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Abstract
A series of novel organic dyes (ICZA1, ICZA2, ICZA3, ICZA4) with D-π-A structural configuration incorporating indolo[3,2,1-
jk]carbazole moiety as donor (D) unit, thiophene as π-linker and 2-cyanoacrylic acid as acceptor unit were investigated using
density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. Indolo[3,2,1-jk]carbazole-based D-π-A dyes
composed of different acceptor groups were designed. By modulating acceptor unit, the efficiency of D-π-A dye-based dye-
sensitized solar cells (DSSCs) can be further improved. In the present work, four novel push-pull organic dyes only differing in
electron acceptor, have been designed based on the experimental literature value of IC-2. In order to further improve the light
harvesting capability of indolo[3,2,1-jk]carbazole dyes, the acceptor influence on the dye performance were examined. The NLO
property of the designed dye molecules can be derived as polarizability and hyperpolarizability. The calculated value of ICZA2
dye is the best candidate for NLO properties. Furthermore, the designed organic dyes exhibit good photovoltaic performance of
charge transfer characteristics, driving force of electron injection, dye regeneration, global reactivity, and light harvesting
efficiency (LHE). From the calculated value of ICZA4 dye, it has been identified as a good candidate for DSSCs applications.
Finally, it is concluded that the both ICZA2 and ICZA4 dyes theoretically agrees well with the experimental value of IC-2 dye.
Hence, the dyes ICZA2 and ICZA4 can serve as an excellent electron withdrawing groups for NLO and DSSCs applications.
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Introduction

In 1991, Gratzel and coworkers have reported that dye-
sensitized solar cells (DSSCs) are promising candidate for
photovoltaic performance [1]. The working process of
DSSCs requires that these dyes upon light absorption,
photo-induced excited electron is then injected into the

conduction band of semiconductor TiO2 anode in a femtosec-
ond lifetime by the anchoring group. Further, the presence of
redox electrolyte regenerates the oxidized sensitizer. The ox-
idized dye is then neutralized to ground state by the I−=I−3
redox system [2]. There are two major categories sensitizers
commonly used as (1) metal complexes and (2) metal-free
organic dyes. Although N719 Ru(II)-polypyridyl photosensi-
tizers have shown the highest performance of DSSCs exceed-
ing 11.8% [3], in 2011, zinc porphyrin-based dye has the best
power conversion efficiency (PCE) of DSSCs up to 12.3%
[4]. Recently, Gratzel and Oxford University research teams
independently developed a solid-state DSSCs PCE exceeding
15%, further creating a new record [5, 6].

Due to this, metal-free organic dyes and natural dyes have
attracted considerable attention for their tunable electronic
structure, absorption spectra and electrochemical properties,
ease of molecular tailoring, and low cost processes [7].
Recent literature reports indicate achievement of PCE 13.1%
using pure organic sensitizer C281, such as high PCE has been
reached with a metal-free organic dye in DSSCs [8]. In 2017,
Kar et al. using N,N′-dialkylaniline based (NDI 6) dye has
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reached the best PCE of DSSCs in 19.24%. [9]. Several or-
ganic dyes such as coumarin [10, 11], polyene [12], indoline
[13, 14], triphenylamine (TPA) [15], carbazole [16],
tetrahydroquinoline [17], and phenothiazine [18] have been
investigated for DSSCs and showed good photovoltaic perfor-
mance. For example, a typical TPA-based dye (TPC1) report-
ed by H. Tian and coworkers used in DSSCs as the sensitizer
exhibits an impressive PCE of 5.3% [19]. Other major advan-
tages of metal-free organic dyes are their tunable absorption
and photochemical properties through suitable molecular de-
sign [20]. The most traditional organic efficient sensitizers are
generally configuration made of electron donor (D), π-spacer,
and electron acceptor (A) [21–23]. This D-π-A architecture
produces an effective intramolecular charge transfer (ICT)
from D to A during photoexcitation process [24].

