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Abstract Staphylococcus aureus is a gram-positive bacte-
rium. It is a foremost cause of skin and respiratory infec-
tions, endocarditis, osteomyelitis, Ritter’s disease, and
bacteraemia. Topoisomerase enzyme is involved in
preventing or correcting topological problems of
overwinding or underwinding occurring in DNA before
replication process. An exhaustive molecular modeling
studies that includes pharmacophore modeling, ligand-
based three-dimensional quantitative structure-activity re-
lationship (3D-QSAR), molecular docking, molecular dy-
namics simulation, and ADME calculations were per-
formed on isothiazoloquinolones derivatives which are re-
ported as effective inhibitors against topoisomerase IV of
wild type S. aureus. In pharmacophore modeling by using
pharmacophore alignment and scoring engine (PHASE) a
five-point model (AHHRR.3) was generated with existing
compounds having statistical significant as correlation co-
efficient (R2 = 0.954), cross-validation coefficient (Q2 = 0.
650), and F value of 130.5. Ligand-based 3D-QSAR study
was applied using comparative molecular field analysis
(CoMFA) with Q2 = 0.616, R2 = 0.989, and comparative
molecular similarity indices analysis (CoMSIA) with Q2 =
0.510, R2 = 0.995. The predictive ability of this model was
determined using a test set of molecules that gave accept-
able predictive correlation (R2 Pred) values 0.55 and 0.56

for CoMFA and CoMSIA, respectively. Docking and mo-
lecular dynamic simulations were employed to position the
inhibitors into protein active site to find out the most prob-
able binding mode and most reliable conformations.
Developed pharmacophore models and docking methods
provide guidance to design enhanced activity molecules.

Keywords 3D-QSAR (three-dimensional quantitative
structure activity relationship) . PHASE (pharmacophore
alignment and scoring engine) . CoMFA (comparative
molecular field analysis) . CoMSIA (comparativemolecular
similarity indices analysis) . PLS (partial least square) . MD
(molecular dynamics)

Introduction

Staphylococcus aureus is a gram-positive bacterium. It
is a leading cause of food poisoning, soft tissue infec-
tions, and skin infections like abscesses, respiratory in-
fections like sinusitis, blood stream infections, endocar-
ditis, osteomyelitis, Ritter’s disease, and bacteraemia in
the developed world. 4-quinolones have antibacterial ac-
tivity against DNA gyrase and topoisomerase IV. During
translocation of transcription and replication arised topo-
logical stress relieves with gyrase, topoisomerase IV is a
decatenating enzyme that resolves interlinked daughter
chromosomes following DNA replication. Since both
enzymes are required for cell growth and division.
With trapping of gyrase and topoisomerase IV on
DNA probably leads to the lethal release of double-
strand DNA breaks. Both topoisomerase IV and gyrase
use a double-strand passage mode of action [1].
However, the enzymes differ in a fundamental way, gyr-
ase wraps DNA around itself, while topoisomerase IV
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does not [2]. Indeed, wrapping seems to be the principal
difference between the enzymes, since removal of a
portion of the gyrase A protein converts gyrase into
an enzyme that has a strong decatenating activity, much
like that of topoisomerase IV [3].

Computational drug design approaches are vastly
employed in development and optimization of inhibitors. A
detailed study of molecular interactions of topoisomerase IV
inhibitors with the protein will help in design of novel mole-
cules for better antibacterial activity. Our main objective was

Table 1 Structures, experimental, predicted activities fitness score and glide score of Staphylococcus aureus topoisomerase IV inhibitors

