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Abstract
In this study, we investigated the structure-activity relationships of a series of β-carboline alkaloid derivatives using the 2D-
QSAR and molecular docking, in order to identify the mode of interaction between β-carboline derivatives and the PLK1 kinase,
and determine their key substituents responsible for the cytotoxic activity. The obtained QSAR models using multiple linear
regression (MLR) and partial least squares (PLS) methods showed a high correlation between the experimental activity and the
predicted one by PLS (R2

PLS = 0.82, q2 = 0.72) and MLR (R2
MLR = 0.82, q2 = 0.72). An external dataset was used to test the

extrapolation power of the models which resulted in an R2
PLS (EV) = 0.76; RMSE = 0.39. The 2D-QSAR analysis reveals that

lipophilicity plays an important role in the cytotoxic activity of this group of β-carboline derivatives. Indeed, the molecular
docking study into the active site of the polo-like kinase (PLK1) revealed that the most active ligand 57 shows higher binding
energy and interacts, especially by H-bonds and hydrophobic interactions, with the active site of the PLK1 kinase. Consequently,
the results obtained from the 2D-QSAR and docking studies provided a useful tool to design new and potent β-carboline
derivatives as cytotoxic agents.
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Introduction

Alkaloids constitute the largest group of plant secondary me-
tabolites containing nitrogen and exhibit extensive pharmaco-
logical actions, such as cytotoxic and antitumor activities [1,
2]. Furthermore, β-carbolines are a group of natural alkaloids
that possess a common tricyclic skeleton [3, 4]. These com-
pounds are produced and stored by plants as products of dif-

ferent biosynthesis pathways from amino acids such as lysine,
ornithine, tyrosine, and tryptophan [5]. They are also encoun-
tered in some animals such as insects and mammalians as well
as human tissues and body fluids [6]. In recent decades, these
compounds have attracted a great interest due to their pharma-
cological properties such as anxiolytic, hypnotic, anticonvul-
sant, sedative, antimicrobial, antiviral, parasitical, antidiabetic,
and anti-inflammatory, as well as their potent antitumor activ-
ities [7–14]. Indeed, in vitro studies have demonstrated the
decrease in cell viability of cancer cells from various tissues
[15–23]. This anticancer activity is also confirmed in vivo
since β-carbolines inhibit the tumor growth of various murine
models [13, 15, 23–25]. In addition, the study by Zhiyong
Chen and al., which examined the synthesis of a series of β-
carboline derivatives, the evaluation of their antitumor activi-
ties, and the analysis of structure-activity relationships,
showed that these compounds have potent antitumor activi-
ties, and that the antitumor potential is correlated to both the
planarity of the molecule and the presence of the substituents
on the central ring [26].
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This activity is explained by the action of β-carbolines on
different characteristics acquired by cancer cells, through mul-
tiple mechanisms of action, namely:

& Inhibition of cyclin-dependent kinases (CDK), inducing a
cell cycle arrest of different cancer cell lines. Thus, a state
of senescence in breast cancer cells (MCF-7) by inhibiting
the expression of telomerase [21].

& Increased expression of tumor suppressor factor (p53),
inducing apoptosis, cell cycle arrest, and inhibition of an-
giogenesis [18, 21, 24].

& Inhibition of the regulated phosphorylated tyrosine
kinase double-specified protein (DYRK1A) by deg-
radation of the amplified and/or mutated epidermal
growth factor receptor (EGFR) in glioblastomas,
which will inhibit the growth of Tumor cells
[27–29].

& Induction of cell death by decreasing expression of
several anti-apoptotic proteins (Bcl-xl, Bcl-2, and
Mcl-1) and increasing expression of pro-apoptotic
proteins (Bid, Bax) [13, 18, 20, 22, 23]. Thus, it
has been shown that β-carbolines inhibit topoisom-
erase 1, which causes transcriptional changes, inhi-
bition of replication, and DNA damage-inducing cell
death [29, 30].

& Inhibition of invasion, angiogenesis, and formation of me-
tastases by the action of β-carbolines on the expression of
various pro- and anti-metastatic and angiogenic factors
[14, 22, 24].

