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Abstract
Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR) signaling pathway is one
of the sought after therapeutic target for treating human cancers. This pathway is often hyper activated in cancers. In the present
study, pharmacophore-based virtual screening, molecular docking, and binding free energy calculations were performed on a
series of quinoline derivatives which were reported to be effective against PI3Kα. A five-point pharmacophore hypothesis with
one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic group (H), and two aromatic rings (R) was
developed with acceptable R2 and Q2 values of 0.93 and 0.60 respectively. Eventually, common pharmacophore hypothesis-
based screening was conducted against TOSLab, CPP, and ASINEX macrocylce databases, and potential hits were identified
which were further subjected to rigorous docking process in order to screen out drug like molecules having crucial interactions
with the target PI3Kα. Finally, binding free energy analysis was carried out for the top hits obtained from docking process. We
also designed new 1, 3, 4-oxadiazole-based cyclic peptides by incorporating the structural features of the hits obtained from the
above databases. Among the designed cyclic peptides, the cyclic peptide with tryptophan moiety showed good interactions and
free binding energy values. On the whole, this study helped us in identifying new promisingmolecules as PI3Kα inhibitors which
can be explored further to generate greater number of compounds with better pharmacokinetic properties.
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Introduction

Phosphoinositide 3-kinase (PI3K) signaling pathway is com-
monly deregulated in human cancers. PI3Ks are a family of
signal transducer enzymes which are involved in various
cellular processes such as cell quiescence, proliferation, dif-
ferentiation, motility, and intracellular trafficking [1–3].

Basically PI3K family is divided into three classes (classes
I, II, and III) based on structural characteristics and substrate
specificity [4, 5]. The class I PI3K family consists of α, β,
γ, and δ isoforms that generate phosphatidylinositol 3, 4, 5-
triphosphate, a potent secondary messenger that triggers the
activation of several downstream effectors including Akt [6].
Previous studies have shown that many tumors fostering
somatic genetic aberrations can result in the immanent acti-
vation of the PI3K/Akt/mTOR signaling network in human
cancers [6]. Therefore, targeting PI3K pathway is an attrac-
tive strategy for treating cancers. Many researchers have
reported various quinoline derivatives as PI3K inhibitors.
These derivatives have attracted researchers as many com-
pounds which are under clinical trials at present possessed
quinoline core (GSK2126458, BEZ235, and BGT226) and
displayed exceptional potency in vitro and in vivo against
PI3K/mTOR [7, 8]. Hence, we focused our attention on
quinolne derivatives and carried out molecular modeling
studies on them.
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Molecular modeling techniques which are developed in
recent times have paved the way for quick and cost effective
designing and discovery of novel drugs especially in terms of
pharmaceutical research. Virtual screening in particular has
been employed as a tool to ingress new drug-like candidates
from large data base [9, 10]. Over a period of time, numerous
in silico techniques such as pharmacophore modeling, molec-
ular dynamics have been developed and utilized in the phar-
macology. Interestingly, the in silico approaches for lead iden-
tification and drug discovery have gained popularity in recent
times [11–15]. Finding a common pharmacophore hypothesis
in conjunction with atom-based 3D QSAR (three dimensional
quantitative structural activity relationship) model with reli-
able statistical values are very useful tools for finding and
developing small molecules which are capable of becoming
drugs [16–20] . Therefore , in the present s tudy,
pharmacophore-based virtual screening and docking studies
were performed on a series of qunioline derivatives in order
to discover and design new leads with improved selectivity
and potency towards PI3Kα. The pharmacophore model gen-
erated in this study was used as a query and screened against
TOSLab, CPP (Cell Penetrating Peptides with peptides length
less than or equal to 30 amino acids) and ASINEX
macrocycles databases in order to identify potential hits. The
obtained hits were subjected to rigorous docking process, and
drug-like candidates having key interactions with target
PI3Kαwere screened out. Further binding energy calculations
were also carried out using MM/GBSA. Furthermore, based
on the outcome of results, new oxadiazole-based cyclic pep-
tides were designed. All in all, in the present study, an attempt
was made to identify new PI3Kα inhibitors using integrated
pharmacophore-based screening, molecular docking, and
MM/GBSA approaches.

