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Abstract
Cell division cycle 7 (CDC7) is a serine/threonine kinase, which plays a vital role in the replication initiation of DNA synthesis.
Overexpression of the CDC7 in various tumor growths and in cell proliferation makes it a promising target for treatment of cancers.
To investigate the binding between the CDC7 and furanone inhibitors, and in order to design highly potent inhibitors, a three-
dimensional quantitative structure activity relationship (3D-QSAR) with molecular docking was performed. The optimumCoMSIA
model showed significant statistical quality on all validation methods with a determination coefficient (R2 = 0.945), bootstrapping R2

mean (BS-R2 = 0.960), and leave-one-out cross-validation (Q2) coefficient of 0.545. The predictability of this model was evaluated
by external validation using a test set of nine compounds with a predicted determination coefficient R2test of 0.96, besides the mean
absolute error (MAE) of the test set was 0.258 log units. The extracted contour maps were used to identify the important regions,
where the modification was necessary to design a new molecule with improved activity. Furthermore, a good consistency between
the molecular docking and contour maps strongly demonstrates that the molecular modeling is reliable. Based on those obtained
results, we designed several new potent CDC7 inhibitors, and their inhibitory activities were validated by the molecular models.
Additionally, those newly designed inhibitors showed promising results in the preliminary in silico ADMET evaluations.

Keywords 3D-QSAR .Molecular docking . CDC7 . Drug design . Furanone . In silico ADMET

Introduction

CDC7 is a serine/threonine kinase that is involved mainly in
the DNA replication [1, 2] as well as a number of other im-
portant roles in various chromosomes transactions as the rep-
l ica t ion checkpoin t regula t ion and cent romer ic

heterochromatin formation [3, 4]. Since CDC7 is essential
for DNA replication in terms of cancer, a preponderance of
evidence indicates that high levels of CDC7 are reported to be
linked to the proliferative capacity of tumor cells [5].
Overexpression of CDC7 was found to be in the different type
of cancers as ovarian cancer [6], breast cancer [7], and
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pancreatic cancer [8]. Several studies exhibit that the CDC7
depletion does not trigger apoptotic cell death in normal hu-
man cells; in contract, the lack of CDC7 in cancer cell phase
leads to apoptotic cell death [9]. This selective cytotoxic be-
havior on cancer cells [10] makes CDC7 an attractive target
for designing new drugs, which could kill directly proliferat-
ing cancer cells without affecting normal.

Recently, a significant interest has arisen by several research
groups to develop small-molecule inhibitors of CDC7 kinase
with the low-nanomolar [11, 12], but till now, no compounds
have been approved by the Food and Drug Administration
(FDA) as drug as a CDC7 inhibitor. Therefore, there is always
a need for designing newly potent CDC7 inhibitors.

Computer-Aided-Drug-Design (CADD) could help to sur-
mount these difficulties and shed light on new molecules for
further research, while taking advantage of the spectacular im-
provement in the computer speed and capacity of computing
molecular properties. Those can be exploited to build a quan-
titative structure activity relationship (QSAR) model to enable
prediction of the biological activity and the efficacy of newly
proposed chemical entities by means of cheminformatics
methods. Recently, a series of some potent CDC7 inhibitors
have been designed and reported by Irie et al. [13]; so far, this
study represents the first predictive model for the CDC7 bind-
ing site based on the reported activities of this series of
substituted furanone. That prompted us to aim an in silico study
to highlight the structural factors controlling different active
and inactive sites in the furanone scaffold to design new mol-
ecules with improved CDC7 inhibitory activity values.

To design new inhibitors, CADD including structure-based
and ligand-based have proven to be valuable approaches in ex-
pediting and saving resources in drug discovery and pharmaceu-
tical sciences [14]. Structure-based approach, which includes
molecular docking, is used to predict the conceivable orientation
of a ligand in the active site of a receptor as well as conforma-
tional changes of molecules. While ligand-based approaches
include QSAR studies [15], which consist of mathematically
derived rules that quantitatively describe activity in terms of
molecular attributes, one of the popular methods in QSAR is
comparative molecular similarity indexes analysis (CoMSIA)
[16] that correlates changes in the 3D structural factors of chem-
ical groups such as steric, electrostatic, and hydrophobic prop-
erties with the biological activity [17]. 3D-QSAR studies have
been successfully used to explore the SARs of different chem-
ical entities including inhibitors of PIM-1 kinase [18] and flavo-
noids binding site in GABAA receptors [19]. Accordingly, 3D-
QSAR studies eliminate problems such as limitation in the pre-
diction of stereochemistry of tested dataset and lack of recogni-
tion ability in search of newly active compounds [20] encoun-
tered with classical 2D-QSAR studies.