In the study of Chunhua Luo in 2014, [25] indolo[3,2,1-
jk]carbazole sensitized photovoltaic device exhibited a high
PCE of 3.68%, photocurrent (9.78 mA cm−2), and
photovoltage (0.66 V) measured under illumination of
AM1.5G simulated solar light (100 mW cm−2) at room tem-
perature. Additionally, the acceptor groups of organic dyes
play an important role onto the semiconductor surface and
enhance efficiency photovoltaic cell performance, namely
PC, PN, PMN, and PR [26]. Different acceptor groups were
employed in order to further increase the absorption spectra of
the organic sensitizer. In the current study, the optoelectronic
properties of D-π-A organic dyes with different electron ac-
ceptor groups have been studied using density functional the-
ory (DFT) and time-dependent DFT (TD-DFT) approach in
order to good sensitizing properties for DSSCs. Hence, in the
present work, the NLO property of the designed dye mole-
cules was analyzed through the static polarizability and first
hyperpolarizability. The influence of photovoltaic properties
of the DSSCs based on electron acceptor was under
investigation.

Theoretical setup

The ground state geometries of these molecules were fully
optimized without any symmetry constrains. Full geometry
optimized structure were confirmed to be at its local minimum
(no imaginary frequency modes) energy surface was found.

The optimization of ground state structure are performed in
DFT [27, 28] method with Becke’s three-parameter and Lee-
Yang-Parr (B3LYP) [29] hybrid functional using 6-31G(d, p)
basis set on all atoms.

The TD-DFT calculations were performed to calculate the
UV-Vis optical absorption spectra. In general, different
exchange-correlation (XC) functionals for charge transfer
(CT) excitations often show significant effects. To select suit-
able functional, the optical absorption spectra of IC-2 by dif-
ferent XC functionals, including B3LYP, CAM-B3LYP [30],
and WB97XD, were calculated using [31] TD-DFT method.
From three functionals, the absolute values of 468, 393, and
385 nm were compared to experimental absorption spectra
382 nm. It gives errors of 86, 11, and 03 nm, as shown in
Table 1. From Fig. 1, TD-DFT optical absorption spectra of
IC-2 was calculated at three hybrid functionals using in
CH2Cl2 solution. While taking as reference value for further
newly designed dye molecules, the three optical absorption
wavelengths, with the help of TD-WB97XD functional with
6-31G(d,p) basis sets, were performed.

Therefore, TD-WB97XD functional with 6-31G (d,p) basis
set were chosen for combining the conductor-like polarizable
continuum model (CPCM) [32] in dichloromethane (CH2Cl2)
solution to predict the optical absorption properties of de-
signed dye molecules. All the calculations were performed
with Gaussian 09 package [33]. The optical absorption wave-
lengths are obtained by using Gausssum [34].

Results and discussion

Screening of the electron withdrawing groups

The electron withdrawing groups play an important role in
D-π-A organic structure and further influence the PCE of
DSSCs performance. The acceptor molecules were collected
from literature survey. In the previous study, the acceptor mol-
ecules are used in highly efficient organic DSSCs application.
In this way, these molecules will be effected by the
indolo[3,2,1-jk]carbazole-based dye derivatives. A series of
metal-free organic dyes ICZA1-ICZA4 with D-π-A structure
were designed in order to screen excellent electron withdraw-
ing groups compared to IC-2. Structure of indolo[3,2,1-

Table 1 Experimental absorption spectra and computed absorption wavelength of the lowest excited state λmax (nm) for the dye in CH2Cl2 solution,
together with the calculated oscillator strength (f) and excitation configuration

Methods λmax (nm) Oscillator strength (f) LHE Main configuration

B3LYP 468 0.80 0.841 HOMO→LUMO (99%)

CAM-B3LYP 393 1.36 0.956 HOMO→LUMO (77%)

WB97XD 385 1.40 0.960 HOMO→LUMO (71%)

Experiment 382 Taken from reference [24]
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jk]carbazole was shown in Fig. 2. In order to explore consid-
erably highly efficient indolocarbazole derivative dyes, tailor-
ing of molecular design for D-π-A using different electron
withdrawing groupswere designed (ICZA1-ICZA4) as shown
in Fig. 3. B3LYP/6-31G(d,p) were used for the optimization
of indolo[3,2,1-jk]carbazole and four newly designed efficient
sensitizers. Optimized geometric structures were shown in
Fig. S0 (Supporting information). From the geometric struc-
tures explore that the electron acceptor effect of ICZA1-
ICZA4 have shown coplanar structures, which might be fa-
vorable for the photo-induced electron CT and to broaden the
optical absorption wavelength.