Furthermore, it has been found that this class of mol-
ecule exhibits remarkable acute neurotoxicity in mice
characterized by tremors, agitation, and convulsion
movements [13, 31, 32].

As for targeted receptor of this chemical series, it has
been shown that β-carbolines are potent inhibitors of
polo-like kinases (PLK) which plays an essential role
in the ordered execution of mitotic events [33]. PLK1
kinase, a member of the PLK family, is an attractive
target for anticancer drugs.

In continuing of our work to develop novel more
effective cytotoxic, antitumor, and less toxic agents
from the β-carboline derivatives using experimental
and theoretical studies [34–37], we studied a series of
β-carboline derivatives exhibiting cytotoxic activity
against the hepatocellular line (HepG2) using 2D-
QSAR and molecular docking analysis. The aim of this
study was to identify the mode of interaction between
β-carboline derivatives and the PLK1kinase and deter-
mine their key substituents responsible for the cytotoxic
activity, in order to guide the design of new β-carboline
alkaloids with improved pharmacological activities and
less neurotoxicity.

Materials and methods

Data collection

In this study, all β-carboline derivatives (40 molecules) have
been taken from the work of Cao et al. [32]. The reported IC50

values for cytotoxic activity against the hepatocellular line
(HepG2) were converted into the corresponding pIC50 values
(pIC50 = -logIC50) and selected for this study (Table 1).
Dataset was split into two sets; 34 molecules were chosen
randomly to develop the QSAR model (training set) and the
rest (7molecules) were used to test the prediction performance
of the proposed model (test set).

Molecular modeling

2D QSAR modeling

All compounds were sketched using the MarvinSketch pro-
gram (version 16.2.1.0) [38], and various 2D descriptors were
calculated using the MOE software (Molecular Operating
Environment version 2008.10) [39]. After the calculation of
descriptors provided by MOE software, a correlation matrix
for variable selection was applied on the molecular descriptors
to select only the appropriate ones. Therefore, the number was
reduced to six descriptors which are used as input to perform
multiple linear regression (MLR) and partial least squares
(PLS)methods usingMOE and XLSTAT 2014 software pack-
age [40], respectively. Subsequently, the quality of the models
developed was examined by different statistical parameters
[41], for instance, the square of correlation coefficient (R2),
adjusted coefficient of determination (R2adj), root mean
square error (RMSE), and variance ratio (F) at specified de-
grees of freedom (df). In addition, the models were validated
using internal cross-validation (q2) and external validation
(R2

pred). [42–44]

Docking study

To explore the interaction and illustrate the accurate binding
model for the active site of the PLK1with ligands, a molecular
docking study was performed using AutodockVina and
Autodock tools 1.5.4 [45]. The X-ray crystal structure of the
PLK1 (PDB code 2OWB) was used for the docking study. All
small molecules were removed from the protein, and the re-
ceptor was used for the docking study by adding the polar
hydrogen to assign appropriate ionization states to both acidic
and basic amino acid residues. For ligands, theywere sketched
using the MarvinSketch program and minimized by MOE
software, using MMFF94 (Merck Molecular Force Field)
force field with the gradient convergence criterion set to
0.01 kcal/mol, and saved in pdb format. Then, four com-
pounds (57, 58, 59, and 60) with better activity were docked
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Table 1 Chemical structures and activities (pIC50 on HepG2 cell line) of the studied β-carboline derivatives