In present article, we report a 3D-QSAR study using
CoMSIA methodology and molecular docking on a series of
31 CDC7 inhibitors [18] to illuminate some main patterns

between CDC7 kinase and furanones and identify their key
substituents and their mode of action. The results obtained from
the 3D-QSAR model and molecular docking support each oth-
er. Consequently, several potent CDC7 inhibitors were de-
signed, optimized, and their inhibitory activities were demon-
strated by 3D-QSAR, molecular docking, and ADMET
proprieties.

Material and methods

Data collection

A dataset of 31 furanone derivatives with their inhibitory activ-
ity against CDC7 kinase based on the studies of Irie et al. [18]
were compiled to perform this study. For QSAR analysis, the
in vitro half maximal inhibitory concentrations IC50 (nM) were
converted into the corresponding pIC50 values (i.e., pIC50 is the
negative logarithm of IC50 (pIC50 = −log(IC50)) and are listed
with their corresponding structures in Table 1. The dataset was
split rondamly into a training set (22 molecules) to build the
quantitative model, and the remaining molecules were used to
test the performance of the proposed model (test set).

Molecular modeling and molecular alignment

All modeling studies were performed using the SYBYL-X 2.0
molecular modeling package (Tripos Inc., St. Louis, USA).
Three-dimensional structures of the studied compounds were
built using the SKETCH option in SYBYL; then, they were
minimized under the Tripos standard force field [21] with
Gasteiger-Hückel atomic partial charges [22] by the Powell
method with a gradient convergence criterion of 0.01 kcal/mol
Å. The results obtained by CoMSIA closely relate to molecu-
lar alignment techniques. Thus, molecular alignment is
regarded a sensitive step in the development of any 3D-
QSAR study [23]. Figure. 1 depicts the proposed alignment;
all molecules were aligned by distil-rigid alignment technique
available in SYBYL, based on the most potent inhibitor 10,
which was selected as a template to fit other molecules in
training and test sets of furanone derivatives. Compound 10
was chosen to align the dataset in 3D-QSAR studies and to
serve as a template molecule to visualize the contour maps.

CoMSIA studies

The comparative molecular similarity indexes analysis
(CoMSIA) [16] method was carried out in SYBYL-X 2.0.
All analyses were performed in a 3D regularly spaced grid of
2.0 Å in all Cartesians directions. A sp3 carbon with a Van Der
Waals radius of 1.52 Å, net + 1.0 charge, hydrophobic interac-
tion, hydrogen-bond donor, and acceptor properties of + 1.0
was used as a probe at every lattice point of the grid box to
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generate, respectively, the steric, electrostatic, hydrophobic, hy-
drogen bond donor, and acceptor fields from similar active
molecules, to develop a CoMSIA model. In the present study,
the value of attenuation factor, which controls the Gaussian
function’s steepness, was set by default to 0.3 [24].

Partial least square analysis

Because of the enormous variables obtained from the fields’
calculations, the partial least square (PLS) regression method
[25] was performed to evaluate a linear correlation between

the 3D-QSAR descriptors and the biological activity values.
In the first step, the cross (Q2) validation was performed by
using a leave-one-out (LOO) [26] method where one com-
pound is eliminated from the training set and its activity is
predicted from the developed model using the residual (N-1)
compounds. The same way is repeated until all compounds
have been eliminated once. The model with the highest value
of Q2 with the lowest standard error of estimate (Scv) and a
minimal number of components was accepted. In order to
reduce noise and increase the speed of the analytical process,
the column filtering value (σ) was set to 2.0 kcal/mol. In the
next step after determining the optimum number of compo-
nents, they were used to derive the final PLS model with no
validation method [27, 28] to create the maximum determina-
tion coefficient (R2).

Validation and predictive power of the model

The main objective of any QSAR study is to obtain a model
with the highest predictive and generalization abilities. So, to
evaluate the predictability of the developed 3D-QSAR
models, nine compounds were used as a testing set [29].
These molecules were aligned using the same methods de-
scribed above, and then, their inhibitory activities were pre-
dicted using the generated 3D-QSAR model from the training
set. In addition, the mean absolute error (MAE) was applied to
evaluate the model [30] using the MAE-based metrics

Table 1 Chemical structures and CDC7 inhibitory activities of substituted furanone derivatives

No R X pIC50(obs) pIC50(pred) No S R pIC50(obs) pIC50(pred) No S R pIC50(obs) pIC50(pred)