Intramolecular charge transfer effects

In DSSCs, the energy levels and corresponding orbitals distri-
bution of frontier molecular orbitals (FMOs) are closely relat-
ed to the intramolecular charge transfer (ICT) from electron
donor to acceptor group of metal-free organic sensitizers [35].
It has a great effect on the optical absorption wavelength.
Figure 4 shows the orbital spatial distribution of highest oc-
cupied molecular orbitals (HOMOs) and lowest unoccupied
molecular orbitals (LUMOs) of the studied dye molecules.
The HOMOs and LUMOs energy levels are very important
aspects to explain efficient charge separation between donor
and acceptor groups.

A strong D-π-A molecular structure has the character of the
HOMOs are mainly contained on the donor parts to the π-
conjugated spacer and LUMOs are mainly distributed on the
electron acceptor moieties (anchoring group) when absorbed
the photon in all dye sensitizers. The electron acceptor effect
on the electronic properties by using various acceptor segments

was investigated. The molecular orbitals (MO) contributions of
HOMOs, LUMOs, and energy gap (Eg) are listed in Table 2.

Frontier molecular orbitals

The FMOs contribution is a very significant factor in de-
termining the charge separated states of dye sensitizers
[36]. In newly designed dye molecules, the HOMOs,
LUMOs energy levels and their Eg values are among the
most significant properties dominating the dye perfor-
mance in photovoltaic devices. The smaller Eg values play
an important role in broadening the visible absorption re-
gion, which improves the photoelectric properties of the
dyes [37, 38]. The LUMOs are π*-orbitals of all the dye
sensitizers are above the semiconductor conduction band
edge (CBE) of TiO2 (−4.0 eV) surface, and the HOMOs
energy levels of π-orbitals are sufficiently below the redox
potential of the I−=I−3 liquid electrolyte (−4.8 eV) system

Fig. 1 TD-DFT optical
absorption spectra of IC-2
calculated at hybrid functionals
using CH2Cl2 solution

N

Fig. 2 Structure of indolo[3,2,1-jk]carbazole
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Fig. 3 Tailoring of molecular
design for D-π-A
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Fig. 4 The electronic structures
of the IC-2 and ICZA1-ICZA4
calculated at B3LYP/6-31G(d,p)
level of theory
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[39]. It is recommended that all the dye sensitizer should
be capable of electron injection into the CBE of semicon-
ductor and could be recombination process of electrons
from the redox electrolyte. The HOMOs and LUMOs en-
ergies were calculated using B3LYP/6-31G(d,p) level of
theory. The FMOs isodensity contour plots of IC-2,
ICZA1-A4 were shown in Fig. 5. Four different structures
of electron acceptor dyes were investigated. The HOMOs
and LUMOs of the energy levels, with the increasing order
of ICZA3 < ICZA2 < ICZA1 < ICZA4 and ICZA2 <
ICZA4 < ICZA3 < ICZA1, respectively. The Eg values are
between 2.63 and 3.31 eV. These results reveal that the
sensitizers that have smaller Eg values show several char-
acteristics beneficial to higher light harvesting efficiency
(LHE) in the performance of DSSCs.

Global reactivity descriptors

The ionization potential (IP) and electron affinity (EA) of
organic dyes give information about the charge-injection and
charge transport character of the designed dye molecules [40].
The Eg between HOMOs and LUMOs for a molecule is an
important parameter to determine electronic transport proper-
ties of DSSCs. The global chemical reactivity descriptors of
molecules, chemical hardness (η), and softness (S) have been
defined on the basis of EHOMO and ELUMO [41, 42].

By using Koopman’s theorem [43] for closed-shell com-
pounds of η and S can be defined as follows:

η
IP−EAð Þ

2
ð1Þ

Softness is a property of designed dye molecules that mea-
sures the extent of chemical reactivity.

S
1

2η
ð2Þ

where IP and EA can be obtained as IP = −EHOMO and EA =
−ELUMO.