N

NH

S

O
O

F

R

Molecule R substitution on R pIC
50

1 Ph 4-F 5.143

2
t

Ph 4-OH 4.602

3
t

Ph 3-OH-CH2 5.086

4
t

Ph 4-OH-CH2 4.387

5 Ph 3-NH2 5.000

6 Ph 4-NH2 4.921

7
t

Ph 3-NH2-4-F 5.000

8 Ph 3-NH2 - CH2 6.699

9
t

Ph 4-NH2 - CH2 5.824

10 Ph 3-(2-Piperidinyl) 5.569

11
t

Ph 4-(2-Piperidinyl) 5.585

12 Ph - 5.201

13 2-Pyrazinyl - 4.194

14 2-Pyridinyl 4-Me 4.796

15 2-Pyridinyl 5-Me 4.854

16
t

3-Pyridinyl 6-Me 5.071

17 3-Pyridinyl 6-F 4.921

18 4-Pyridinyl 2-F 4.721

19 3-Pyridinyl 6-NH2 - CH2 6.155

20
t

3-Pyridinyl 5-(2-Piperidinyl) 5.301

21 3-Pyridinyl 5-(2-Pyrrolidinyl) 5.959

22 4-Pyridinyl 2-Me 4.585

23 4-Pyridinyl 2,6-Me2 4.319

24
t

3-Pyridinyl 2,6-Me2 5.897

25 3-Pyridinyl 2,6-(Meo)2 4.796

26 3-Pyridinyl 4-Meo 5.000

27 3-Pyridinyl 5-Meo 4.678

28 3-Pyridinyl 6-Meo 4.585

29 2-(1H-Pyrrolyl) - 5.004

30 2-(1H-Indolyl) - 5.481

31
t

5-(1H-Indolyl) 1-Me 5.444

32 7-Quinazolinyl - 4.538

33
t

3-Quinolinyl - 4.301

34 5-Quinolinyl - 4.481

35 5-Isoquinolinyl - 4.638

36 7-Piperazinyl - 6.301
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to obtain structural requirements for topoisomerase IV inhib-
itors and design novel molecules. In this present study, we
have employed and constructed the pharmacophore model
through pharmacophore alignment and scoring engine
(PHASE) [4] and developed ligand-based 3D-QSAR [5, 6]
models using comparative molecular field analysis
(CoMFA) [7, 8] and comparative molecular similarity indices
analysis (CoMSIA) [9], to assist in the further discovery and
design of potent topoisomerase inhibitors. Partial least square
(PLS) [10] based statistical analysis was carried out on 42
molecules to identify the correlation. The contour maps

Table 1 (continued)

N

OH

OO

AR

Molecule A R pIC50

37 COMe

NH

N

6.097

38 N

N

N

CH
3

O

CH
3 6.523

39 COMe

N

NH

CH
3

5.920

40 CH

N

NH

6.000

A N

NH

S

O
O

X

R

Molecule X A R substitution on R pIC50

41 F COMe 5-(2,3-dihydro-1H-

isoindolyl)

- 7.000

42
t

F COMe 5-(2,3-dihydro-1H-

isoindolyl)

1-Me 6.699

t = test set molecules

CH2
N

O O

Fig. 1 Common substructure used for alignment
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generated enabled us to explain the observed variation in ac-
tivity and guided us to design new molecules. In addition, a
combined computational approach, including the docking
analysis and molecular dynamics (MD) simulations were also
employed to elucidate the probable binding modes of these
antagonists at the binding site.

Materials and methods

All the molecular modeling calculations were performed on
IBM MX1300 server with Linux operating system.
Pharmacophore modeling was performed using Phase V3.2,
and molecular docking was performed using Glide 5.6 in
Schrödinger suite 2010. 3D-QSAR studies based on CoMFA
and CoMSIAwere performed using SYBYLX 2.1.Molecular
dynamics simulations were carried out using Desmond 3.8.

Detail protocol for PHASE, docking, CoMFA, CoMSIA,
andmolecular dynamics studies are well-documented inmany
of the previous reports [11, 12]. Here, we give the brief de-
scription of the protocol followed for the present study. A set
comprising of 42 compounds having biological activity
against TOPO-IV was selected from the available literatures
[13–15]. Inhibitory potencies of the compounds included in
data set reported as IC50 values varied from 0.1 to 64 μM and

were converted into pIC50. The structure of ligands were built
using build panel in Schrödinger suite and optimized using
Ligprep applying OPLS 2005 force field (Table 1).