1* A O
8.420 8.104

6 B OMe 8.481 8.198 19 C 2-Me
8.420 8.183

7* B OH 8.004 8.043 20 C 4-Me
8.229 8.076

8* B NH2 5.000 5.355 21 C 2,4-di-F
8.602 8.551

2* A S
5.000 5.326

9 B NHEt 5.795 5.867 22* C 2,4-di-Me 8.408 8.180

10 B 1-Piperidinyl 6.050 5.773 23* D 2-Py 7.522 8.083

11 C 2-Cl 8.620 8.228 24 D 3-Py
8.096 8.051

3 A O 7.356 7.879

12 C 3-Cl 7.920 8.031 25 D 4-Py
8.455 8.414

13 C 4-Cl 8.173 8.258 26 D 5-Pyrimidinyl 7.744 7.503

14 C 2-MeO 7.920 8.312 27* D 3-Pyrazolyl 8.000 8.412

4 A O
5.920 6.120

15 C 3-MeO 7.537 7.654 28 D 6-Quinolinyl 7.443 7.769

16* C 4-MeO 8.309 8.123 29 D 6-Indazoyl 8.397 8.344

17* C 2-F 8.620 8.314 30 D Benzyl 7.638 7.57

5 A O
5.494 5.460

18 C 4-F 8.366 8.361 31 D Phenethyl 7.522 7.589

*Test set

S structure

Fig. 1 3D-QSAR structure superposition and alignment of training set
using molecule 10 as a template
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(MAE ≤ 0.1 × training set range and MAE + 3 × σAE ≤ 0.2 ×
training set range) based on prediction errors.

Y-randomization test

The generated model was further validated by the Y-
randomization method [31]. The activities of the studied mol-
ecules (pIC50) are randomly shuffled many times, and after
every iteration, a new QSAR model is developed. The new
QSAR models are expected to have lower Q2 and R2 values
than those of the original model. This technique is performed
to eliminate the possibility of chance correlation. If higher
values of the Q2 and R2 are obtained, it means that an accept-
able 3D-QSAR cannot be generated for this data set because
of structural redundancy and chance correlation.

Model acceptability criteria

According to Alexander Tropsha and Alexander Golbraikh, a
predictive model must satisfy a set of statistical criteria. A
QSAR model was considered predictive if the following con-
ditions are satisfied: (i) Q2 > 0.50; (ii) R2 > 0.60 [29, 32].

Molecular docking

Molecular docking is regarded among the most important
method in discovering novel small-molecule drugs [33–35].
In our study, this technique was performed using Autodock
vina and Surflex-dock program, which were used to verify
whether both would give the same binding mode or not. If
they give the same binding mode, we can say that this is the
best possible position of furanone in the binding site of CDC
kinase. As known, those two programs use different searching
algorithms and scoring functions to look for the appropriate
position of the ligand into the active site of the receptor. The
Autodock vina is using the Lamarckian Genetic Algorithm
(LGA) [36], while the Surflex is using incremental construc-
tion algorithm (matching algorithm). The crystal structure of
CDC7 was downloaded from the protein data bank (PDB
entry code: 4f9b). No one of the understudy ligands is com-
plexed with this protein in PDB; so, its original ligand was
removed. The PDB file was prepared using Discovery Studio
2016, such as all ligands, co-factors, and solvent molecules
that were removed from the model. Before docking, hydrogen
atoms of the receptor were added to the prepared structure. For
Surflex study, the definition of active site definition was per-
formed based on the original ligand in the crystal. While for
Autodock vina [36] study, a grid box (x = 16, y = 16, z = 16 at
1 Angstrom spacing) was set to cover the binding site. We
chose compound 10 as the subject to dock into the active
pocket under the conditions previously cited [34], and results
were analyzed using Discovery Studio 2016 software [37].

Macromolecule preparation

The crystal structure of CDC7 was downloaded from the pro-
tein data bank (PDB entry code: 4f9b). No one of the under-
study ligands is complexed with this protein in PDB; so, its
original ligand was removed. The PDB file was prepared
using Discovery Studio 2016, such as all ligands, co-factors,
and solvent molecules were removed from the model. Before
docking, hydrogen atoms of the receptor were added to the
prepared structure. The definition of active site definition was
performed based on the original ligand in the crystal. We
chose compound 10 as the subject to dock into the active
pocket under the conditions previously cited.

Ligand preparation

For Surflex study, the selected compounds for docking were
modeled in the same way as for the 3D-QSAR studies. Three-
dimensional structures were built using the SKETCH option
in SYBYL; then, they were minimized under the Tripos stan-
dard force field [21] with Gasteiger-Hückel atomic partial
charges [22] by the Powell method with a gradient conver-
gence criterion of 0.01 kcal/mol Å. For AutoDock Vina study,
an extended PDB format, termed PDBQT, is used for coordi-
nate files, which includes atomic partial charges and atom
types. Torsion angles were calculated to assign the fixable
and non-bonded rotation of molecules [36].