All the calculated values of η and S of the designed dye
molecules were listed in Table 3. From the table identified
that the large HOMOs-LUMOs gap as a hard molecule
and small HOMOs-LUMOs gap as a soft molecule while
considering η. The stability of a molecule and its reactiv-
ity can be related to chemical η, which means that the dye
molecules with least HOMOs LUMOs gaps have more
reactive.

It is well identified that the higher the value of EA, the
higher can be the electron transport ability. It is interesting to
note that lower HOMOs-LUMOs gap of ICZA2 and ICZA4
shows lower IP values of 5.66 and 5.48 eV and higher EA
values of 2.84 and 2.63 eV, respectively. This indicates that
both the ICZA2 and ICZA4 dyes can be the best candidates
for both hole and electron transport material compared with
IC-2.

Non-linear optical study

The non-linear optical study (NLO) response of an isolated
molecule in an electric field (E) can be represented as static
polarizability (α), anisotropic polarizability (Δα), and first
hyperpolarizability (β) of the designed dye molecules were
calculated using the following equation [44]:

αtot ¼ 1

3
αxx þ αyy þ αzz
� � ð3Þ

Δα ¼ 1ffiffiffi
2

p αxx þ αyy
� �2 þ αzz þ αxxð Þ2 þ 6α2

xx

h i
ð4Þ

The third rank tensor of β can be described by 3 × 3 × 3
matrix.

β0 ¼ βx
2 þ βy

2 þ βz
2

� �1
2 ð5Þ

β0 ¼ βxxx þ βxyy þ βxzz

� �2 þ βxxy þ βyyy þ βyzz

� �2 þ βxxz þ βzyy þ βzzz

� �2h i1
2 ð6Þ

where αxx, αyy& αzz polarizability tensor components, βzyy,
βzzz, βxxx, βxyy, βxzz, βxxy, βyyyandβyzz magnitude of the first

hyperpolarizability tensor components. These constraints con-
tribute in the non-linearity of the designed dye molecules.

Table 2 The HOMOs energy (in eV), LUMOs energy (in eV), and
energy gap (in eV) of IC-2, ICZA1-A4 dyes at B3LYP with standard
basis set 6-31G(d,p) level of theory

Dyes EHOMO ELUMO Energy gap
(in eV)

IC-2 −5.73 −2.61 3.12

ICZA1 −5.57 −2.26 3.31

ICZA2 −5.66 −2.84 2.82

ICZA3 −5.84 −2.48 3.00

ICZA4 −5.48 −2.63 2.63
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The highest molecular α and β exhibit good sensitizing
property upon photoexcitation because it tends to decrease
the aggregates formation on the surface of TiO2 leads to better
conversion efficiency. The calculated values were summa-
rized in Table S1 and S2 (Supporting information). The α is
directly proportional to the dipole moment and the β is in-
versely proportional to the vertical transition energy [45]. It
has been observed that the α values of ICZA2 (231 a.u.),
ICZA3 (193 a.u.), and ICZA4 (218 a.u.) are higher than that
of the other molecules when compared to IC-2 (186 a.u.),
except the value of ICZA1 (181 a.u.). The substitution effect
of strong electron withdrawing groups of ICZA2 and ICZA4
dyes enhanced the α. The ICZA2 dye has the maximum value
of α as 3.424 × 10−23 e.s.u. when compared with IC-2 as
2.764 × 10−23 e.s.u. The highest value of β, which is a measure
of NLO activity of the molecular system, is related with the
ICT, resulting from the electron cloud movement, through the
acceptor framework of electron [46]. Accordingly, ICZA2 dye
with minimum transition energy (2.92 eVobtained from TD-
DFT calculation) exhibits the maximum β value of 11.424 ×
10−30 e.s.u. A higher value of the β is important for active
NLO performance and the present results indicate that the
ICZA2 possess larger β value particularly which can be used
for NLO applications.