Materials and methods

The common pharmacophore and 3DQSARmodels was gen-
erated using PHASE (Pharmacophore Alignment and Scoring
Engine) module of Schrodinger Suite [21]. Basically, PHASE
identifies the steric and structural features of the compounds
that are common and promising for the target inhibition. It
also predicts the inhibitory activity values of the compounds
[19]. In PHASE, there are five sequences of steps to build
pharmacophores and 3D QSARmodels. They are preparation
of ligands, pharmacophore site creation, common
pharmacophore identification, scoring hypotheses, and build-
ing 3D QSAR model.

Dataset for analysis

A series of quinoline derivatives were taken from literature [6,
22–24]. The IC50 values of these derivatives were converted

to corresponding pIC50. A total of 44 compounds were used as
a data set of which 30 compounds were randomly chosen as
training set, and 14 compounds were selected as test set in
order to generate structural diversity in model generation.

Ligand preparation

The structures of all the derivatives were drawn in maestro
build panel. The sketched structures were converted into 3D
and prepared using LigPrep module. Finally, the generated
low energy conformers along with activity values were
imported to the Phase project workflow.

Generation of pharmacophore hypotheses

A set of points in 3D space defines the ligand structure which
actually facilitates the non-covalent binding between the li-
gand and its target receptor. For the creation of
pharmacophores, generally PHASE supplies a built-in set of
six pharmacophore features, H-bond acceptor (A), H-bond
donor (D), hydrophobic group (H), negative/anionic (N),
positive/cationic (P), and aromatic ring (R). PHASE generates
the plausible pharmacophore sites for a given data set based
upon the s t ruc tura l s imi la r i ty and the common
pharmacophoric features. The generated features in the
PHASE will be further assigned for geometrical entities of
the data set in order to define physical characteristics.

Finding a common pharmacophore

PHASE examines the pharmacophore from all conformations
of the ligand and groups together the pharmacophore which
contains identical sets of features with related spatial arrange-
ments and finally gives a common pharmacophore. A tree-
based partitioning technique is used to identify the common
pharmacophores which actually groups together similar
pharmacophores according to their inter site distances [19].
The intersite distance was set to 2 Å with maximum tree depth
of five; initial and final box sizes were set to 32 and 1 Å
respectively. Finally, common pharmacophore containing
sites were generated by applying active and inactive thresh-
olds which was further taken for scoring the hypothesis.

Scoring hypotheses

In this step, common pharmacophores are examined, and a
pharmacophore which yields best alignment of active set of
ligands is identified by applying a scoring procedure. This
particular pharmacophore furnishes a hypothesis to demon-
strate how the active compounds bind to the receptor. The
scoring procedure ranks different hypotheses and allows mak-
ing realistic choices about the hypotheses which is most rele-
vant for further investigation. Ligand activity was expressed
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as –log (IC50) and incorporated into the score. The vector, site,
and volume scores were set to 1.0 while scoring actives. The
hypotheses which were obtained from this process were
scored with respect to inactive, applying a weight of 1.0.
The inactives were scored in order to check the alignment of
these compounds with respect to the pharmacophore hypoth-
esis so as to take a decision on the selection of the hypothesis.
For a good hypothesis, the difference between the scores of
actives and inactives should be high.

Building QSAR model

QSAR models can be built in PHASE using the activities of
the ligands which match a given hypothesis. These QSAR
models are based on PLS regression that are applied to a huge
set of binary valued variables. The QSAR models were de-
rived based on PLS regression and enforced on a set of binary
variables. The grid space which is occupied by training set of
compounds provides independent variables for QSAR model.
Depending upon the type of grid space occupied, atom types
were assigned into one of the six categories, i.e., D (H-bond
donor), H (hydrophobic or non polar), P (positive), N (nega-
tive), A (H-bond acceptor/electron-withdrawing groups), M
(miscellaneous). Atom-based QSAR models were developed
for ADHRR hypothesis using 30 training set of ligands with
grid spacing of 1.0 Å. QSAR models were generated
consisting of one to three PLS factors. The generated QSAR
model is validated both internally and externally using train-
ing and test set ligands respectively.