The low-energy conformer were selected and imported into
PHASE module; these were classified into active and inactive
based on threshold BActive > (5.5) pIC50 < (5.0) inactive.^
Conformers for all the molecules were generated by applying
default parameters. Pharmacophoric feature cites were created
for the set of molecules. The chemical pharmacophore fea-
tures include two acceptors [A], two donors [D], and two
aromatic rings [R]. Common pharmacophoric features were
selected from active molecules, at most five variants and least
three variants were generated with a tolerance of 1 Å. It re-
sulted in a possible combination of features which were
screened through shape and volume scoring for both active
and inactive molecules. The molecule set was divided into
training set of 30 and test set of 12 molecules. QSAR model
was generated using PLS with three factors and best model
with good R2; Q2 were selected.

Molecules were docked into Topo–IV active site using
Glide 5.6; catalytic domain of TOPO-IV enzyme in complex
with kibdelomycin (pdb id: 4URN) was downloaded from the
protein data bank [16] for docking studies. Prior to docking,
the protein was prepared using protein preparation wizard; a
grid was generated around the active site by selecting co-
crystallized ligand. Van der Waals scaling for receptor atoms
was set to 0.9 [17]. Extra-precision XP docking mode was
used for molecular docking. The docked conformers were
used for CoMFA and CoMSIA studies. CoMFA and
CoMSIA studies were carried out as described by Carmer
et al. [4, 7] and Ramesh et al. [18]; the process is briefly
described here. Dock pose of each ligand was imported into
SYBYLX-2.1 molecular modeling program package [19], and
Gasteiger–Huckel [20] charges were assigned. The active con-
formations were then aligned on docked pose of most active
molecule 41 in the series, using ALIGN DATABASE com-
mand in SYBYLX 2.1 taking the substructure that is common
to all (Fig. 1). The resulting alignment is shown in Fig. 2.

Fig. 2 Alignment of data set molecules based on common substructure
using compound 41 as a template

Table 2 Score of different parameters of the hypotheses

S. no Hypothesis Survival score Survival inactive Site Vector Matches Activity Inactive

1 AHHRR.5 3.679 0.755 0.89 0.989 14 5.824 2.924

2 AHHRR.7 3.679 0.755 0.89 0.989 14 5.824 2.924

3 AHHRR.3 3.565 0.865 0.83 0.979 14 7.000 2.700

4 AHHRR.1 3.565 0.865 0.83 0.979 14 7.000 2.700

5 AHHRR.4 3.342 0.824 0.76 0.969 14 6.097 2.518

6 AHHRR.2 3.342 0.824 0.76 0.969 14 6.097 2.518

7 AHHRR.6 3.593 0.715 0.85 0.978 14 5.897 2.878

8 AHHRR.8 3.593 0.715 0.85 0.978 14 5.897 2.878

9 AHHRR.10 2.632 0.857 0.31 0.896 14 5.897 1.775

A acceptor, H donor, R aromatic ring, the bold entry refers to the pharmacophoric features that were selected based on the scoring hypothesis
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Standard Tripos force fields were employed for CoMFA and
CoMSIA analysis. A 3D cubic lattice of dimension 4 Å in
each direction with each lattice intersection of a regularly
spaced grid of 2.0 Å was created. Steric and electrostatic pa-
rameters were calculated in CoMFA fields, while hydropho-
bic, acceptor, and donor parameters in addition to steric and
electrostatic were calculated in CoMSIA fields at each lattice.
The sp3 carbon atom was used as variables. To improve the
signal-to-noise ratio column filtering value (s) was set to
2.0 Kcal/mol by omitting lattice points whose energy varia-
tions were below the threshold. Leave-one-out (LOO) cross-
validations were performed to determine the optimum number
of components (ONC) and coefficient Q2 LOO. The obtained

ONC was applied to derive the final QSAR model. Validation
of CoMFA and CoMSIA derived model was performed by
predicting the activity of test set compounds.