Spectral analysis

The simulated optical absorption spectra of IC-2 and ICZA1-
ICZA4 in dichloromethane solution were displayed in Fig. 6.
It is obvious that all the dye sensitizers lie in the entire visible
region of 410 nm. The calculated excitation wavelength, os-
cillator strength, LHE, and major orbitals transitions of IC-2,
ICZA1-ICZA4were shown in Table 4. Themaximum absorp-
tion peak of ICZA4 is 423 nm and exhibits a large redshift of
38 nm compared to IC-2 (385 nm), which is consistent with
the smaller Eg, while the presence of ICZA1 (366 nm) was
blue-shifted 19 nm compared to IC-2. The longer absorption
wavelength was assigned to ICT between the donor and elec-
tron acceptor moieties. All the absorption spectra also
belonged to n-π* transitions. In Table 4, vertical excitation
energies (E) were changed in decreasing order, ICZA4 >
ICZA2 > ICZA3 > ICZA1, showing that there is a redshift
when passing from ICZA4-ICZA1. We have also calculated
the LHE is one of the important parameter which determines
the efficiency of DSSCs.

LHE (λ) can be calculated according to the following [47]:

LHE ¼ 1−10− f ð7Þ
where f represents oscillator strength of the dye sensitizer re-
lated to the λmax.

In Eq. 7, highest f and hence higher LHE were found for
ICZA2. λmax has the highest value for ICZA4 dye sensitizer
for which LHE (1.65 a.u.). Therefore, according to LHE,
ICZA4 dye should be the best sensitizer compared to IC-2
(1.40 a.u.), which has beneficial for larger short-circuit current
density (JSC). In all the studied dye molecules, the dominant
absorption band has associated with HOMO-LUMO
transition.

These results show that all dye sensitizers have only one
band in the visible region (λmax > 350 nm). This also indicates

Fig. 5 FMOs of IC-2 and ICZA1-
ICZA4 calculated at B3LYP/6-
31G (d,p) level of theory

Table 3 Global reactivity descriptors energy values of ICZA1-ICZA4
dyes at B3LYP/6-31G(d,p) level of theory

Dyes IP EA η S
in (eV)

IC-2 5.73 2.61 1.56 0.32

ICZA1 5.57 2.26 1.65 0.30

ICZA2 5.66 2.84 1.41 0.35

ICZA3 5.84 2.48 1.68 0.29

ICZA4 5.48 2.63 1.42 0.35
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that the ICZA4 could harvest more light at the longer-
wavelength region, which can be helpful to further increase
in the PCE of corresponding DSSCs.

Overall efficiency of DSSCs

As we know, the overall efficiency of DSSCs device is mainly
determined byJSC, open-circuit photovoltage (Voc), the fill fac-
tor (FF), and the intensity of the incident light (PIN), it can be
expressed as the following Eq. 8 [48]:

η ¼ JSCVOCFF
PIN

ð8Þ

In DSSCs, Voc can be described by the following [49]:

VOC ¼ ECB

q
þ KT

q
In

nC
NCB

� �
−
Eredox

q
ð9Þ

where unit charge is q, thermal energy is KT, nC is the con-
duction band (CB) of the electron number, NCB is the acces-
sible density of CB states, and Eredox is the oxidation potential
of the liquid electrolyte.

TheVOC is determined by energy difference between the
CBE and redox electrolyte. Usually, the solution I−=I−3 is used
as the redox potential, so we take it as a constant. ΔCBE is an
important factor of Voc and can be followed by [50]:

ΔCBE ¼ −
qμnormalγ

ε0ε
ð10Þ

The outermost level concentration of dye sensitizer isγ,
μnormal is the dipole moment of individual molecular perpen-
dicular to the boundary condition of the semiconductor and ε0,
ε it will be constants.

It is apparent that a large μnormal will lead to greater extent
shift of CBE which will result in largerVoc. As shown in
Table 4, ICZA1-ICZA4 values identified that the dipole mo-
ments are 6.52, 10.83, 8.98, and 12.06 Debye. The dyes
ICZA2 and ICZA4 have the largest dipole moment, leading
to largerVOC. All four dyes were highly compared to IC-2
(10.35 Debye), except the values of ICZA1 and ICZA3.
Among these dyes, ICZA4 can be the outstanding perfor-
mance for improved efficiency of DSSCs.