Screening of 3D databases using pharmacophore
model

The generated PHASE model was used as a query and
TOSLab, CPP, and ASINEX macrocycles databases were
screened in order to identify the new leads that match with
the best pharmacophore hypothesis and estimate the predicted
activities using 3D QSAR model.

Molecular docking

The X-ray crystal of PI3Kα (PDB ID: 4KYN) was
downloaded from protein data bank [25]. It was prepared,
refined, and minimized using protein preparation wizard by
applying OPLS 2005 force field. Later, receptor grid was gen-
erated around the active site of the protein using GLIDE 5.6.
During grid generation, the van der Waals scaling was set to
0.9 [26], and ligand molecule was picked so that it could be
excluded from grid generation. Subsequently, the ligands were
docked in a step-wise manner using extra precision (XP)
docking mode. The dimensions of the grid box were 10 Å ×
10Å × 10Å. In initial phase of docking, 5000 poses per ligand
were taken out of which top 800 poses per ligand were passed

on for energy minimization. During energy minimization, the
maximum number of minimization steps were set to 100, and
distance-dependent dielectric constant was set to 2.0.

Dock-based virtual screening

The ligands obtained from TOSLab screening were initially
docked into the active site using standard precision protocol.
The 50% of the top scoring ligands were then taken and sub-
jected to XP docking. Finally, binding free energies were cal-
culated for 10% of the top scoring ligands obtained from XP
docking. On the other hand, the ligands retrieved from screen-
ing of CPP data base could not dock into the active site as the
binding pocket in the protein active site was not very large
enough to accommodate these peptides. Interestingly, the li-
gands obtained from ASINEX macrocycles database screen-
ing fitted comfortably in the active site of PI3Kα. Initially,
these ligands were also docked using standard precision pro-
tocol. Later, 50% of top scoring ligands were taken and sub-
jected to XP docking. Finally, binding free energies were cal-
culated for 10% of the top scoring ligands.

Binding free energy calculations

Molecular dynamics simulations are computationally very ex-
pensive especially for larger protein systems like PI3Kα.
MM/GBSA (Molecular Mechanics with Generalized Born
Surface Area) on the other hand is an alternate approach to
refinement that utilizes a continuum representation of solvent.
One of the major advantages of continuum approach is that it
uses conformational search method as opposed to MD simu-
lations, that is conveniently employed in conjunction with a
continuum solvation model. The method is efficient and rela-
tively inexpensive for calculating the global free energy [27].
Therefore, MM/GBSA was used for calculating binding free
energies. The best ranking molecules obtained from extra pre-
cision docking were subjected to binding free energy calcula-
tions using Prime MM/GBSA available in the Schrodinger
Suite. The equations for estimating binding free energy are
as follows:

ΔGbind¼ Gcomplex‐ Gligand unboundð Þ þ Greceptor unboundð Þ
� �

¼ ΔEMM þΔGsolv þΔGSA

where ΔEMM is the difference in energy between the protein
ligand complex and the sum of the energies of the protein with
and without ligand, ΔGsolv is the difference in GBSA solva-
tion energy of the protein ligand complex and the sum of the
solvation energies for the ligand and unliganded protein,
ΔGSA is the difference in the surface energy for the protein
ligand complex and the sum of the surface area energies of the
ligand and uncomplexed protein [28]. VSGB 2.0 model was
used in MM/GBSA calculations. It actually approximates the
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solvation free energy with an optimized implicit model [27].
The exterior and interior dielectric constants were set to 80
and 1 respectively, during MM/GBSA calculations. In VSGB
model, polar and non-polar solvent solute contributions can be
described by a polarization term and a hydrophobic term, re-
spectively. Basically, this polarization term depends on partial
charges, solvent, and internal dielectric constants and fGB
which can be given by the following equation:

Gpol ¼ 1

2

1

εin ijð Þ −
1

εsol

� �
∑
i< j

qiq j

f GB

Where fGB is a function of generalized Born radii (αi and
Equation j) and distance between two atoms (r ij) as described
by Still et al. [29].

