any
symmet ry cons t ra in t s g ives r i se to the an ion ic
[Ag(MePhNap)2]

− structure undergoing a considerable distor-
tion as shown in Fig. 4, wherein the N–Ag–N and O–Ag–O of
159 and 124° deviate considerably from the linearity, in ac-
cordance with the 18-MVE configuration of a tetrahedral ML4
complex around the Ag+ center, in which the N–Ag andO–Ag
bond distances undergo considerable lengthening from 2.275
and 2.215 to 2.440 and 2.376 Å, respectively, in agreement
with the population of the antibonding 83ag orbital as shown
by the MOs d i ag r am of F ig . 5 . Howeve r , t h e
[Ag(MePhNap)2]

+ structure keeps the same square plane ge-
ometry, but accompanied by slight shortening of N–Ag and
O–Ag bond distances. It is noticeable that the redox property
studies of Cu complexes are showing the irreversible character
[70].

Electronic spectra

In order to gain a better understanding of the simulated UV–
Vis spectra, TD-DFT calculations were carried out on the
MePhNap azo dye molecule substituted at the ortho position
of the phenyl by CH3 and their transitionmetal M(MePhNap)2
(M = Ni, Pd, and Pt) complexes. The theoretical electronic
spectrum (Fig. 6a) of the substituted azo dye in gas phase
displays a major band in the region of 420–445 nm due to
the (πC-C + n)→(π*N–N + π*C–O) and πC–C→(π*N–N + π*C–
O) transitions corresponding to the HOMO-1→LUMO
(81%) and HOMO-LUMO (15%) electronic transitions with
an oscillator strength of 0.42 (a.u), implying the naphtyl ring
and the –N=N– azo group as intramolecular charge transfer
(ILCT).Whereas, the theoretical electronic spectra of the stud-
ied azo dye exhibit red shifts in different used solvents
(Fig. 6a). Really, one can observe that the polar DMSO and
ethanol solvents conduct to similar spectra, where the main
pick is moved to the region of 480–512 nm with an oscillator

Fig. 1 Optimized of
M[MePhNaph]2 (M =Ni, Pd, and
Pt) singlet structures of 16-MVE
configuration

Struct Chem (2019) 30:691–701 693
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strength of 0.8 (a.u). Since they have sharp UV–Vis spectra
that are tremendously sensitive to the immediate environment,
like as the solvent polarity phenomenon, which is known for
many dye molecules [71, 72]. The electronic spectrum obtain-
ed in hexane solvent is slightly shifted to the region of 445–
470 nm with oscillator strength of 0.6 (a.u), which is compa-
rable to the experimental results found by V.N. Mkpenie et al.,
where the main peak is shifted from 450 to 460 nm [73]. It is
worth noting that the same orbitals are implied in the electron-
ic transitions both in gas phase and in the different solvents
used, but exhibiting differences in their contribution as clearly
shown in Table 2.

The three electronic spectra of Ni, Pd, and Pt diazo com-
plexes exhibit similar shapes, but with somewhat differences
concerning the bands’ positions and their widths (Fig. 6b, c,
d). Our spectral analysis is based on the comparison of the

theoretical spectra obtained for the uncomplexed and the com-
plexed species in gas phase and in different solvents as shown
in Fig. 6, while the identification of the electronic transitions
are based on the MOs’ localization. Indeed, different from the
electronic spectrum of the (MePhNap) azo dye molecule, one
can observe the appearance of new bands and the weakness of
others. Because M(MePhNap)2 complexes are constructed
from two bidentate π-conjugated (MePhNap) azo ligands con-
nected to one transition metal, different electronic transitions
should appear; these can be probably classified into metal to
ligand charge transfer (MLCT), ligand to metal CT (LMCT),
intrametal d–d* orbitals, intraligand, and interligand transi-
tions. The calculated transitions have been assigned to these
classes (Tables 3, 4, 5) by TD-DFT analysis based on the
orbital characteristics (Fig. 6). For the Ni complex spectrum
(Fig. 6b), the main absorption band appears essentially in the

Fig. 3 Optimized
[Cu(MePhNaph)2]

+ and
Cu(MePhNaph)2 structures of
doublet (S = 1/2) (a) and singlet
(S = 0) (b) spin states,
respectively
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Fig. 2 MO diagrams of M(MePhNap)2 (M =Ni, Pd, Pt). The metal contributions in (%) are given in parentheses
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ultraviolet region centered at 370, 374, 382, and 382 nm in gas
phase, hexane, ethanol, and DMSO, respectively, correspond-
ing to the intense (d(M) + π)→π* transitions, which are re-
markably reinforced (Table 3). These transitions are metal-
ligand and intraligand characteristics corresponding to excita-
tions from the metal and the MePhNap’s HOMO (76ag which
is made of a mixture of d metallic, nitrogen and oxygen or-
bitals) to LUMO (76au which is purely ligand). While the
relatively weak band appearing in the visible region and cen-
tered at 476, 477, 482, and 482 nm in gas phase, hexane,
ethanol, and DMSO, respectively, is established between the

HOMO (76ag) and the LUMO (76au) electronic transition
with and can be classified into metal to ligand charge transfer
(MLCT) and intraligand charge transfer (ILCT). It is notewor-
thy that the electronic transitions are intensified in polar sol-
vents rather than in both nonpolar one and in gas phase.