Name
pIC50 

(HepG2)
R1 R2 R3 R7 R9

compound1 3,777 3,4,5-trimethoxyphenyl - CO2C2H5 H H

Compound2 3,682 3,4,5-trimethoxyphenyl - CO2H H n-C4H9

Compound3* 4,058 3,4,5-trimethoxyphenyl - CONH(CH2)2OH H n-C4H9

Compound4 4,081 H - CONH(CH2)2NH2 H n-C4H9

Compound5 4,019 H - CONH(CH2)6NH2 H n-C4H9

Compound6 3,854 CH3 - CONH(CH2)2OH H n-C4H9

Compound7* 4,66 CH3 - CONH(CH2)2NH2 H n-C4H9

Compound8 4,458 CH3 - CONH(CH2)2NH2 H CH2C6H5

Compound9 3,983 H - CONH(CH2)2NH2 H CH2C6H5

Compound10 4,231 H - CONH(CH2)6NH2 H CH2C6H5

Compound11 3,893 H - CH2OH H n-C4H9

Compound12* 3,845 CH3 - CHO H n-C4H9

Compound13 4,158 CH3 CH2C6H5 H H H

Compound14 4,481 CH3 (CH2)3C6H5 H H H

Compound15* 4,276 CH3 CH2C6H5 CO2C2H5 H H

Compound16 4,263 CH3 CH2C6H5 H OCH3 H

Compound17 4,027 H n-C4H9 H H H

Compound18 4,112 H CH2C6H5 H H H

Compound19 4,351 H (CH2)3C6H5 H H H

Compound20 3,873 CH3 - H OH C2H5

Compound21 4,089 CH3 - H OH n-C4H9

Compound22 3,936 CH3 - H OH i-C4H9

Compound23 4,548 CH3 - H OH (CH2)3C6H5

Compound24* 4,162 CH3 - H OC2H5 C2H5

Compound25 3,627 CH3 - H OCH2C6F5 C2H5

Compound26 4,364 CH3 - H OC2H5 n-C4H9

Compound27 4,52 CH3 - H OCH(CH3)2 n-C4H9
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within the prepared protein. The mode of interaction of the co-
crystalized ligand against 2OWB was used a standard docked
model.

AutoGrid was carried out for the preparation of the grid
map using a grid box to enclose the binding site with dimen-
sions of x = 20, y = 20, and z = 20 at 1 Å spacing. The
Lamarckian genetic algorithm was used for the calculation
of the docking possibilities. Then, the results were analyzed
using Discovery studio 2016 and PyMol software’s [46, 47].

Results and discussion

2D QSAR modeling

In this work, we used principal component analysis by
XLSTAT 2014 software to select six descriptors that show a
high correlation with the response activity and no correlation
between them owing to the fact that the greatest value of the
correlation coefficient is 0.75; this one gives extra weight
because they will be more effective at prediction [48].
Figure 1 presents the circles of correlations corresponding to
a projection of the six variables on a two-dimensional plane
constituted by the two factors (F1 and F2). Besides, the prin-
cipal component analysis also gives a representation of the
molecules of the database in a plan composed by the first
two principal components (F1 and F2), which can show the
presence of three subgroups of molecules. As shown in Fig. 2,
molecules without hydrogen bond donor or acceptor are iden-
tified at the bottom left of the graph. At the top of the graph

center, we can distinguish the group of molecules with one or
two hydrogen bond acceptors and no hydrogen bond donor.
Finally, molecules that have more than two hydrogen bond
acceptors and one hydrogen bond donor are found at the bot-
tom right of the graph.

From this first analysis, we can conclude that the number of
hydrogen bond donor and acceptor is the main features for dis-
criminating between the molecules within the overall database.

Thereafter, the QSARmodel was performed using PLS and
RLM methods correlating the cytotoxic activity with six

Table 1 (continued)

Compound28 4,81 CH3 - H OC4H9 n-C4H9

Compound29 3,896 CH3 - H OC10H21 n-C4H9

Compound30 4,917 CH3 - H OC4H9 i-C4H9

Compound31 4,654 CH3 - H OCH2C6H5 i-C4H9

Compound32 4,836 CH3 - H OCH(CH3)2 (CH2)3C6H5

Compound33 3,979 CH3 - H OC8H17 (CH2)3C6H5

Compound34 4,804 CH3 - H OCH2C6H5 (CH2)3C6H5

Compound35 3,833 CH3 - H OCH2C6F5 (CH2)3C6H5

Compound36 4,845 CH3 CH2C6H5 H OC2H5 C2H5

Compound37 5,796 CH3 CH2C6H5 H OCH2C6F5 C2H5

Compound38* 5,745 CH3 CH2C6H5 H OC4H9 i-C4H9

Compound39 5,721 CH3 CH2C6H5 H OCH2C6H5 i-C4H9

Compound40 5,409 CH3 CH2C6H5 H OC8H17 (CH2)3C6H5

*Compounds contained within the test set
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Fig. 1 Correlation circle of the descriptors and cytotoxic activity
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descriptors. The generated models were thoroughly scruti-
nized for statistical validity and predictive potential, according
to the criteria described in the experimental section.