Results and discussion

The typical chemical structures of all PI3Kα inhibitors are
shown in Table 1. Among these 44 inhibitors, the inhibitors
withpIC50 values greater than 8.5 were assigned as active
while inhibitors with pIC50 values less than 7.5 were assigned
as inactive pharm sets to create pharmacophore site points.
The pIC50 values and Fitness scores of all the data set com-
pounds are shown in Table 1.

Determination of pharmacophore model

A total of four variant combinations, viz. AADRR, AADHR,
AAHHR, and ADHRR consisting of hydrogen bond acceptor
(A), hydrophobic group (H), H-bond donor (D), and aromatic
ring (R) features were derived in the common pharmacophore
identification step. Twenty-two five-point pharmacophore hy-
potheses were generated after scoring these four common
pharmacophores. The generated hypotheses were ranked ac-
cording to the survival active, inactive, post-hoc alignment,
vector, and volume scores. The hypothesis ADHRR associat-
ed with five pharmacophore site points was taken for further
analysis. The geometry of ADHRR is depicted in Fig. 1,
where the pink sphere with vectors represents H-bond accep-
tor feature (A4), blue sphere with a vector represents H-bond
donor feature (D10), green sphere represents hydrophobic fea-
ture (H11), and two orange tori (ring-shaped surfaces) repre-
sents aromatic ring features (R15 and R18).

Building 3D QSAR model and validation

Atom-based 3D QSAR models were developed for top four
pharmacophore hypotheses. PLS regression was performed
with three maximum PLS factors where PHASE descriptions

acted as independent variables while pIC50 values served as
dependent variables. The results are tabulated in Table 2.
Among the four hypotheses, ADHRR gave good statistical
model with high values of correlation coefficient; R2 = 0.93,
low standard deviation; SD = 0.20, variance ratio; F = 119.1,
high predictive coefficient; Q2 = 0.60, low RMSE = 0.47 and
pearson’s R value = 0.81. Therefore, it is evident that the de-
veloped 3D QSAR model has sterling statistical criteria [30,
31] and can be used for further optimization and exploration.
The scatter plot of experimental versus predicted pIC50 values
of both training and test set ligands are shown in Fig. 2. The
graph showed a positive correlation between predicted and
experimental values. Hence, it can be confirmed that the gen-
erated 3D QSAR model is robust and significant.

3D QSAR visualization of most active compound

The 3D visualization of the best hypothesis ADHRR and the
selected quinoline ligands in the aspect of developed QSAR
helps in better understanding of structure and activity relation-
ship (SAR) in construing the activity [20]. The 3D QSAR
model visualization of the best active compound (pIC50 =
9.00) is depicted in Fig. 3. In Fig. 3a, b, and c, green, blue,
and red cube areas represent favorable regions where as violet,
orange, and green cubes areas represent unfavorable regions
for hydrophobic, H-bond donor, and H-bond acceptors
respectively.

In Fig. 3a, it can be observed that there are three hydropho-
bic features superposed on fluorine-attached benzene, and
benzene of quinoline moiety though the hypothesis has only
one of them, i.e., H11. The atom-based 3DQSARmodel takes
into account the steric clashes with the receptor while
predicting the activity apart from pharmacophore features,
whereas the pharmacophore-based 3D QSAR model predicts
the activity directly by considering pharmacophore sites and
their locations [32]. The H-bond donor feature superposed on
BNH^ attached to sulfonyl group is depicted in Fig. 3b. It
exactly matched with the pharmacophoric feature, i.e., D10.
On the other hand, H-bond acceptor features superposed on
oxygen atom of sulfonyl group, fluoro benzene, and near pyr-
idine of quinoline moiety are shown in Fig. 3c. Interestingly,
the hypothesis showed only one H-bond acceptor feature
(A4). The presence of additional hydrophobic and H-bond
acceptor features is beneficial for the activity.