Applicability domain

The utility of any QSAR model is its accurate prediction abil-
ity for new chemical compounds. So, once the QSAR model
is generated, its domain of applicability (AD)must be defined.
A QSAR model is applicable only within its training domain,
and only the prediction for new chemicals falling within its
applicability domain can be considered trustworthy and not
model extrapolations. Applicability domain was defined
through the degree of similarity of the designed compound
to those in the training set molecules. Assessment was done
by comparing the value for each descriptor of the compound
against the range of descriptor values for the compounds in the
training set, using SYBYL software. The number of the out-
of-range descriptors found in the test compound and the total
contribution of such extrapolated points to the prediction is
calculated. The sum of extrapolated terms (SUM) is the total
contribution made to the prediction for the compound by the
out-of-range descriptors. Additionally, standard error of pre-
diction (SEP) was calculated during the 3D-QSAR model
generation. If SUM of the test or predicted compound is larger
than the SEP for the developed cross-validated model, then
the extrapolation is probably too far outside the model to get a
reliable prediction [38]. SUM was calculated for all newly
designed compounds.
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Synthetic accessibility

The best designed hits were screened for their synthetic acces-
sibility by using SwissADME [39]. It provides a score on a
scale from 1 (very easy to synthesize) to 10 (challenging and
complex to synthesize). To measure this score for each com-
pound, many criteria such as the number of stereocenters,
complexity of the molecular structure, complexity of the ring
system, similar to a huge number of already synthesized com-
pounds, and the potential for using important synthetic reac-
tions were taken into consideration.

In silico pharmacokinetics (PK)
/pharmacodynamics (PD) evaluation

In silico ADMET (adsorption, distribution, metabolism, ex-
cretion, and toxicity), prediction is considered as a first step in
the direction to analyze the new chemical entities to reduce
wasting time on lead compounds which would be toxic or
metabolized by the body into an inactive form and unable to
pass through membranes. For this purpose, the best-designed
hits were evaluated for their in silico pharmacokinetics param-
eters; in addition, their expected metabolic products and sites
of metabolism for phase-i and phase-II metabolisms were also
estimated through MetaPrint2D-React software, to check if
those compounds are able to reach advanced stages in clinical
studies, which enhance their chances to reach the stage of
being candidate drugs in future.

Results and discussion

The predicted and experimental activity values and their re-
sidual values for both the training and test sets from 3D-
QSAR (CoMSIA) model are given in Table 1.

CoMSIA results

Based on CoMSIA descriptors available in SYBYL, a 3D-
QSAR model was proposed to explain and predict quantita-
tively the hydrophobic, electrostatic, steric, and acceptor
fields’ effects of substituents on the CDC7 inhibitory activity
of a series of 32 furanone derivatives.

Different combinations of the five fields were generated
and results are listed in Table 2. They showedQ2 ranging from
0.395 to 0.581 and R2 values of 0.573 to 0.94. In general,
statistical results with Q2 value ≥ 0.5 and R2 value ≥ 0.6 are
considered reasonable and meaningful. These results indicate
that CoMSIAwere robust in generating statistically significant
models. The model CoMSIA/SEA, which contains four fields
(steric, electrostatic, and acceptor) and exhibits good statistical
keys, was considered as the best one. Hence, all the following
studies were based on the combination of S, E, and A fields.
The cross-validated determination coefficient Q2 value of the
training set and non-cross-validated determination coefficient
R2 are 0.545 and 0.945, respectively. The optimal number of
principal components used to generate the CoMSIA model is
four, which is reasonable considering the number of mole-
cules used to build the model [40]. The standard error of
estimate is 0.252. The bootstrapping R2 mean (BS-R2) and

