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Abstract
A seed-based theoretical model with built-in local degree of freedom for constructing rhombic quasilattice with 7-fold symmetry
is presented. This new approach mitigates a key limitation with existing structural models for describing quasicrystals, which do
not incorporate atomic fluctuations or phasonic flips in their approaches. Here, we propose a structural model that works in
concert with the seed-initiated nucleation growth models of quasicrystals and incorporates a degree of flexibility that allows the
lattice to rearrange locally without affecting the global long-range order. This approach suggests that the position of high-
symmetry motifs locally and globally is defined by one long-range framework and not based on local rules (i.e., inflation,
deflation, substitution, matching, overlapping, etc.). The proposed model is based on building a hierarchical network that allows
the self-similar quasilattice to expand infinitely without any gaps, overlaps, or mismatches. The use of a global relational logic
provides scientists, artists, and teachers with a simple method for creating a wide variety of complicated hierarchical quasilattice
formations without the need for any specialized software or complicated mathematics and could possibly provide a deeper
understanding of how the atoms interact to form their complicated long-range quasicrystalline formations.
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Introduction

Quasiperiodic structures with long-range orientational order
but lacking translational symmetry have been reported in a
wide range of materials [1–8]. This new state of matter, also
known as quasicrystals, exhibits rotational symmetries, which
were thought to be impossible for the periodic structures with-
in the traditional framework of crystallography. A key charac-
teristic of these formations is their self-similar hierarchical
structures which allow the same patterns to recur at multiple
scales. The most commonly occurring rotational symmetries
in quasicrystals are 5-, 8-, 10-, and 12-fold, which have been
widely reported and studied in the literature. In contrast, rota-
tional symmetries with 7-, 9-, 11-, 13-, 14-, or higher have
rarely been observed [9, 10]. While it is still unclear to why
these symmetries are harder to form, they hold special

significance because of their complicated but homogeneous
lattice arrangements. One intriguing potential of their unique
quasilattice formations is the ability to mold, orchestrate, or
prevent the flow of light or sound energy, which could find
applications across a wide range of light and sound-based
technologies. Recently, increased effort has been dedicated
to exploring the possibility of designing and fabricating artifi-
cial two-dimensional and three-dimensional quasilattice struc-
tures for their potential applications as photonic devices,
heterostructures, and optical metamaterials [11–18].
Roichman and Grier were able to assemble 7-fold quasicrys-
talline heterostructures using holographic optical trapping
technique [12]. Jules Michael and his colleagues employed
colloidal particles in laser fields to investigate the geometric
constrains that affect the formation of 7- and 9-fold quasipe-
riodic symmetries and concluded that such probability is con-
nected to the frequency of the local high-symmetry motifs
[13]. Additionally, when comparing light-induced colloidal
quasicrystals with different symmetries, it was found that the
laser intensities needed to induce high rotational symmetry is
much higher than their lower counterparts [13, 14]. Dong and
colleagues showed that quasiperiodic lattice with rotational
symmetries higher than 5-fold can behave as zero-refractive-
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index materials [15]. In other words, light propagates though
such lattice without any phase accumulation Bleaping through
the medium as if it were completely invisible^ [16]. While
there still significant challenges to overcome before we fabri-
cate the first invisible material, such findings open up new
opportunities for exploring a wide range of unexamined high
rotational geometries beyond the conventional quasiperiodic
lattice systems [15, 16]. Martinsons and colleagues found that
phasonic drifts can help facilitate the formation of two-
dimensional quasicrystals with 14-fold symmetry [17].
Phasonic flips are inherent unique feature of quasicrystal
structure that provide an additional degree of freedom by
allowing correlated particle rearrangements [17], which could
facilitate the growth of quasicrystals [18].

Today, the search for methods to design and fabricate struc-
tures with uncommon rotational symmetries is on full force.
Because of the strong link between the structure of matter and
related physical behavior, theoretical models for the formula-
tion of unusual quasilattice can be very instrumental in ad-
vancing such agenda. It is the goal of this paper to introduce
a new theoretical model for constructing two-dimensional 7-
fold quasiperiodic lattice (analogue of Penrose), without ap-
pealing to any of the existing approaches (i.e., projection from
higher dimensions, substitution, inflation/deflation, tiling,
etc.). The new model, which is based on the global hierarchi-
cal nature of quasicrystals is able to explain the long-range
order, which allows the quasilattice to expand ad infinitum
without any overlaps, gaps or mismatches. Before we intro-
duce the new model, it is beneficial to survey the literature for
existing structural models for constructing 7- and 14-fold
quasilattices.