Pharmacophore-based virtual screening

The three databases namely TOSLab, CPP, and ASINEX
macrocycles databases were screened using the generated
pharmacophore model (ADHRR) in order to search for potent
PI3Kα inhibitors. CPP and ASINEX macrocycles databases
were also taken so as to screen out cyclic compounds in addi-
tion to linear molecules. During this process, the sites of the
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Table 1 Structures of PI3Kα inhibitors along with experimental and
predicted pIC50 values of both training and test set compounds based on
pharmacophore hypothesis ADHRR. The inhibitory activity and fitness

score values of both best active (compound 12) and least active
(compound 41) compounds are shown in bold.

N

N

O
O

HN
S

O

O

F

F

R1

Compound R1

Expt.

pIC50

Pred.

pIC50

Fitness

Score

Binding 

Energy 

(Kcal/mol)

1
N

H

8.03 8.26 2.88 -63.35

2 N
H

N

O

8.43 8.37 2.75 -80.43

*3
N

H

N

S

O
O

8.33 8.35 2.71 -80.56

*4
H

N 7.44 7.96 1.51 -71.36

*5
H

N

O

7.57 7.91 1.49 -69.63

*6 H

N

F
F

F 7.52 7.91 1.48 -67.33

7

H

N

O

7.82 7.80 2.46 -83.03

8

H

N

O

N
OH

8.89 8.74 1.81 -78.09

*Test set compounds
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Table 1 (continued)

*9

H

N

O

N

N

8.50 7.89 2.43 -77.01

*10

H

N

O

N

OH

8.70 8.29 2.76 -59.76

*11

H

N

O

N

O

8.77 8.58 1.00 -83.22

12 OH 9.00 8.52 2.92 -104.17

13
NH2

O

8.59 8.46 3.00 -81.74

14

H

N

O

8.08 7.94 2.54 -67.99

N

N

O
O

HN
S

O

O

F

F

O

R1

15
N

H

OH 8.80 8.70 1.96 -89.19

16
N

OH
8.10 8.15 2.58 -75.59

17 N 7.59 8.06 2.87 -66.82

*18 N 7.57 8.42 2.80 -41.59

19 N

O

7.48 7.45 1.45 -73.96
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Table 1 (continued)

20 N

OH

7.92 8.03 2.54 -68.93

21

N

H

8.27 8.00 2.48 -70.93

*22

N

H

O

7.96 8.39 2.76 -63.52

23

N

H

O F

F
F 7.14 7.37 2.41 -65.56

N

N

O
R4

HN
S

O

O R3

R1

R2

Compound R1 R2 R3 R4

Expt.

pIC50

Pred.

pIC50

Fitness

Score

Binding 

Energy 

(Kcal/mol)

24 H F F H 7.85 8.19 2.71 -65.13

25 H F F

OH

8.33 8.16 1.36 -66.69

26 H F F
N

7.56 7.57 1.53 -74.95

*27 H F F
N

N

7.62 7.59 1.17 -71.72

28 H F F
N

OH

8.79 8.83 1.60 -75.88
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Table 1 (continued)

29 H F F

O
OH

8.63 8.50 1.41 -79.67

*30 H F F

N
OH 8.57 8.16 1.74 -87.24

31 H F F

H

N

7.56 7.53 1.26 -71.89

32 H F F

H

N

O

7.49 7.45 1.24 -79.68

33 H F F

H

N

F

7.66 7.51 1.54 -69.51

34 H F F N

N

O

8.70 8.77 1.57 -57.89

35 H F F N

N
S

O

O
8.46 8.50 1.05 -61.37

36 H F H
N

OH

7.40 7.43 1.29 -87.54

37 F H H
N

OH

7.37 7.60 1.27 -86.67
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hypothesis will be agnated with the conformers of the ligands
which are pre-computed [19]. In the current study, the ligands
were read to match maximum five sites of the hypothesis. The
search process restituted 273 hits out of 39,988 molecules
from TOSLab, 16 hits out of 1411 molecules from CPP data-
base, and 204 hits out of 31,500 molecules from ASINEX
macrocylces database. Since the pharmacophore model was
derived from known PI3Kα inhibitors, it typifies the traits that
are required for binding to PI3Kα. Therefore, it is clear that
the hits obtained from the search process will definitely have
greater probability of becoming PI3Kα inhibitors.