Table 2 PLS statistics of CoMSIA models

Model Q2 R2 Scv F-t N R2
test Fractions

CoMSIA Ster Elec Acc Don Hyd

SEH 0.566 0.974 0.173 158.790 4 0.70 0.244 0.290 – – 0.467

SEA 0.545 0.945 0.252 73.056 4 0.96 0.310 0.385 0.305 – –

SED 0.473 0.845 0.400 51.702 2 0.60 0.240 0.310 – 0.450 –

SHD 0.569 0.964 0.198 166.024 3 0.65 0.261 – – 0.250 0.489

SHA 0.600 0.975 0.169 166.909 4 0.46 0.230 – 0.280 – 0.490

SDA 0.395 0.917 0.309 47.012 4 0.90 0.365 – 0.280 0.356 –

EHD 0.453 0.923 0.289 72.074 3 0.61 – 0.284 – 0.246 0.471

EHA 0.570 0.971 0.183 142.618 4 0.73 – 0.288 0.262 – 0. 450

HDA 0.446 0.865 0.384 38.389 3 0.38 – – 0.216 0.350 0.434

DAE 0.442 0.824 0.473 28.187 3 0.60 – 0.336 0.270 0.394 –

SEHD 0.506 0.960 0.208 145.401 3 0.75 0.204 0.219 – 0.209 0.368

SEHA 0.581 0.982 0.142 238.507 4 0.77 0.181 0.221 0.231 – 0.36

SEDA 0.441 0.928 0.281 76.871 3 0.81 0.235 0.258 0.219 0.288 –

EHDA 0.447 0.897 0.335 52.191 3 0.55 – 0.210 0.191 0.271 0.328

SHDA 0.506 0.971 0.183 142.653 4 0.69 0.189 – 0.213 0.214 0.384

SEHDA 0.490 0.980 0.152 207.061 4 0.82 0.153 0.174 0.195 0.176 0. 302

Struct Chem (2018) 29:1031–1043 1035



bootstrapping standard deviation (BS-SD) values obtained
from 1000 runs of BS are 0.96 and 0.196, respectively.
Finally, the prediction ability of the proposed model was con-
firmed using external validation, the R2test value obtained is
0.96. The MAE and (MAE(training set) + 3 * 휎) of the test set
were found to be 0.258 and 0.621, respectively, which are less
than the thresholds 0.3125 (0.1 * training set range which is)
and 0.2* training set range; consequently, the 3D-QSARmod-
el in our study was reliable according to the MAE-based met-
rics proposed by Roy et al. [30]. These statistics results indi-
cated the good stability and the powerful predictive ability of
the proposed CoMSIA model.

Q2 cross-validated determination coefficient, N optimum
number of components obtained from cross-validated PLS
analysis, R2 non-cross-validated determination coefficient,
Scv standard error of the estimate, F-t F-test value, R2

test ex-
ternal validation determination coefficient

Graphical interpretation of 3D-QSAR models

3D-QSAR contour maps were generated to visualize the data
contents of the derived CoMSIA model, which provide the
information about the favorable and unfavorable regions for
the biological activity in the studied compounds. Changes in
the structure of the molecule lead to changes in its physico-
chemical properties, which might increase or decrease the
biological activity. Steric, electrostatic, hydrophobic, and

hydrogen bond acceptor contour maps of CoMSIA are shown
in Fig. 2. Compound 10 is the most active of the series; there-
fore, it was taken as reference structure for the generation of
contour maps.

CoMSIA contour map

In CoMSIA model shown in Fig. 2, we will highlight and
interpret the distribution of the steric, electrostatic, and
hydrogen-bond acceptor fields, which represent the fractions
of 31.0, 38.5, and 30.5%, respectively.

Figure 2a shows steric contour maps of the most active
compound 10 and represents that areas around phenyl ring
and ethyl of the ester group, in addition to areas near 4 and 5
positions of the azaindole moiety, are favorable in terms of
steric field, which suggests that bulky groups introduced in
these positions are helpful for increasing activity. For
exemple, compounds 19 (pIC50 = 8.420) and 25 (pIC50 =
8.455) exhibit high activities.

The appearance of a small yellow contour near the R sub-
stituent of the A-substructure (Table 1) indicates that substitu-
tion by bulky groups at this location will result in a lower
inhibitory activity. For example, compounds 9 (pIC50 =
8.420) and 10 (pIC50 = 6.050) exhibit low activities how they
hold bulky groups at this position.

In the electrostatic contour maps depicted in Fig. 2b, a
medium-sized blue areas on the 3-position of the phenyl ring

Fig. 2 Std* coeff. contour maps of CoMSIA analysis with 2 Å grid
spacing in combination with compound 10. a Steric contour map: green
contours (80% contribution) indicate regions where bulky groups
increase activity, while yellow contours (20% contribution) indicate
regions where bulky groups decrease activity. b Electrostatic contour
map. Electrostatic fields: blue contours (80% contribution) indicate

regions where electron-donating groups increase activity, while red
contours (20% contribution) indicate regions where electron-
withdrawing groups increase activity. c Hydrogen-bond acceptor
contour map. The magenta contours (80% contribution) for hydrogen-
bond acceptor groups increase activity; red contours (20% contribution)
indicate the disfavored region
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are shown. This observation would tend to suggest that posi-
tive charged groups at these parts of the molecule are favor-
able for the biological activity. That can be interpreted by the
fact that compounds 12 (pIC50 = 7.920), 15 (pIC50 = 7.5376),
and 26 (pIC50 = 7.744) with negative charged groups at posi-
tion 3 of phenyl show lower activities than compounds 1
(pIC50 = 8.420) and 6 (pIC50 = 8.481) which are unsubstituted
at the same position, which imply that substituting a very
small electron deficient group in this area can raise the activity
of a molecule.

The CoMSIA contour maps of the H-bond acceptor are
shown in Fig. 2c; the magenta contour maps indicate the areas
where hydrogen bond accepting groups increased activity and
red contour maps indicate areas where hydrogen bond
accepting groups decreased inhibitory activity. As it turns
out in Fig. 2c, the magenta contours of hydrogen bond
accepting groups are located near the N atom of the pyridine
ring in the azaindole moiety, which suggests the requirement
of hydrogen bond accepting groups at this position to enhance
the inhibitory activity. This can be expounded by the example,
that is, compound 1 (pIC50 = 8.420) with an azaindole moiety
has higher activity than that of compound 4 (pIC50 = 5.920)
with OH group near the magenta area. In contrast, red con-
tours which are related to the groups that do not have the
ability of accepting hydrogen bonds are located on the 5-
position of the phenyl ring. In this way, if there are hydrogen
bond acceptors on one side of azaindole moiety, then the ac-
tivity of compounds can be increased.