The interest in 7-fold rotational symmetry and its relation to
crystallography has been ongoing even before the discovery
of quasicrystals [19–21]. However, the search for self-similar
quasicrystalline lattice that exhibits 7-fold symmetry has prov-
en to be a challenging pursuit. As compared to 5-fold Penrose
quasicrystalline tilings, matching rules for 7-fold tilings may
nevertheless exist, though they do not force the formation of
unique defectless structures [22, 23]. To date, many different
variations of self-similar tilings with 7-fold symmetries in
two-dimensions have been proposed, most of which are de-
rived from two principal approaches—projection from higher
dimensions and various substitution and inflation-deflation
techniques [24–35]. In 1993, Lancon and Billard obtained
variations of binary and random binary tilings with 7-fold
rotational symmetry using iteration of a substitution [24].
Franco proposed a heptagonal tiling of the plane using five
basic triangular prototiles [25]. In 1996, Danzer derived the
first 2D quasiperiodic tiling with 7-fold symmetry using self-
consistent inflation rules of three triangles and their mirror
images [26]. Using similar approach, Garcia-Escudero de-
rived variations of the 2D 7-fold self-similar patterns using
four triangular prototiles [27]. Harriss used inflation rules to

devise a rhombic 7-fold tiling; however, the initial patch that
he used does not appear in the inflated patches, which makes
his tiling Bsingular^ and not recurrent [28]. Derived from his-
torical precedents, some researchers generated 7-fold self-sim-
ilar designs by incorporating traditional motives into the
rhombic inflation rules [29, 30]. Gähler and his colleagues
employed computer algorithm to search for substitution rules
on a set of triangles and found that there are many different
inflation factors for 7-fold rotational symmetries [31]. Kari
and Rissanen were successful in devising non-singular substi-
tution rules to create 7-fold quasiperiodic tiling; however, they
had to use a very large inflation factor to accomplish their goal
[32]. Schoen was able to use inflation rules to create variations
of 7-fold self-similar rhombic tilings; however, his rules cre-
ated overlapping regions that needed to be replaced with Bad
hoc arrangements^ [22, 33]. Cyclotomic substitution rules
were also used to produce variations of triangular and rhombic
7-fold tilings [23, 34]. Such approach allows the possibility of
some patterns to cyclically morph into different patches and
return back to the initial pattern after several iterations. In the
case of rhombic tiling, Madison was unable to reduce the
number of the nine basic tiles, and questions if some are re-
dundant [23]. Both Madison and Savard used similar ap-
proaches to design 14-fold tilings [23, 35].

While these methods have contributed greatly to our under-
standing of quasilattices of high symmetry, there are still many
challenges to devising rhombic 7-fold quasilattice system that is
able to satisfy the clear and rigorous requirements, analogous of
Penrose 5-fold quasilattice. Therefore, the goal of this paper is to
present a new structural model for generating 7-fold rhombic
quasilattice without appealing to any of the existing approaches
(substitution, deflation/inflation, higher dimensions, edge-edge
tiling, etc.). The new model utilizes a global hierarchical frame-
work to orchestrate both the local and global 7-fold symmetry
and is able to satisfy the following strict requirements:

1. The quasilattice can be expanded ad infinitum without
any gaps, overlaps, or mismatches.

2. The quasilattice is self-similar, self-consistent, and not
singular. The different hierarchical levels contain repeat-
edly appearing patches with the same original motifs, in-
cluding 7-fold symmetry.