Molecular docking-based virtual screening using
Glide

The hit molecules obtained from the three databases
(TOSLab, CPP, and ASINEX macrocycles) were docked into
the active site of PI3Kα using the receptor grid which was
generated during the docking process. The docking process
was carried out in two stages in our analysis. Initially, about
273molecules obtained from pharmacophore-based screening
of TOSLab database were taken for SP docking. Later, the top

137 molecules, i.e., 50% of the molecules which showed high
dock scores were subjected to XP docking. Similarly, the hit
molecules obtained from CPP database were subjected to SP
docking. However, these molecules did not dock into the pro-
tein due to their large size. Finally, 204 hits obtained from
ASINEX macrocyles database were docked using SP mode.
About 102 molecules (i.e., 50%) which showed high dock
scores were passed on to the next stage of XP docking. The
top 10%, i.e., 14 molecules of TOSLab and 10 molecules of
ASINEX macrocycles database which exhibited good dock
scores were taken further for binding free energy analysis.
The schematic representation of entire virtual screening pro-
cess is shown in Fig. 4.

Calculation of binding free energies

The binding free energy values of the top 10% of the hit mole-
cules obtained from both the databases are shown in Table 3.
These values were compared with the binding free energy value
of the best active compound in the data set (compound 12, Table
1). FromTable 3, it can be observed that some of the hits showed
good binding free energy values.Molecules T2, T4, T6, and T10
from TOSLab database and molecules A3, A5, A6, and A10
from ASINEX macrocycles database in particular showed good
binding energy values of − 94.83, − 101.90, − 123.77, − 105.32,
− 95.12, − 109.99, − 97.77 and − 97.01 Kcal/mol respectively
which are in the range of best active compound 12 (−
104.17 Kcal/mol). Molecules T6, T10, and A5 possessed high
binding energy values which are even greater than the best active
compound. Therefore, it is evident that the molecules T6, T10,
and A5 can definitely act as potent inhibitors against PI3Kα.

Interaction studies of screened hits

Ligand interaction diagram (LID) available in the Schrodinger
Suite was employed to explore the interaction pattern of the
screened hits. The results are depicted in Fig. 5. The pink

Fig. 2 Scatter plot of experimental versus predicted pIC50 values of
training (red dots) and test (black triangles) set compounds

Fig. 1 The illustration of pharmacophore model ADHRR where the pink
sphere with vectors represent H-bond acceptor feature, blue sphere with
vector represent H-bond donor feature, green sphere represents hydro-
phobic feature and two orange rings represent aromatic ring features

Table 2 Statistical results of top four pharmacophore hypotheses
generated through PHASE

ID SD R2 F RMSE Q2 Pearson-R

ADHRR 0.20 0.93 119.1 0.47 0.60 0.81

AAHHR 0.19 0.94 127.8 0.59 0.46 0.73

AADHR 0.16 0.96 192.0 0.60 0.36 0.60

AADRR 0.20 0.93 120.8 0.86 0.33 0.22
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colored lines in Fig. 5 represent hydrogen bonds, green col-
ored lines represent π-π stacking interactions, and red colored
lines represent π-cationic interactions. Initially, the best active

compound in complex with PI3Kα was analyzed with the
help of LID. The result is depicted in Fig. 5. It showed five
hydrogen bond interactions with amino acid residues Ser

Fig. 4 Flowchart showing the virtual screening workflow for identification of hit molecules