Summary of the structure-activity relationships

Some structural features between CDC7 and furanone inhib-
itors derived from the all above analyses are illustrated in
Fig. 3. From the above discussions, we can infer the following
conclusions: (1) bulky groups like phenyl ring with more pos-
itive charges groups at 3-position could improve the inhibitory
activity. (2) Hydrogen acceptor groups near the nitrogen atom
of azaindole moiety would be beneficial for the bioactivity. (3)
Bulky, electron-withdrawing groups on the 4 and 5 positions
of the azaindole moiety could raise the activity of the

molecule. The conclusion above can offer a way to design
highly effective CDC7 inhibitors.

External validation

Validation of the developed model is an essential part of any
QSAR study. Thus, a true and trustworthy model should be
able to predict a precise activity in the external test set [29].
That is why the final developed 3D-QSAR model from a
training set of 22 furanone derivatives was used to predict
the activity of nine remaining molecules; the parameters of
the performance of the generated models are shown in Table 2.

Y-randomization

The Y-randomization method was carried out to validate the
3D-QSAR model. Several random shuffles of the dependent
variable were performed; then after every shuffle, a 3D-QSAR
was developed and the obtained results are shown in Table 3.
The lowQ2 and R2 values obtained after every shuffle indicate
that the good result in our original 3D-QSAR model are not
due to a chance correlation of the training set.

Docking results

Molecular docking study of the most active compound (10)
was carried out using AUTODOCK and Surflex program to

Fig. 3 Structural requirements for
CDC7 inhibitors obtained from
CoMSIA contour map and
molecular docking analysis

Table 3 Q2 and R2

values after several Y-
randomization tests

Iteration CoMSIA

Q2 R2

1 0.34 0.86

2 0.42 0.68

3 0.02 0.59

4 0.345 0.81

5 0.203 0.79

6 0.145 0.83

7 0.45 0.70
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clarify the probable binding modes between furanone deriva-
tives and CDC7 kinase. The crystal structure of CDC7 (PDB
ID: 4f9b) with a resolution of 2.5 Å was used for our docking
study. Both used programs gave the same binding mode and
found that compound 10 forms four hydrogen bonds with Ser
70, Lys 90, Pro135, and Leu137 (Fig. 4 and Table 5), which
provides straightforward knowledge for further structural
optimization.

Identification of binding modes

In the docking analysis, four hydrogen bonds between com-
pound 10 and CDC7 binding pocket were formed. Two hy-
drogen bonds 3.10 (Leu 137-NH—N) and 2.70 A (Pro 135-
O—HN) were mediated by the 7-azaindole moiety, which is
known as a hinge binder as it occupies the ATP binding site,
while the third 3.07 A (Lys 90-NH3

+ − –O=C) was formed by
the O of the furanone’s carbonyl, and the fourth 3.05 A (Ser
70-OH—O=C) was formed between the carbonyl of the ester
group and the OH of the serine, which can be seen in green
dotted lines. Docking results show that the N of the pyridine in
the azaindole moiety and are in favor of the making hydrogen
bond interaction and enhancement activity, which correlate
well with the CoMSIA results.

The anilinic ring and the ester group are located in an ex-
posed solvent area. Additionally, the CoMSIA suggests that
bulky groups are supposed to enhance the activity. These ob-
servations between docking and CoMSIA model are in con-
cordance, because substituents on these positions are exposed
to the solvent and tolerated to be bulky.

From the analysis of the various properties of inhibitor 10
in Tables 5 and 7, it can be concluded that it fulfills the
Lipinski’s rule [41]. Additionally, similar ligand–CDC7

interactions in which the inhibitor 10 forming interaction with
CDC7 active site residue were reported in several earlier stud-
ies, namely, 0SY in (PDB: 4f9c) and ADP in (PDB: 4f99).
Therefore, that can prove our docking process was reasonable.
While the main cause of its mediated CDC7 inhibition by
foranone derivatives is due to their shape, which contain the
heteroaromatic azaindole hinge-binder and the carbonyl group
on the furanone that allow them to make several hydrogen
bonds within the ATP binding site.

Design for new CDC7 inhibitors containing furanone
scaffold

The findings of 3D-QSAR (CoMSIA) model and molecular
docking have provided the overall substitution pattern re-
quired around the furanone pharmacophore. Here, three potent
substituted furanone analogs have been designed in order to
improve the CDC7 inhibitory activity as well as the drug-like
properties of the compounds including pharmacokinetics and
toxicity. All newly designed molecules have good predicted
activities. These newly designed molecules were aligned to
the database using inhibitor 10 as template and their pIC50

values were predicted in addition to their SUM to check if
they fall in the AD of the proposed model. For the proposed
model to predict the CDC7 inhibitory activity, all newly de-
signed compounds have SUM< SEP, so their predicted values
are regarded reliable.