TheJSC in DSSCs can be determined by the following [51]:

JSC ¼ ∫LHE λð ÞΦINJηcolldλ ð11Þ

Fig. 6 TD-DFT absorption
spectra of designed dyes and
TC104 calculated at WB97XD/6-
31G (d,p) level of theory in
CH2Cl2 medium

Table 4 Calculated at excitation wavelength in (nm and eV), oscillator strength (f), light harvesting efficiency (LHE), and major orbitals transition
assignment of IC-2 and ICZA1-ICZA4 at TD-WB97XD/6-31G(d,p) level of theory in CH2Cl2 medium

Dyes Excitation wavelength Oscillator strength ( f ) LHE Major transitions (%)

Energy (eV) λmax (nm)

IC-2 3.21 385 1.40 0.960 HOMO→LUMO (71%)

ICZA1 3.38 366 1.37 0.957 HOMO→LUMO (72%)

ICZA2 3.08 406 1.73 0.981 HOMO→LUMO (65%)

ICZA3 3.14 394 1.41 0.961 HOMO→LUMO (71%)

ICZA4 2.92 423 1.65 0.977 HOMO→LUMO (77%)
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where LHE at a given wavelength of λmax.ΦINJ is the electron
injection efficiency and charge collection efficiency isηcoll.
Hence, it is reasonable to assume that ηcoll is a constant.
Another way of growing JSCis to improve the electron injec-
tion rate of free energyΔGinject. ΦINJis related to the driving
force ΔGinjectof electrons injecting from excited state of mol-
ecule to the semiconductor CBE of TiO2.

ΔGinject can be described by the following [52]:

ΔGinject ¼ Edye*

OX −ETiO2
CB ð12Þ

where Edye*

OX oxidation potential of the excited state of dye

sensitizer and ETiO2
CB CBE of TiO2 in the reduction potential

energy surface.

Edye*

OX can be calculated by Eq. 13 [53–55]:

Edye*

OX ¼ Edye
OX−E ð13Þ

where Edye
OX reduction potential of the ground state of dye,

while E is a vertical excitation energy corresponding
toλmax. According to Is lam invest igat ion, when
ΔGinject > 0.2 eV, the electron injection efficiency (ΦINJ)
is almost equal to one [56]. As shown in Tables 4 and 5,
the absolute values ofΔGinject for ICZA1-ICZA4 are much
greater than 0.2 eV. So, it can be predicted that these sen-
sitizers have driving force for the fast ΔGinjectof excited
state electrons into CBE of TiO2.

JSC is also influenced by the regeneration efficiency of
sensitizer (ηreg), which can be determined by the driving force
of regeneration ΔGreg. It can be calculated by Eq. 14 [57]:

ΔGreg ¼ Eredox−Edye ð14Þ

According to the survey of Robson, the regeneration pro-
cess of the dye can significantly influence the efficiency of
DSSCs [58]. The ICZA3 dye having larger driving forces of
regeneration can cause the improvement of ηreg. Finally,
ICZA2 and ICZA4 will be the promising sensitizers due to
their good PCE in DSSCs.

Conclusion

In summary, we have demonstrated that the dyes ICZA1-A4
can be transformed into suitable sensitizers especially in the
higher molar extinction coefficient and longer-wavelength vis-
ible region of the solar spectrum. Photovoltaic properties of
these D-π-A systems with different acceptor groups have been
investigated by DFT and TD-DFT method. These dyes exhibit
higher molar extinction coefficient and broad electronic absorp-
tion properties of DSSCs. Overall, a new type of ICZA1-A4
acceptor moieties were changed to different anchoring modes
which can be successfully employed for DSSCs. In comparison
with IC-2, the different acceptor segment of dyes ICZA2-
ICZA4 have exhibited a higher absorption, LHE, smaller Eg,
and obvious redshifts, for obtaining the improved PCE. The
NLO property of the designed dye molecules were calculated
at static polarizability and first hyperpolarizability values. It
shows that the ICZA2 molecule possess better NLO perfor-
mance. In particular, these results demonstrated that ICZA2
and ICZA4 acceptor moieties are promising electron withdraw-
ing groups for high performance of DSSCs. Finally, to con-
clude, the promising D-π-A method has provided evidences
with the electron withdrawing groups of ICZA2 and ICZA4
dyes for the further development of highly efficient metal-free
organic dye sensitizer in practical application of DSSCs.
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