Fig. 3 3D QSAR model
visualization in connection with
the best active compound
(compound 12), illustrating the
effect of a hydrophobic, bH-bond
donor, and c H-bond acceptor
features
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1774, Lys 1802, Val 1851, Ser 1854, and Asp 1933. The hits
obtained from TOSLab database showed π-π stacking, π-
cationic interactions and formed salt bridges apart from hy-
drogen bonds. They showed hydrogen bond interactions with
Arg 1770, Ser1774, Lys 1776, Lys 1802, Glu 1849, Val 1851,
Asn 1853, Ser 1854, Gln 1859, Ser 1919 and Asp 1933; π-π
stacking interactions with Trp 1780, Tyr 1836, HIS 1855, and
HIS 1917; π-cationic interactions with Lys 1802 and formed
salt bridges with Glu 1798 and Lys 1802. Among the screened
hits of TOSLab, molecules T6, T7, T10, and T11 showed five
interactions (Fig. 5) and the remaining hits exhibited two to
three interactions (Supplementary information, Fig. S1). On
the other hand, the hits obtained from ASINEX macrocycles
database showed hydrogen bond interactions with Ser 1773,
Ser 1774, Lys 1776, Lys 1802, Val 1851, Gln 1859, Asn 1920,
and Asp 1933 and π-π stacking interactions with Trp 1780,
Tyr 1836, and HIS 1917. The π-cationic interactions and salt
bridges were absent in these molecules. Among the screened
hits of ASINEX macrocycles, molecule A5 showed four in-
teractions (Fig. 5); molecules A2, A3, and A4 showed three
interactions, and remaining ones showed only one to two

interactions (Supplementary information, Fig. S1). It is there-
fore clear that both linear and cyclic molecules can form in-
teractions with PI3Kα and may act as good inhibitors.

Design of 1, 3, 4-oxadiazole-based cyclic peptides

The hits obtained from both TOSLab and ASINEX
macrocycles databases showed good interactions and binding
free energy values. The hits T6, T10, and A5 could even
compete with the best active compound in the dataset (com-
pound 12) in terms of interactions and binding free energy
values. They exhibited binding free energy values greater than
the best active compound (− 123.77, − 105.32 and − 109.99
respectively) and formed four to five interactions (T6 and T10
exhibited five and A5 exhibited four interactions). However,
they showed only two to three hydrogen bond interactions
which are considered to be strong interactions. Therefore,
we have designed certain 1,3,4-oxadiazole-based cyclic pep-
tides by imbibing the structural features of the hits retrieved
from both the databases which could possess good interac-
tions apart from binding free energy values. Among the de-
signed 1, 3, 4-oxadiazole-based cyclic peptides, the cyclic
peptide with tryptophan moiety exhibited seven interactions
(four hydrogen bond, two π-π stacking, and one π-cationic
interaction Fig. 6) and showed binding free energy value of −
132.24Kcal/mol. It satisfied both the conditions of interactions
and binding free energy values. Actually, we have designed
and reported certain 1, 3, 4-oxadiazole-based cyclic peptides
in our earlier studies against HIV-1 TAR RNA [28]. Most of
the TOSLab hits possessed indole moiety (T1, T6, T9, T11,
and T12) in their core structure, and few compounds pos-
sessed benzimidazole and benzothiazole moieties in their core
structure (Supplementary information, Fig. S1). The aromatic
system in these compounds particularly formed π-π stacking
interactions. On the other hand, the cyclic peptides which
were docked into the active site of PI3Kα (ASINEX
macrocycles database hits) showed that the cavity was large
enough to accommodate bulky molecules. Further, the
pharmacophore model generated in the present study had five
features, namely, one acceptor group (A), one donor group
(D), one hydrophobic group (H), and two aromatic rings
(ADHRR). Furthermore, cyclic peptides are resistant to pro-
teases, and by reducing entropic penalties, they bind to spe-
cific receptors with high affinity. Hence, all the above features
were taken into consideration and integrated together to de-
sign the oxadiazole-based cyclic peptides.

Molecular docking and binding free energy analysis
of 1, 3, 4-oxadiazole-based cyclic peptides

The designed cyclic peptides were docked into the active site
of PI3Kα using the same grid which was used for docking the
dataset and database compounds. The extra precision docking

Table 3 Binding free energies and predicted pIC50 values of screened
hits obtained fromTOSLab (T1-T14) andASINEXmacrocycles database
(A1-A10)

SNo Compound Binding energy
(Kcal/mol)