3. The quasilatt ice does not require any ad hoc
rearrangements.

4. Generalized inflation/deflation rules can be derived using
a small number of prototiles.

In addition, one of the key challenges in devising structural
models for quasicrystals is the problem of incorporating atomic
fluctuations or phasonic flips in the structural models of quasi-
crystals [36]. The proposed model offers a new insight into mit-
igating such challenge by incorporating a degree of local freedom
without scarifying the global quasiperiodic order of 7-fold high-
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symmetry motifs. Derived from the traditional methods of
Islamic geometry, the presented method is a continuation of our
pervious effort which successfully used the global framework
approach to construct a number of quasicrystalline formations
including: Penrose 5-fold quasiperiodic tilings [37], 10-fold qua-
siperiodic tilings [38], Ammann–Beenker 8-fold quasiperiodic
tilings [39] and 12-fold quasiperiodic tilings [40]. The proposed
model is based on a hierarchical clustering order of quasicrystals
[41–43]. In this order, the global quasilattice formation is con-
structed by building an infinite progression of hierarchical clus-
ters, in which every new hierarchy is built on the previous level.
The process of constructing the infinite 7-fold quasilattice is
demonstrated in the following three sections: BThe hierarchical
framework,^ BCluster configurations,^ and BGrowing the
quasilattice empire.^

The hierarchical framework

The construction process of 7-fold rhombic quasilattice global
empire is governed by a proportional system that is derived from
the traditional method of Islamic geometry and is based on a
tightly constructed proportional logic that is derived from the
nature of the compass and a straightedge construction [37–40].
The construction process does not rely on any specific quantities,
angles, distances, or follow localized procedures; instead, its log-
ic utilizes the relationships inherent within the relational system,
allowing a higher level of organization to happen intuitively and
without using any complicated or abstract mathematics.

In general, constructing the 7-fold hierarchical quasilattice is
based on combining two basic design elements: an underlying
framework and a limited number of repeated seed clusters (units).
In this system, the arrangements of clusters within the global
empire as well as the arrangements of local building units within
each cluster are determined entirely by one global framework. A
framework of nested tetradecagrams serves as the underlying
hidden grid for guiding the construction process of the high-
symmetry motifs throughout the quasilattice structure. This
framework is constructed by drawing a polar array of lines
through connecting points of equal distances on the initial
tetradecagon (Fig. 1). The hierarchical framework is attained by
building a progression of nested tetradecagrams, in which every
hierarchy is proportionally built on the previous one, resulting in
a self-similar network (Fig. 1a–c). This progression of nested
tetradecagrams servers a critical role in maintaining a relational
aspect ratio between the different levels, which is the key to
resolving the 7-fold quasiperiodic structure. If we denote the
radius of the nth tetradecagon by rad(n) and the next larger radius
by rad(n + 1), then the ratio rad(n+ 1)/rad (n) is equal to 1 +
2cos(2π/7).

rad nþ 1ð Þ=rad nð Þ ¼ 1þ 2cos 2π=7ð Þ ¼ 2:24697960…

Cluster configurations

According to the proposedmodel, for every hierarchy, threemain
clusters with unique 7-fold rotational symmetry exist, each can
serve as the central seed cluster for initiating the growth of the
infinite 7-fold quasilattice without any gaps, overlaps, or mis-
matches. A unique quality of these clusters is that they cyclically
morph into each other with different-level hierarchies. Each clus-
ter exhibits unique local symmetry formation which plays a vital
role in generating the global quasilattice. The process for con-
structing the three main clusters of the first hierarchy is demon-
strated in Fig. 2. Each cluster in this hierarchy is composed of
three smaller seed units (clusters) with 7-fold rotational symme-
try (Fig. 2a), and a limited number of connecting formations
(fragments) (Fig. 2b). The size of the central seed unit is strictly
derived from the progression sequence of the nested
tetradecagrams (Fig. 1d). If we denote the radius of the seed unit
by rad(n) and the radius of the first hierarchy framework by
rad(n + 2), then the ratio rad(n + 2)/rad(n) is equal to (1 +
2cos(2π/7))2.

rad nþ 2ð Þ=rad nð Þ ¼ 1þ 2cos 2π=7ð Þð Þ2 ¼ 5:048917339…

The locations of the high-symmetry seed units are determined
entirely by the intersection points generated by the framework of
nested tetradecagrams as shown in Fig. 2c, d. Please note that for
each cluster, the center of rotational symmetry is occupied by one
of the three main seed units, while the remaining positions of
high symmetry are occupied by a unique formation of the re-
maining two seed units. The gaps between the three distributed
seed units are filled with unique but flexible connecting forma-
tions (Fig. 2d). The three final generated clusters of the first
hierarchy are shown in Fig. 2e, f.