For the Pd complex spectrum (Fig. 6c), the main absorp-
tion band appears essentially in the ultraviolet region cen-
tered at 370, 373, 379, and 379 nm in gas phase, hexane,
ethanol, and DMSO, respectively, corresponding to the in-
tense (d(M) + π(L))→π*(L) transitions, which are consid-
erably enhanced in intensity (Table 4) compared to those
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Fig. 6 Electronic spectra of a, b, c, and d obtained in gas phase and different solvents for the uncomplexed azo dye, Ni, Pd, and Pt complexes,
respectively

Table 2 Calculated electronic
transitions and their assignments,
the dominant contributions to
electron excitations in
percentages (%), wavelengths λ
(nm), oscillator strengths f (au),
and excitation energies ΔE (eV)
for uncomplexed (MePhNap)
species obtained in gas phase and
different solvents

Band Solvent λ ΔE f Electronic transition (%) Assignment

A Gas phase 453 4.0 0.0351 68a→70a (81) π + n→π*
3.2 69a→70a (15)

DMSO 472 3.3 0.6085 69a→70a (76) π + n→π*
3.8 68a→70a (22)

Ethanol 470 3.2 0.5826 69a→70a (74) π + n→π*
4.0 68a→70a (25)

Hexane 457 4.0 0.1171 68a→70a (69) π + n→π*
3.2 69a→70a (22)

B Gas phase 416 3.2 0.4130 69a→70a (88) π + n→π*
3.9 68a→70a (10)

DMSO 445 3.8 0.2324 68a→70a (70) π + n→π*
3.2 69a→70a (23)

Ethanol 445 4.0 0.2408 68a→70a (69) π + n→π*
3.3 69a→70a (25)

Hexane 430 3.2 0.4844 69a→70a (76) π + n→π*
4.0 68a→70a (22)
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obtained for the uncomplexed species. These transitions
are metal-ligand and intraligand characteristics stemming
from the metal and the MePhNap’s HOMO-3 (72ag which

is made of a mixture of d metallic, nitrogen, and oxygen
orbitals) to LUMO (70au which is purely ligand) featuring
the principally transition (72%) and coupled to two others

Table 3 Calculated electronic
transitions and their assignments,
the dominant contributions to
electron excitations in
percentages (%), wavelengths λ
(nm), oscillator strengths f (au),
and excitation energies ΔE (eV)
of Ni(MePhNap)2 complexes ob-
tained in gas phase and different
solvents. The oscillator strength
values less than 0.05 (au) are not
listed

Band Solvent λ ΔE f Electronic
transition (%)

Assignment

A Gas phase 476 3.20 0.079 76ag→76au (95) d(M) + π(L)→π*(L)

DMSO 482 3.17 0.2452 76ag→76au (97) d(M) + π(L)→π*(L)

Ethanol 482 3.14 0.2352 76ag→76au (95) d(M) + π(L)→π*(L)

Hexane 477 3.17 0.1253 76ag→76au (93) d(M) + π(L)→π*(L)

B Gas phase 370 3.74 0.4379 75au→77ag (90) d(M) + π(L)→
π*(L) + d(M)4.26 74au→76au (2)

5.01 72au→78ag (17)

3.94 75au→76au (87)

DMSO 382 4.61 0.9635 75au→77ag (52) d(M) + π(L)→
π*(L) + d(M)3.95 75au→76au (40)

4.26 74au→77ag (3)

4.05 73ag→76au (2)

Ethanol 382 3.77 0.9484 75au→77ag (43) d(M) + π(L)→
π*(L) + d(M)3.95 75ag→76au (38)

4.22 74au→77ag (3)

Hexane 374 3.75 0.6332 75au→77ag (74) d(M) + π(L)→
π*(L) + d(M)3.95 75ag→76au (15)

4.27 73ag→76au (5)

Table 4 Calculated electronic
transitions and their assignments,
the dominant contributions to
electron excitations in
percentages (%), wavelengths λ
(nm), oscillator strengths f (au),
and excitation energies ΔE (eV)
of Pd[MePhNap]2 complexes ob-
tained in gas phase and different
solvents. The oscillator strength
values less than 0.05 (au) are not
listed

Band Solvent λ ΔE f Electronic
transition (%)

Assignment

A Gas phase 482 3.08 0.0872 73ag→70au (96) d(M) + π(L)→
π*(L)

DMSO 489 3.11 0.2794 73ag→70au (97) d(M) + π(L)→
π*(L)

Ethanol 489 3.11 0.2722 73ag→70au (97) d(M) + π(L)→
π*(L)

Hexane 484 3.09 0.1413 73ag→70au (97) d(M) + π(L) π*(L)

B Gas phase 370 3.88 0.3725 72ag→70au (79) d(M) + π(L)→
π*(L)4.11 71ag→70au (11)