To ensure the viable drug designing, predicted compounds
were evaluated for synthetic accessibility. Later, results of
their synthetic accessibility were compared with that of the
original synthesized CDC7 inhibitors. The SwissADME
scores [39] of newly designed and preexisted compounds
were found similar, which indicate that the synthetic ability

Fig. 4 3D view of the binding conformations and ligand interactions of the most active inhibitor 10 at the active site of CDC7; Autodock vina
conformation green and Surflex conformation magenta
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of designed leads and results were compared with that of the
most potent compound from the studied series (inhibitor 10)
which is 3.69.

Binding model for designed inhibitors

The newly designed molecules were docked into the CDC7
active site. All of compounds were perfectly placed in the
active site and formed hydrogen bonds with Pro 135 and
Leu 137 from the hinge region and keep the same conforma-
tion at the binding pocket of CDC7 as the inhibitor 10.
Binding energy of all compounds was found to be better than
this of inhibitor 10 (− 7.9 kcal/mol), indicating that designed

compounds have good binding affinity for CDC7 (Table 4).
Among the three mentioned compounds, F2 demonstrated the
lowest binding energy, so it was chosen for more studies.
Owing to the introduction of the amino group at the ester
sidechain, in addition to its hydrogen bond interactions with
the hinge region residue and Lys 90, F2 can form one other
hydrogen bond with Asp 196 as shown in Figs. 4 and 5 and
Table 5.

ADMET predictions

Metabolism is the biotransformation of drugs and xenobiotic
compounds to facilitate their excretion, which may produce

Table 4 Structures and chemical properties of newly designed molecules and their predicted pIC50 based on CoMSIA 3D-QSAR models (SEP =
0.725)

No Compound pIC50(Pred) SUM
Surflex score

(-logki)

Autodock Binding

energy (kcal/mol)

F1 8.633 0.549 8.708 -8.8

F2 8.655 0.539 8.338 -9.6

F3 8.687 0.686 8.765 -8.8
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different metabolites with different pharmacological and
physicochemical properties. Therefore, the metabolism plays
a critical role in the bioavailability of drugs and drug-drug
interactions, and as known, metabolic processes are mainly
catalyzed by the so-called phase I (oxidation, reduction, and
hydrolysis) and II (sulfo-conjugation among others) enzymes,
which are, for the most part, produced in the liver, and the
cytochrome P450 (CYP450) enzymes are probably the most
important class of enzyme to study this. Thus, exploring those
parameters may offer new strategies that might bridge the gap
between early stage drug discovery, preclinical and clinical
trials, besides to get a deep insight on how they react in the
body, which allows medicinal chemist to introduce new func-
tional groups on the molecule to dodge the metabolic path-
ways susceptible to give toxic or very polar compounds that
can be eliminated very easily from the body. Accordingly, that
can help to synthesize metabolically stable drugs, as well as to
avoid drug-drug interactions. For this purpose, the compounds

were submitted to learn the potential of compounds having
substrate or inhibitor of CYPs along with CYP human liver
microsomes (HLM) (Table 7). All new designed compounds
were found to be neither substrate nor inhibitors of CYP3A4
and 2DC.

Each time when a lead compound with high biological
activity is identified, there is no guarantee that this compound
with the best interactions with a target is necessarily a good
medicine. Thus, it is essential to predict the ADMET param-
eters of the leads and optimize these parameters early on to
reduce potential problems later during clinical studies.
Accordingly, the ADMET parameters of the newly designed
compounds and the most potent inhibitor from the studied
dataset (inhibitor 21) were calculated using the pkCSM [42]
and SwissADME [39] online tools. Water solubility is given
in log (mol/l) (insoluble < − 10 < poorly soluble < − 6 <mod-
erately < − 4 < soluble < − 2 < very soluble < 0 < highly solu-
ble), intestinal absorbance value below 30% indicates poor

Fig. 5 2D view of the binding
conformations and hydrogen
bond interactions of the proposed
inhibitor F2 at the active site of
CDC7

Table 5 Key interactions of the newly designed CDC7 inhibitors with active site

Interaction type Hydrogen bonds by Surflex Hydrogen bonds by Autodock vina

Inhibitor 10 Lys 90, Pro 135 Leu 137 and Ser 70 Lys 90, Pro 135, Leu 137 and Ser 70

F1 Lys 90, Pro 135,Leu 137, Ser 181 Lys 90, Pro 135,Leu 137, Ser 181 and Ser 70

F2 Lys 90, Pro 135,Leu 137, Ser 181 Lys 90, Pro 135,Leu 137, Ser 70 and Asp 196

F3 Lys 90, Pro 135,Leu 137, Ser 181 Lys 90, Pro 135, Ser 70, Asn 182 and Ser 181
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absorbance. Low value of total clearance (logCLtot) means
high drug half lifetime. For a given compound, a logBB < −
1 considered poorly distributed to the brain. Positive result in
Ames test suggests that compound could be mutagenic.
Prediction of ADMET parameters is listed in Table 7.