If we examine the final generated three main clusters in Fig.
2f, it is important to highlight that the main connecting arrange-
ments can be rotated or flipped in place without dislocating the
points of the high symmetry or changing the relative distances or
orientations between the seeds of high symmetry (Fig. 3b–d).
This flexibility provides an extra degree of freedom of rearrange-
ment at the local level without scarifying the global order. Such
flexibility could provide a theoretical grounding for explaining
phasonic flips or the local fluctuations that are unique to
quasicrystals.

Growing the quasilattice empire

Growing the global empire of the 7-fold quasilattice formations
requires building a progression ofmultilevel hierarchical clusters,
in which every higher-order cluster is built on the previous one.
Accordingly, generating the next higher-level clusters follows the
same process used to generate the three clusters of the first
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hierarchy. In the 7-fold hierarchical system, the construction of
the second higher level is governed by a new generation of the
nested tetradecagrams which grows proportionally according to
the ratio (1 + 2cos(2π/7))2. Similar to the first hierarchy, three
main clusters with unique 7-fold rotational symmetry exist for
the second hierarchy, each can serve as the central seed for grow-
ing the infinite 7-fold quasilattice without any gaps, overlaps, or

mismatches. Each cluster exhibits unique local symmetry forma-
tion which plays a vital role in generating the global quasilattice.

The process for constructing the three main high-symmetry
clusters of the second-level hierarchy is demonstrated in Figs. 4,
5, and 6. In this second level, the final generated clusters of the
first hierarchy shown in Fig. 2f serve as the seed clusters (units)
for the second hierarchy. Each cluster in the second-level hierar-
chy is composed of three high-symmetry smaller seed clusters

Fig. 2 The process for constructing the three main high-symmetry
clusters of the first hierarchy of the 7-fold quasilattice. a The three seed
units (clusters) with 7-fold rotational symmetry. b The connecting
formations. c, d The locations of the high-symmetry seed units are

determined entirely by the intersection points generated by the
framework of nested tetradecagrams. e, f The three final generated
clusters of the first hierarchy

Fig. 1 A framework of nested tetradecagrams serves as the underlying
hidden grid for guiding the construction process of the quasilattice
system. a–c The hierarchical framework is attained by building a
progression of nested tetradecagrams, in which every hierarchy is

proportionally built on the previous one; resulting in a self-similar
network. d The size of the central seed unit is strictly derived from the
progression sequence of the nested tetradecagrams
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(Figs. 4a, 5a, and 6a), and a limited number of connecting clus-
ters or fragments (Figs. 4b, 5b, and 6b). All seed clusters of the
second order are distributed according to the new generation

framework of the nested tetradecagrams (Figs. 4c, 5c, and 6c).
The locations of the high-symmetry seed clusters are determined
entirely by the intersection points generated by the higher gener-
ation framework of nested tetradecagrams. Please note that for

Fig. 4 The process of constructing the first high-symmetry cluster for the
second hierarchy of the 7-fold quasilattice. a The three main seed clusters
with high symmetry. b The connecting formations. c, d The locations of
the high-symmetry seed clusters are determined entirely by the
intersection points generated by the higher generation framework of
nested tetradecagrams. e The final generated 7-fold clusters of the
second hierarchy

Fig. 5 The process of constructing the second high-symmetry cluster for
the second hierarchy of the 7-fold quasilattice. a The three main seed
clusters with high symmetry. b The connecting formations. c, d The
locations of the high-symmetry seed clusters are determined entirely by
the intersection points generated by the higher generation framework of
nested tetradecagrams. e The final generated 7-fold clusters of the second
hierarchy

Fig. 3 The connecting formations provides an extra degree of local
freedom, which allows a rearrangements to happen on the local level
without affecting the global order. a The main connection formations.
b–d The main connecting fragments can be rotated or flipped in place

without dislocating the points of the high-symmetry or changing the
relative distances or orientations between the seeds of high symmetry in
the three clusters of the first hierarchy
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each new generation cluster, the center of the rotational symme-
try is occupied by one of the three main seed clusters (Figs. 4d,
5d, and 6d). Similarly to the first hierarchy, the gaps between the
three seed clusters are filled with unique but flexible connecting
formations. The three final generated 7-fold clusters of the sec-
ond hierarchy are shown in Figs. 4e, 5e, and 6e. It is also impor-
tant to point out that the connecting formations shown in Figs.
4b, 5b, and 6b can be rotated and locally rearranged without
disturbing the global order. This flexibility of local rearrangement
extends beyond the first hierarchy and provides an extra degree
of freedom in every hierarchy. However, more investigation is
still needed to define the exact rules for such rearrangement at
every level.