To estimate the stability and binding interactions, MD sim-
ulations were performed using Desmond 3.8 [21] applying
OPLS 2005 force field [22]. The crystallized protein along
with ligand and docked complex of molecule S-1 were used
for the MD simulations. The protein-ligand complex was sol-
vated using SPC [23] water molecules in an orthorhombic box
of 15 Å × 15 Å × 15 Å size. Counter ions were added to
balance the net charge of the system; salt of concentration
was maintained at 0.15 mol/l during the entire course of sim-
ulation. The system was minimized initially with restraints on

Fig. 3 a PHASE-generated pharmacophore model AHHRR.3 illustrat-
ing hydrogen bond acceptor (A3 red), hydrogen bond donor (H7,H9
green) and aromatic ring (R12,R14 red) features and b pictorial

representation of the cubes generated using the QSAR model, blue cubes
indicate favorable regions, while red cubes indicate unfavorable region
for the activity of most active molecule 41

Table 3 PLS statistical parameters of the model AHHRR.3

PLS SD R2 F P Stability RMSE Q2 Pearson’s r

1 0.5664 0.472 25 2.748e-05 0.8893 0.5454 0.3115 0.751

2 0.3851 0.7647 43.9 3.285e-09 0.5925 0.4606 0.5088 0.7244

3 0.2779 0.8819 64.7 3.416e-12 0.3855 0.4706 0.4874 0.7406

4 0.1763 0.9543 130.5 2.288e-16 0.2343 0.3884 0.6508 0.8222

SD, standard deviation of regression; R2 , regression coefficient; F, ratio of the model variance to the observed activity variance (variance ratio); P,
significance level of variance ratio; Q2 , cross-validated correlation coefficient for the test set; RMSE, the RMS error in the test set and the bold entry
refers to the selected PLS

Fig. 4 Docked pose of molecule 41 in the protein active site, showing hydrogen bond interactions with GLY 80 and ALA 122 (PDB id.4URN)
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solvate followed by without restrains using steepest descent
and LBFGs algorithm until value converged to 5 kcal/mol/Å.
Further, the system was relaxed with 12 and 24 ps MD simu-
lation before extensive MD simulation of 5 ns with 2 fs time
step at NTP canonical ensemble within periodic boundary
conditions. Nose-Hower thermostat approach with a relaxa-
tion time of 1 ps was used to maintain the temperature during
MD simulation, and the pressure was maintained at 1.0135

bars by applying Martyanu-Tobaisklin barostat approach
using coupling-style isotropic with a relaxation time of 2 ps.
Non-bonded interaction was computed at a truncated dis-
tances of 9 Å, and long-range electrostatic interactions were
calculated using PME method with Ewald tolerance of 1e-09.
The SHAKE algorithm [24] is applied to all bonds including
hydrogen bond. MD simulation trajectories were recorded at
4.8 ps, and the recording interval energy was set at 1.2 ps. The
RMSD with respect to simulation time was calculated for the
protein-ligand complex.

Result and discussion

To understand and elucidate the mode of interaction and re-
quired pharmacophoric features for S. aureus TOPO-IV en-
zyme, a combination of ligand-based quantitative structure
activity studies were performed on a set of 42 molecules.
PHASE-QSAR approach was applied for ligand-based stud-
ies; the molecular set of 42 molecules were classified into
active and inactives based on their activity that ranged be-
tween 4.19 and 7.00. The threshold for active was set to
active > (5.5) pIC50 < (5.0) inactive. Pharmacophoric sites
were identified for each molecule in the set; common
pharmacophore hypothesis was selected from conformation
of the active molecules using a tree-based partitioning tech-
nique. Obtained common pharmacophore hypothesis were
scored and ranked based on contributions from the alignment
of site points and vectors, volume overlap, selectivity, relative
conformational energy, and activity of active molecules
followed by scoring in terms of inactive molecules. The hy-
pothesis was rescored to identify a better hypothesis that can
differentiate between active and inactives. Pharmacophoric
features thus obtained were AHHRR.3. The survival scores
of the hypothesis is provided in Table 2; distance and angles of
the sites are provided in supplementary file (Fig. S1).