The best QSARmodel derived frommodeling the cytotox-
ic activity of the 34 heterocyclic β-carboline derivatives is as
follows.

RLM model:

pIC50 ¼ 6:158−0:121� radius−10:536� PEOE−RPCþ−0:337� a−accþ 0:033

�SMR−VSA3−0:179� vsa−baseþ 0:548� a−don

N ¼ 34 R2 ¼ 0:82 R2
adj ¼ 0:78 RMSE ¼ 0:254 F ¼ 20:848

PLS model:

pIC50 ¼ 6:158−0:121� radius−10:536� PEOE−RPCþ−0:337� a−accþ 0:033�

SMR−VSA3−0:179� vsa−baseþ 0:548� a−don

N ¼ 34 R2 ¼ 0:82 R2
adj ¼ 0:78 RMSE ¼ 0:227 F ¼ 20:85

where N is the number of training set, R2 is the squared cor-
relation coefficient, R2adj is the adjusted coefficient of deter-
mination, RMSE is the root mean square error, and F repre-
sents the Fisher ratio between the variances of calculated and
observed activities.

QSAR models were established using two statistical anal-
ysis methods (RLM and PLS), using experimental data
(pIC50) for a series of β-carboline derivatives and a set of
six descriptors. The model selection criteria were based on
the correlation coefficient values derived from the correlation
between the experimental and predicted activities, as well as
the inter-correlations between the descriptors.

We found that for both methods used (PLS, RLM), the
QSAR model obtained can predict about 82% of the experi-
mental activity (pIC50) of the molecules. In addition, it has a
high Fischer factor (F = 20.848) and a low error (RMSERLM =
0.254, RMSEPLS = 0.227), which means that the model

explains the activity (dependent variable) in a statistically sig-
nificant and satisfactory manner. The value of the test (t) is
used to evaluate the importance of the descriptors involved in
the model, which is in the following order:

PEOE RPCþ > vsa base > radius > a don > a acc >

> SMR VSA3:

A comparison of the quality of two models fromMLR and
PLS models (Table 2) shows that the PLS model outperforms
slightly the MLR one when judged by the obtained RMSE
values [49]. As PLS is a more robust multivariate statistical
technique, we choose to use the PLS model as an in silico tool
to predict the activity of β-carboline derivatives and to draw a
SAR map for further design and chemical synthesis studies.

Taking into consideration the selected descriptors and their
impacts on the PLS model, we were able to propose a
structure-activity relationship map that highlights the structur-
al motifs responsible for the cytotoxic activity of the β-
carboline derivatives (Fig. 3):

Structure-activity relationship (SAR) analysis shows that
the activity of the β-carboline derivatives can be influenced
by:

– The planarity of the molecule that was captured in part by
the radius descriptor in agreement with the published
work by Zhiyong Chen and al [26];

– The electropositive character, captured by the descriptor
vsa_base, of the nitrogen atom in position 2; and

– The presence of various substituents on the structure of
the β-carbolines essentially represented by the
SMR_VSA3 descriptor.