Inflation/deflation rules

An important characteristic of this multilevel proportional sys-
tem is that the same quasilattice formations recur at different
scales. This quality is often described as Bself-similarity^

principle, which is the key principle in the structure of quasi-
crystals. A powerful tool associated with this property is the
ability to derive deflation/inflation (substitution) rules to con-
struct the infinite hierarchical tilings [44]. A close examination
of all the generated clusters of the second hierarchy reveals
simple but flexible deflation/inflation rules (Figs. 7, 8, and 9).
Figures 7a, 8a, and 9a show the flexible connecting forma-
tions of the first hierarchy which can be used to derive the
generalized substitution rules of the second hierarchy based on
the ratio of (1 + 2cos (2π/7))2 (Figs. 7b, c, 8b, c, and 9b, c). In
principle, for any substitution tiling, it is possible to construct
local matching rules that can force the global hierarchical
structure to emerge [45]. This suggests that matching rules
for 7-fold tiling do exist. However, because of the built-in
local flexibility, this may require the distinction of many tiles
of equal shapes, resulting in a large total number of tiles and
their associated matching rules.

It is worth noting that the imbedded localized flexi-
bility can be found in the connecting formations in ev-
ery level in this hierarchical system. This degree of
local flexibility can be seen as a generalization of the
classical Bdeterministic^ inflation/deflation rules of ideal
self-similar quasiperiodic tilings (i.e., Penrose tiling,
Ammann octagonal tiling, pinwheel tiling, etc.). This
approach has similarities with random substitution rules,
which allow variations based on a finite set of possible
arrangements at every hierarchy [46]. Frank and Sadun
[47] introduced a related approach for generating hier-
archical tilings, in which flexible Bfusion rules^ allow
for rearrangements or change in geometry at different
levels. However, it is still not clear to why certain ar-
rangements are favorable over the others. In this

Fig. 6 The process of constructing the third high-symmetry cluster for the
second hierarchy of the 7-fold quasilattice. a The three main seed clusters
with high symmetry. b The connecting formations. c, d The locations of
the high-symmetry seed clusters are determined entirely by the
intersection points generated by the higher generation framework of
nested tetradecagrams. e The final generated 7-fold clusters of the
second hierarchy

Fig. 7 The deflation/inflation rules of the first high-symmetry cluster of
the second hierarchy. a The connecting formations of the first hierarchy. b
A close-up view of the rhombic deflation/inflation rules of the second
hierarchy. c The generalized inflation/deflation rules of the second
hierarchy
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context, both the deterministic inflation/deflation ap-
proach and the flexible/random substitutions have been
used to describe these arrangements within the structure
of real quasicrystals [48, 49]. On one hand, determinis-
tic substitution tilings (i.e., Penrose, etc.) assumes that
energetic interactions favor quasiperiodicity [48]. On the
other hand, undeterministic rules (i.e., random tilings)
assume that entropy is responsible for stabilizing the
quasicrystal structure [50, 51]. The proposed seed-based
model provides a hybrid approach. By utilizing a local
degree of freedom, associated only with connecting for-
mations, it is possible to generate the 7-fold quasiperi-
odic lattice without changing the arrangement or

location of high-symmetry clusters. However, the ques-
tion of which approach is best suited to explain the
structure and formation of quasicrystals is still an open
question.