Figure 3a shows the pharmacophore sites aligned on the
most active molecule; the features include a hydrogen bond
acceptor (A3, pink sphere with two arrows), two ring system
(R12, R14, orange ring), and two hydrophobic regions (H7,

Table 4 PLS result summary

Statistical parameters CoMFA CoMSIA

Q2
loo

a 0.616 0.510

Number of molecules in training set 30 30

ONCb 6 7

SEEc 0.089 0.60

R2d 0.989 0.995

Fratio
e 354.209 667.230

Number of molecules in test set 12/10* 12/10*

R2
pred

f 0.55/0.700* 0.56/0.644*

MAEg 0.449/0.253* 0.448/0.256*

RMSEh 0.322/0.096* 0.336/0.113*

Fraction of fields contributions

Steric 46.3% 10.7%

Electrostatic 53.7% 9.4%

Hydrophobic – 15.1%

Acceptor – 24.3%

Donor 40.6%

aCross-validation correlation coefficient by leave one out method
bOptimum number of components
c Standard error of estimate
d Conventional correlation coefficient
e Fisher test value
f Cross-validation correlation coefficient on the test set
gMean absolute error for test set
h Root mean square error for test set

*Test set and corresponding values after removing outlier molecules 24
and 33
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R² = 0.9767
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Fig. 5 Scatter plot of
experimental vs predicted pIC50

values (test set is represented as
squares and training set
represented as triangles)
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Table 5 Predicted activities, fitness score, Glide score, and applicability domain distance of staphylococcus TOPO IV inhibitors

Molecules 3D-QSAR Pharmacophore modeling Glide score (kcal/mol) Distance (APD = 3.789)