The QSAR model revealed that the activity of β-carboline
derivatives was represented by some of selected descriptors:

– The number of hydrogen bond acceptor (a_acc) has
a negative coefficient in the model equation, sug-
gesting that increased activity can be achieved by
decreasing the number of heteroatoms (nitrogen or
oxygen atoms);

– The number of hydrogen bond donor (a_don) has a pos-
itive coefficient in the model equation, suggesting that an
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Fig. 2 Representation of the 34 molecules in the plan of the first two axes
F1 and F2

Table 2 Values of determination coefficients and mean square errors
obtained by the RLM and PLS models

PLS RLM

R2 RMSE R2 RMSE

Training set 0.82 0.227 0.82 0.254

Test set 0.76 0.390 0.76 0.393
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increase in activity can be achieved by increasing hetero-
atoms with one or more hydrogen atoms;

– The relative partial positive charge (PEOE_RPC+) ob-
tained using the partial equalization of orbital electroneg-
ativities (PEOE) method is defined as the ratio of the
largest positive partial charge to the total positive partial
charge on the molecule [50]. This descriptor has a nega-
tive coefficient in the model equation, suggesting that
increased activity can be obtained by decreasing the rel-
ative partial positive charge.

– The basic character (vsa_base) of the molecules has a
negative coefficient in the model equation, suggesting
that increased activity can be obtained by increasing the
polarity of the β-carboline derivatives;

– Radius (radius) has a negative contribution to activity,
which means that activity is improved by decreasing the
radius. Thus, molecules that have an ionic bond between
nitrogen and bromine (no path between the two atoms)
have the smallest radius (radius = 0), suggesting that the
positive charge of pyridinium is favorable to cytotoxic
activity;

– Molar refractivity based on approximate Van Der Waals
surface area calculations (SMR_VSA3) is usually used to
reflect the polarizability of molecule [51]. The positive
sign of this descriptor suggests that the polarizability of
the molecule is favorable for the cytotoxic activity.

Molecular docking

Docking study was carried out on the four most active com-
pounds (57, 58, 59, 60) to identify the nature of the interac-
tions between ligand and biological target taking into account
the orientation and conformation of the ligand in the active site
of the protein. In this study, docking protocol was validated by
redocking of the co-crystallized ligand at the PLK1kinase
(Fig. 4). The RMSD (root mean square distance) of the docked
ligand was within the reliable range of 2 Å, suggesting that the
docking procedure could be used to predict the binding mode
of our compounds.

The interaction analysis of the ligand-protein indicates that
important residues present at the binding site were polar
(Lys66, Asp194, Arg57, Arg134, Lys61, Lys82, Arg136,
Cys67, Glu131, Cys133) and non-polar (Leu132, Val114,
Leu130, Gly62, Ala65, Leu59, Phe58, Phe183, Ala80). As
shown in Fig. 4, we can see that the co-crystallized compound
sits in the hydrophobic cavity and interacts by several types of
interactions and more precisely by the conventional hydrogen
bond with Glu131 and Cys133.

The ligands studied show a strong binding to the active
sites of the target. As reported in Table 3, the biological activ-
ity values correlate with the estimated binding energy and the
latter decrease with the increase of biological activity.

The analysis of interactions between the compound 57 and
the binding site (Fig. 5) reveals that is surrounded by the
hydrophobic region formed by Arg135, Arg134, Arg57,
Glu69, Cys133, Gly193, and His105. Also, compound 57
exhibits a hydrogen binding interactions between three fluo-
rines and oxygen of the pentafluorobenzyl moiety with Cys67
and Asp194 of PLK1. In another hand, compound 57 interacts
with PLK1 by other binds such as Pi-sigma, Alkyl, Pi-Alkyl,

Insertion of an electron-

rich groups increase 

activity: 

-benzyl 

-Pentafluorobenzyl 

Insertion of polar groups, increase 

activity:

- Alkoxy 

- Phenyl alkoxy

Electropositive atom is 

favorable to activity. 

Insertion of small apolar groups 

increase activity: 

- Ethyl, propyl, isobutyl. 

Planarity of the molecule is 

favorable to the activity 

Fig. 3 Structure-activity
relationship of the β-carboline
derivatives

Fig. 4 Redocking pose and docking interactions of co-crystallized com-
pound (green = original, blue = docked)

Table 3 Activity of the studied compounds and their binding energy

Compounds pIC50 Binding energy

Compound 57 5796 − 8.4
Compound 58 5745 − 8.2
Compound 59 5721 − 8.2
Compound 60 5409 − 7.7
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and Pi-lone Pair with Leu130, Lys82, Val114, Leu132,
Arg136 Ala80, and Phe183.