Predicted pIC50

1 T1 − 77.40 7.52

2 T2 − 94.83 7.78

3 T3 − 90.25 7.65

4 T4 − 101.90 7.89

5 T5 − 90.29 7.63

6 T6 − 123.77 7.64

7 T7 − 79.45 7.91

8 T8 − 82.41 7.83

9 T9 − 69.03 7.62

10 T10 − 105.32 7.66

11 T11 − 89.83 7.60

12 T12 −89.35 7.60

13 T13 − 79.76 7.81

14 T14 − 79.60 7.82

15 A1 − 78.57 7.27

16 A2 − 82.38 7.69

17 A3 − 95.12 7.66

18 A4 − 87.95 7.49

19 A5 − 109.99 7.75

20 A6 − 97.77 7.21

21 A7 − 84.39 7.43

22 A8 − 81.55 7.55

23 A9 − 84.45 7.68

24 A10 − 97.01 7.65
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Fig. 5 Ligand interaction diagrams of screened hits obtained from TOSLab (T6, T7, T10, and T11) and ASINEX macrocycles database (A5)
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(XP) protocol was used for docking these molecules. The
designed cyclic peptides showed hydrogen bond interactions
with Ile 1771, Ser1774, Ala 1775, Glu 1768, Arg 1770, Glu
1798, Gln 1859, Ser 1919 and Asp 1933; π-π stacking inter-
actions with Trp 1780, HIS 1917, and HIS 1936; and π-
cationic interactions with Arg 1770 and Lys 1802. Among
the designed molecules, except molecule N4, all molecules
showed five interactions (Supplementary information, Fig.
S2). The only molecule which showed more than five inter-
actions was molecule N1. It showed four hydrogen bond in-
teractions with Ser 1774, Ala 1775, and Ser 1919, two π-π
stacking interactions with Trp 1780 and HIS 1917, and one π-
cationic interaction with Lys 1802 (Fig. 6).

Binding free energy values were also calculated for the
designed cyclic peptides. These values varied from − 63.67
to − 132.24 Kcal/mol. The binding free energy values of all
1, 3, 4-oxadiazole-based cyclic peptides are shown in Table 4.
Among the designed cyclic peptides, tryptophan- and phenyl
alanine-based 1, 3, 4 -oxadiazole cyclic peptides showed good

binding energy values which are greater than − 100 Kcal/mol
(Table 4). Therefore, these two molecules may act as good
inhibitors against PI3Kα.

Conclusions

The objective of the present study was to discover and design
new potent inhibitors against PI3Kα. Pharmacophore-based
virtual screening, molecular docking, and binding free analy-
sis were employed to achieve this purpose. A five-point com-
mon pharmacophore hypothesis (ADHRR) was developed
using 44 PI3Kα inhibitors and was applied to screen three
different databases, i.e., TOSLab, CPP, and ASINEX
macrocycles. The identified hits were docked into the active
site of PI3Kα and further subjected to binding free energy
analysis. The results revealed that the compounds possessing
indole and benzothiazole moieties with prescribed
pharmacophoric features can act as potent inhibitors against
PI3Kα. It was also evident that even cyclic compounds can
act as good inhibitors against PI3Kα on par with linear com-
pounds. Further, the results obtained from docking and bind-
ing free energy analysis of 1, 3, 4-oxadiazole-based cyclic
peptides disclosed that the cyclic peptides with tryptophan
moiety can definitely act as good inhibitors against PI3Kα.
On the whole, the results obtained in this study suggest that
the combined 3DQSAR, molecular docking, and binding free
energy protocols can be helpful in identifying and designing
new PI3Kα inhibitors. We hope that the inferences drawn in
this work can provide some insights to researchers to discuss
and design new PI3Kα inhibitors with greater activity.

Fig. 6 Ligand interaction
diagram of newly designed 1, 3,
4-oxadiazole-based cyclic peptide
with tryptophan moiety

Table 4 Binding free energies of newly designed 1, 3, 4-oxadiazole-
based cyclic peptides

S No Compound Binding energy (Kcal/mol) Predicted pIC50

1 N1 − 132.24 7.82

2 N2 − 69.72 7.11

3 N3 −63.67 7.31

4 N4 − 100.91 7.69

5 N5 − 88.39 7.55

6 N6 − 69.48 7.01
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