Pred IC50

(CoMFA)
Pred IC50

(CoMSIA)
Pred IC50 Fitness score

1 5.015 5.095 5.143 2.620 − 3.258 –

2t 4.829 4.982 4.956 2.662 − 5.459 2.449

3t 4.497 5.045 5.156 2.598 − 5.630 2.236

4t 4.981 5.043 5.224 2.672 − 5.264 2.236

5 4.927 5.083 5.098 2.619 − 4.657 –

6 5.054 4.948 5.039 2.662 − 5.210 –

7t 5.248 5.032 5.146 2.645 − 5.103 2.449

8 6.673 6.715 5.194 2.602 − 7.860 –

9t 6.075 5.979 5.728 2.675 − 7.633 1.412

10 5.641 5.533 5.186 2.523 − 4.442 –

11t 5.840 5.741 5.583 1.764 − 2.587 1.144

12 5.074 5.108 5.116 2.635 − 4.285 –

13 4.240 4.247 4.684 2.686 − 4.160 –

14 4.946 4.865 4.999 2.698 − 5.028 –

15 4.781 4.816 5.061 2.722 − 4.498 –

16t 4.985 4.857 4.933 2.720 − 4.527 2.236

17 4.987 4.997 4.860 2.721 − 4.618 –

18 4.783 4.672 4.691 2.697 − 5.342 –

19 6.167 6.148 4.997 2.716 − 4.952 –

20t 5.541 5.778 5.037 2.518 − 3.936 1.0

21 5.946 5.999 5.005 2.531 − 7.572 –

22 4.556 4.488 4.926 2.622 − 4.728 –

23 4.450 4.422 4.713 2.697 − 4.748 –

24t 4.580 4.489 5.019 2.696 − 4.321 2.451

25 4.644 4.764 4.661 2.715 − 4.545 –

26 4.710 4.761 4.793 2.664 − 4.906 –

27 5.043 4.939 5.051 2.599 − 4.805 –

28 4.660 4.597 4.917 2.722 − 4.949 –

29 4.915 4.983 4.923 2.650 − 4.369 –

30 5.410 5.502 5.175 2.724 − 4.884 –

31t 5.190 4.916 5.175 2.626 − 4.932 2.645

32 4.439 4.496 5.303 2.609 − 5.076 –

33t 5.151 4.908 5.333 2.623 − 3.751 2.449

34 4.532 4.513 5.124 2.568 − 5.073 –

35 4.596 4.565 5.120 2.564 − 4.759 –

36 6.343 6.300 5.195 2.651 − 5.259 –

37 6.073 6.094 6.615 2.686 − 6.004 –

38 6.544 6.520 5.880 2.477 − 4.310 –

39 5.916 5.912 6.034 1.847 − 5.726 –

40 6.041 6.001 5.779 2.522 − 7.097 –

41 6.972 6.992 6.100 2.576 − 7.231 –

42t 6.407 6.259 6.835 2.971 − 3.514 2.236

t test set molecules
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H9, green spheres). The hydrogen bond acceptor A3 is aligned
to the carbonyl oxygen present on six member ring; the ring
features are aligned onto fused six membered rings.
Hydrophobic feature is seen on the cyclo propyl ring nitrogen
(H9) and on the fluorine attached to fused ring (H7). An atom-
based QSAR model was generated with respect to these
pharmacophoric features, where in the complete data set of
molecules was aligned to hypothesis AHHRR. Four factor
PLS analyses was carried out using a training set of 30 mol-
ecules that yielded a R2 of 0.954 with SD value of 0.176,
Fisher test value of 130.5, and RMSE of 0.388. The predictive
ability of the model was assessed using a test set of 12 mole-
cules that gave a regression coefficient (Q2) of 0.65. All the
statistical parameters for the model are provided in Table 3.

Figure 3b shows the combined coefficients of QSAR mod-
el for possible substitution on the molecules, the blue cubes
represent favorable region for substitution, and at region of red
cubes substitutions are disfavored. To further ascertain the
structural features required for receptor binding and inhibition,
receptor-based QSAR analysis was performed on the molec-
ular set. All the 42 molecules were docked into active site of
TOPO-IVusing GLIDE 5.6 by applying XP docking protocol.

Dock pose analysis of the molecules corroborate with PHASE
results, where in we can see a hydrogen bond interaction be-
tween carbonyl oxygen on six membered ring (A3) and ALA
212. Dock pose of most active molecule 41 is shown in Fig. 4;
the molecules show hydrogen bond interaction with ALA 212
and GLY 80.

Fig. 7 CoMSIA S.D.* coefficient contour maps illustrating hydrophobic,
acceptor, and donor features in combination with 41 molecule. a The
yellow contour for hydrophobic favored region, white indicates the
hydrophilic favored region. b The magenta contour for H-bond

acceptor group increase activity, red indicates the disfavored region. c
The cyan contour for H-bond donor group increase activity, purple
indicates the disfavored region

Fig. 6 a CoMFA steric standard deviation (S.D.* coefficient) contour
maps illustrating steric and electrostatic features in combination with
molecule 41.CoMSIA S.D.* coefficient contour maps illustrating b
steric and c electrostatic features in combination with molecule 41. The

green contour indicates a sterically favored region; yellow maps calls for
a reduction of this potential to improve activity. Blue indicates a positive
charge preferred region, and red contour indicated an electronegative
group substitution to improve activity
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Fig. 8 Structural requirements for improving the binding and inhibitory
activity of isothiazoloquinolones
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Dock pose of all molecules thus obtained were subjected to
standard CoMFA and CoMSIA analysis. Statistically, the re-
sults obtained for CoMFA and CoMSIA indicate the stability