The results obtained during this work correlate well with
each other and are in good agreement with those of the 3D-
QSAR obtained by Cao et al. [32]. In fact, the electropositive
parameter captured by 3D-QSAR in position 2 can be repre-
sented by the descriptor vsa_base obtained by the 2D-QSAR
model; then, the presence of the electron-rich groups in posi-
tions 2 and 7 such as benzyl and pentafluorobenzyl, respec-
tively, is favorable for cytotoxic activity since they make it
possible to form pi-alkyl and alkyl bonds with PLK1. In ad-
dition, docking results show that the pentafluorobenzyl moie-
ty plays a crucial role in improving binding energy by forming
hydrogen bonds with PLK1, which can be captured by the
selection of hydrogen bond donor and polarizability (a_don,
SMR_VSA3) descriptors in 2D-QSAR which have a positive
sign in the model. On the other hand, electrostatic repulsive
interaction in position 3 due to the electronegative groups
demonstrated by 3D-QSAR is unfavorable for cytotoxic ac-
tivity; this may be explained by the negative sign obtained by
2D-QSAR for PEOE_RPC+ descriptor.

According to the above findings, three compounds were
designed based on the structure of the compounds with the

Fig. 5 Interactions between the most active compound (57) with PLK
receptor, visualized with Discovery studio visualizer program

Table 4 Newly designed compound structures and their predictive activity and binding energy

Compoun

d
Structure

Predicted 

pIC50

Binding energy 

(kcal/mol)

1 5.88 -8.9

2 5.92 -9.7

3 6.06 -10.6

Struct Chem (2018) 29:1637–1645 1643



highest pIC50 values (57). The structures of the compounds
designed, the pIC50 values theoretically predicted by the 2D
QSAR, and their binding energy are listed in Table 4.
According to the results of the predicted activities, it was
observed that the compounds designed had higher predicted
pIC50 values than the compounds studied in this work.
Furthermore, newly designed compounds were docked at
the PLK1 kinase. All compounds have better binding energy
than the compounds studied in this work since they were well
placed in the active site and indicate that they could be poten-
tial inhibitors of PLK1 kinase. The interaction analysis be-
tween the compound 3, which showed the highest activity
and the low binding energy, and the PLK1 kinase reveals that
the introduction of the methyl group in the meta-benzyl posi-
tions at the position 7 and the substitution of the ethyl group in
position 9 with the amino group allow forming hydrophobic
binding and establishing three hydrogen bonds (two bonds
between fluorine and Lys82 and Asp194 and one bond be-
tween the amino group and Arg136) as well as other bonds:
alkyl, Pi-Alkyl, Pi-sigma, and Pi-Pi Stacked with Val114,
Cys67, Ala80, Leu130, His105, Leu59, and Phe183, respec-
tively, as shown in Fig. 6.

Conclusions

In this paper, a quantitative analysis of structure-activity rela-
tionships and molecular docking studies was performed on a
series of 40 β-carboline derivatives. The 2D-QSAR was per-
formed using partial least squares regression (PLS) and mul-
tiple linear regression (RLM). The results found showed that
the model proposed via the PLS method is able to accurately
predict the cytotoxic activity and that the selected descriptors
are relevant to explain the increase or decrease in cytotoxic
activity against the hepatocellular (HepG2) line. In addition,
the docking study showed that compound 57 has low binding
energy and seems to have more binding affinities towards
PLK1. Analysis of the structural interactions shows that this
compound is in a hydrophobic pocket and interacts with the

active site, especially through hydrogen bonds. Accordingly,
obtained results were used to design three newly compounds
with predicted low binding affinity and improved cytotoxic
activity. Overall, these results can be used to perform virtual
screening for newβ-carboline and can also help to design new
compounds to obtain potent and novel β-carboline with im-
proved biological activities.
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