Drug molecules encounter several different membrane bar-
riers in their journey through the body, such as gastrointestinal
epithelial cells, blood-brain barrier, and the target cell.
Prediction of permeability through those barriers can assist
to interpret the pharmacokinetics results and in understanding
the behavior of such kind of chemicals in the body.

The octanol–water partition coefficient (log P) is a vital
parameter that shows the drug hydrophobicity and expresses
that compounds with higher hydrophobicity present an in-
creased metabolism and low absorption that may inadvertent-
ly be increased probability of binding to undesired hydropho-
bic macromolecules, hence increase the potential toxicity.
Similarly, rapid renal clearance is associated with small and
hydrophilic compounds.

As depicted in Tables 6 and 7, results were within the
acceptable range for the designed compounds in terms of li-
pophilicity and PSA. Additionally, all compounds fulfill the
Lipinski’s rule [41] and the aqueous solubility predictions
show that they are all moderate soluble in water, which impli-
cates a good oral bioavailability.

The drugs, which are orally administered, must be
absorbed by the intestine; results show that all compounds

have a good calculated intestinal absorbance; therefore, they
can be easily absorbed by the intestine.

The compound-induced toxicity was predicted for Ames
test, to check the safety of the designed compounds, as shown
in Table 7, results specify that all newly designed compounds
were non-mutagenic; additionally, the low values for brain-
blood partition coefficient were found indicating that they will
have a very low potential to cross the brain-blood brain barrier
thereby eliminating the possibility of CNS related toxicity.

These results suggest that the newly designed compounds
showed promising properties, in terms of intestinal adsorp-
tion, volume of distribution, blood-brain barrier permeability
and toxicity, and present high biological activities, and are
therefore potentially interesting candidates for further studies.

Conclusion

CDC7 kinase has emerged as a promising drug target for
various cancer types. In this study, computer-aided drug de-
sign techniques, CoMSIA and molecular docking analyses,
were conducted based on 31 furanone derivatives. CoMSIA
(Q2 = 0.545, R2 = 0.945) was developed and validated using
different validation techniques, the best model displayed sig-
nificant statistical quality and excellent predictive ability. The
graphical contour maps analysis indicated significant steric,
electrostatic, and acceptor hydrogen potential contributions

Table 7 In silico ADMET prediction and synthetic accessibility values of newly designed compounds

Name
Absorption Distribution Metabolism Excretion

Toxicity
Synthetic
accessibility

Water
solubility

Intestinal
absorption
(human)

Volume of
distribution

Blood-brain
barrier
permeability

CYP Total
clearance

AMES
toxicity

2D6 3A4 1A2 2C19 2C9 2D6 3A4
substrate inhibitor

(log mol/
l)

Numeric (%
absorbed)

Numeric
(log L/kg)

(logBB) Categorical (yes/no) Numeric
(log ml/min/
kg)

(Yes/
No)

Numeric

F1 − 4.699 94.147 − 0.316 − 1.398 No No No No Yes No No 0.554 No 3.46

F2 − 3.964 84.798 0.301 − 1.409 No No No No No No No 0.756 No 3.61

F3 − 4.085 90.059 0.200 − 1.634 No No No No No No No 0.658 No 3.50

Table 6 Lipinski’s properties of newly designed compounds

Inhibitor Property

log P H-bond acceptor H-bond donor Polar surface area (A2) Rotatable bonds Molecular weight (g/mol)

F1 3.91 6 2 93.31 5 425.391

F2 2.96 7 3 119.33 5 426.379

F3 3.32 7 3 119.33 5 444.369
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and suggested sufficient information for understanding the
structure-activity relationship, thus aided in the further design
and development of novel furanone derivatives with CDC7
improved inhibitory profile. Molecular docking results indi-
cate that the hydrogen bond interactions with Lys 90, Pro135,
and Leu 137 contribute mainly to the inhibitory activity,
which highlight the importance of the heteroaromatic
azaindole hinge-binder and carbonyl group of the furanone
moiety for inhibitory effect. Connection of hydrophobic
groups such as phenyl with electron-withdrawing groups on
2 and 4-positions to the furanone moiety is favorable. Long
chain on the furanone containing a carbonyl and a terminal
amine is necessary to enhance the inhibitory activity. Further,
all those outcomes showed insight into the key structural fea-
tures required for the CDC7 inhibitory behavior in the studied
furanone derivatives. Thus, those obtained key structural fac-
tors were used to design three inhibitors by modifying the
furanone scaffold, and then got a better result in terms of
biological activity, in silico ADME, and toxicity. The new
insights regarding the interaction mechanisms between ligand
and CDC7 and the information provided from the contour
maps could serve as guidelines in designing of novel potent
CDC7 inhibitors.
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