4.18 68au→74ag (6)

4.61 73ag→71au (2)

DMSO 379 3.89 0.7604 72ag→70au (72) d(M) + π(L)→
π*(L)4.27 67au→74ag (11)

4.08 71ag→70au (6)

4.20 68au→74ag (3)

Ethanol 379 3.89 0.7526 72ag→70au (73) d(M) + π(L)→
π*(L)4.27 67au→74ag (11)

4.08 71ag→70au (6)

4.20 68au→74ag (3)

Hexane 373 3.89 0.5277 72ag→70au (80) d(M) + π(L)→
π*(L)4.09 71ag→70au (7)

4.28 67au→74ag (6)

4.19 68au→74ag (8)

3.65 66au→74ag (6)
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less intense as specified in Table 4. The band found at
relatively low energy centered at 482, 484, 489, and
489 nm in gas phase, hexane, ethanol, and DMSO, respec-
tively, occurred chiefly between the HOMO (73ag) and the
LUMO (70au) corresponding to the metal to ligand charge
transfer (MLCT) and intraligand charge transfer (ILCT),
where the λmax is reached for the polar DMSO and ethanol
solvents for oscillator strength values of 0.28 and 0.27
(a.u). Finally, in the electronic spectrum of azo-Pt complex
(Fig. 6d), the absorption band A in the visible region at
476 nm in gas phase corresponds to the (d(M) + n)→
(π*N–N + π*C–O) electronic transition assigned to
HOMO→LUMO transition, which is shifted by about
51 nm than that of the free ligand as is aforementioned.
In the gas phase, the strong absorption band appears in the
ultraviolet region centered at 370 nm.

Also, it is worthwhile to mention the weak ligand to metal
charge transfer LMCT occurred from the ligand orbitals to
78ag, 75ag, and 76ag as LUMO+2 for Ni, Pd, and Pt com-
plexes, respectively, which feature considerable metal contri-
butions as shown in Fig. 3.

Conclusion

In this theoretical investigation, we have shown that the ge-
ometry of free ligand does not deviate from the planarity
which exhibits a delocalized scheme within both phenyl and

naphtyl rings connected to each other by the azo –N=N–
group.

Once the azo ligand is complexed, it could not maintain the
approximate planar structure and the dihedral angles between
the phenyl and naphtyl rings become almost perpendicular
evidenced by the dihedral angle value of about 95° in the
M(MePhNap)2 (M = Ni, Pd, Pt, Cu, and Ag) complexes,
which are comparable to the available Pd and Cu experimental
data. Whereas, the metal M(II) cation is in a perfect square
planar environment as anML4 fragment obeying the 16-MVE
configuration and the different computed structures display
large HOMO-LUMO gaps. The reduced [Ag(MePhNap)2]

−

species underwent a geometrical distortion from ML4 with
17-MVE square planar to ML4 tetrahedral structure obeying
the 18-MVE rule. From the electronic spectra obtained for the
Ni, Pd, and Pt complexes, one can observe that the main peaks
are attributed to the HOMO→LUMO and HOMO-1→
LUMO electronic transitions. Based on the obtained
HOMO-LUMO gaps and the electronic spectra for the
metal-azo complexes, slight bathochromic shifts are observed
towards the long wavelengths with diminution of the HOMO-
LUMO energy gaps; thus, the enhancement of the wave-
lengths pursues the following sequence: Ni < Pd < Pt.
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Table 5 Calculated electronic
transitions and their assignments,
the dominant contributions to
electron excitations in
percentages (%), wavelengths λ
(nm), oscillator strengths f (au),
and excitation energies ΔE (eV)
of Pt[MePhNap]2 complexes ob-
tained in gas phase and in differ-
ent solvents. The oscillator
strength values less than 0.05 (au)
are not listed

Band Solvent λ ΔE f Electronic
transition (%)

Transition assignment

A Gas phase 484 3.072 0.0889 74ag→80au(97) d(M) + π(L)→π*(L)

DMSO 490 3.100 0.2604 74ag→80au (98) d(M) + π(L)→π*(L)

Ethanol 490 3.112 0.2539 74ag→80au (98) d(M) + π(L)→π*(L)

Hexane 484 3.084 0.1388 74ag→80au (97) d(M) + π(L)→π*(L)

B Phase gazeuse 372 3.86 0.4448 73ag→80au (72) π(L)→π*(L)
3.76 79au→75ag (8)

4.34 77au→75ag (6)

4.21 72ag→80au (4)

DMSO 382 3.88 0.9833 73ag→80au (67) π(L)→π*(L)
3.79 79au→75ag (21)

4.27 78au→75ag (7)

Ethanol 382 3.88 0.9675 73ag→80au (67) d(M) + π(L)→π*(L)
3.79 79au→75ag (22)

4.28 78au→75ag (7)

4.89 72ag→80au (8)

Hexane 375 3.87 0.6462 73ag→80au (56) d(M) + π(L)→π*(L)
4.32 77au→75ag (17)

4.18 72ag→80au (10)

4.21 79au→75ag (31)

4.29 71ag→80au (5)
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