Correlation with real growth of quasicrystals

The proposed hierarchical model offers a fresh new approach
to the structural investigations of quasicrystals and suggests
that the quasilattice formations are constructed from an ar-
rangement of several types of clusters, which has proven to
be valuable for describing the real atomic structure of quasi-
crystals [41–43]. More importantly, the proposed seed-based
construction approach works in concert with the growth
models of periodic and aperiodic crystals in which a number
of initial seed nucleus are used to initiate the crystal growth via
nucleation or self-assembly [18, 52, 53]. In this self-
organizing growth process, a number of neighboring high-
symmetry nuclei (seed clusters) generate growing crystallites
around them until their boundaries merge to generate the larg-
er quasiperiodic structure. Recent investigations have shown
that a dislocation-free growth of 12-fold quasicrystals can be
achieved from two seeds [18]. However, to grow perfect qua-
sicrystalline structures using multiple nucleation centers, the
boundary condition between these crystallites needs to be
flexible to alleviate the resulted stress. Schmiedeberg and his
colleagues found that the availability of the extra degree of
freedom or phasonic flips in quasicrystals are essential to mit-
igating the boundary stress by allowing for local rearrange-
ments to happen without dislocating the nucleation centers
[18]. Martinsons and his colleagues have also found that
phasonic flips facilitated the formation of 2D light-induced
quasicrystals with 14-fold symmetry, which allowed the par-
ticles to rearrange in the system [17]. The problem of incor-
poration this local degree of freedom or phasonic fluctuations
in the structural investigation of quasicrystalline systems re-
mains a challenge [36]. Therefore, structural models with
built-in ability to locally reorganize without affecting the lo-
cations of the high symmetry could provide an advantage over
existing models and can be of critical value to the wider qua-
sicrystalline scientific community.

Conclusion

In this paper, we presented a new seed-based hierarchical
model for constructing and growing rhombic quasilattice for-
mations with 7-fold rotational symmetry. This structural mod-
el does not appeal to any of the existing theoretical approaches
(i.e., inflation, deflation, substitution, matching overlapping,
projecting, etc.) and suggests that the position of high-
symmetry motifs, locally and globally, is defined by one

Fig. 9 The deflation/inflation rules of the third high-symmetry cluster of
the second hierarchy. a The connecting formations of the first hierarchy. b
A close-up view of the rhombic deflation/inflation rules of the second
hierarchy. c The generalized inflation/deflation rules of the second
hierarchy

Fig. 8 The deflation/inflation rules of the second high-symmetry cluster
of the second hierarchy. a The connecting formations of the first
hierarchy. b A close-up view of the rhombic deflation/inflation rules of
the second hierarchy. c The generalized inflation/deflation rules of the
second hierarchy
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long-range framework and not based on local rules. The pre-
sented structural model allows the quasilattice to expand infi-
nitely without any gaps, overlaps, or mismatches. The con-
structed quasilattice is self-similar, self-consistent, and not
singular. The different hierarchical levels contain repeatedly
appearing patches with the same original motifs. We also
showed that a clear generalized inflation/deflation rules can
be derived using three basic rhombi. Most importantly, the
proposed model has a built-in local degree of freedom, which
allows for a correlated lattice rearrangement to happenwithout
affecting the location or orientation of the high-symmetry seed
units. This is in concert with the seed initiated nucleation
growth models of quasicrystals and could provide new insight
into understanding the atomic fluctuations and the phasonic
flips that are unique to quasicrystals.

Most intriguingly, three main different quasilattice high-
symmetry formations morph into each other cyclically with
changing hierarchies, triggering a continuous chain of rear-
rangements to happen at every level. This suggests that local
flexibility is essential for maintaining the global odder. This
might explain the difficulties in devising inflation rules for
high-symmetry systems using the tiling inflation/deflation ap-
proach, which does not account for the chain of continuous
change in arrangements. The proposed model could possibly
provide a deeper understanding of the structure of quasicrys-
tals at an atomic scale and hopefully will help scientists de-
scribe how the atoms in quasicrystals interact to form its com-
plicated visual formations. Future research will be dedicated
to investigating such quality as it relates to quasilattice with
high rotational symmetries.

The study of quasiperiodic ordering systems and struc-
tures of unique high rotational symmetries is not only im-
portant for crystallography but also of interest to many other
scientific, applied, and creative fields and has the potential to
open up many new scientific and creative opportunities. The
use of global relational logic provides scientists, artists, and
teachers with a simple method to create and study a wide
variety of complicated hierarchical quasilattice formations
without the need for any specialized software or complicated
mathematics. By manipulating the two main components,
the hierarchical framework and the internal decoration of
the seed units, an unlimited range of design possibilities
can emerge. Future efforts should be directed toward inves-
tigating the use of the hierarchical approach to construct
other unique quasicrystalline formations with high rotational
symmetries (i.e., 9-, 11-, 13-, 14-fold, etc.) as well as how
these abstract geometric models can actually correlate with
real atomic structure and growth of quasicrystals.
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