of 3D QSAR model, CoMFA model generated from 30 mol-
ecule training set gaveR2

ncv of 0.981 andQ
2
loo of 0.616. In the

case of CoMSIA model, R2
ncv of 0.995 and Q2

loo of 0.510

Table 6 Newly designed Staphylococcus aureus topoisomerase IV inhibitors

N

O

R

R
2

F

R
1

S

NH

O

Molecules R R1 R2

S-1 Cyclo propyl
O

CH
3

N

N

H

S-2 Cyclo propyl
O H

N

N

H

S-3 Cyclo propyl
O H

N

N
+

H

H

S-4 Cyclo propyl
NH CH

3 N

N

H

S-5 Cyclo pentyl
O

CH
3

N

N

H

S-6 Cyclo propyl
O

O

CH
3

N

N

H

S-7 Cyclo pentyl
O H

N

N

H

S-8 Cyclo propyl
NH CH

3 N

N

H

S-9 Cyclo propyl
O CH

3 N

N

H

S-10 Cyclo pentyl
NH CH

3 N

N

H
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were obtained. These models were externally validated using
12 test set molecules that yielded R2

pred of 0.55 and 0.56 for
CoMFA and CoMSIA, respectively. All the values obtained
are in acceptable range; these are tabulated in Table 4. Scatter
plot of experimental and predicted activity is shown in Fig. 5,
and values are provided in Table 5. The prediction error in the
model is measured in terms ofMAE and RMSE for test, based
on this, it was evident; the reason for low R2

pred values, MAE
of 0.449, and 0.448 for CoMFA, and CoMSIA is high in terms
of standard requirement of MAE (MAE ≤ 0.1 × training set
range AND MAE + 3 × σ ≤ 0.2 × training set range) [25].
Analysis of test set in the case of both CoMFA and CoMSIA
clearly indicated large deviation in prediction for molecules
24 and 33. Considering these molecules as outliers, the
resulting R2

pred values improved to 0.700 and 0.644 for
CoMFA and CoMSIA, respectively. Similar observations
were made in the case of PHASE model, wherein R2

pred value
improved to 0.729. The MAE values of 0.253, 0.256, and
0.192 for CoMFA, CoMSIA, and PHASE respectively were
obtained which are in acceptable range. Another important
parameter to be considered for QSAR models is the

applicability domain, representing the chemical space from
which a model is derived that gives a reliable prediction [26,
27]. Applicability domain of the training set was calculated as
reported by Zhang et al. and Kaur M [28, 29], training set
applicability domain (APD) was found to be about 3.789,
and all the nearest distance of test molecules were with this
APD value (Table 5).

The most promising factor of CoMFA and CoMSIA anal-
ysis is the elucidation of structural parameter required for bi-
ological activity, which can be obtained from contour map
analysis. CoMFA provides with steric (favored—green;
disfavored—yellow) and electrostatic (red for electronegative
favored and blue for electronegative disfavored) contour.
CoMSIA provides with hydrogen bond acceptor (favored—
magenta; disfavored—red), hydrogen bond donor (favored—
cyan, disfavored—purple), and hydrophobic (favored—yel-
low; disfavored—white).

All of the contours represented the default 80 and 20%
level contributions for favored and disfavored regions, respec-
tively. Dihydroisoindole of highest active molecule was ori-
ents toward sterically favored green region indicate that

Table 7 Predicted activities fitness score and glide score of Staphylococcus designed molecules

Molecules 3D-QSAR Pharmacophore modeling Glide score (kcal/mol) Distance (APD = 3.789)

Pred IC50 (CoMFA) Pred IC50 (CoMSIA) Pred IC50 Fitness score

S-1 6.526 6.325 6.822 1.676 − 6.093 3.605

S-2 6.418 6.325 6.567 1.562 − 5.594 3.315

S-3 6.413 6.546 6.629 1.553 − 5.168 3.605

S-4 6.206 6.428 6.050 2.145 − 6.292 3.464

S-5 6.189 6.324 6.465 1.726 − 5.891 3.714

S-6 6.125 6.428 6.512 1.592 − 6.307 3.741

S-7 6.128 6.313 6.499 1.637 − 5.092 3.464

S-8 6.246 6.237 6.434 1.840 − 5.621 3.741

S-9 6.128 6.028 6.388 1.651 − 7.539 3.162

S-10 5.918 6.125 6.018 2.566 − 6.679 3.605

Fig. 9 Docked pose of newly designedmolecule S-1 in the protein active site, showing the hydrogen bond interactions with ASP 76 andARG 138 (PDB
id. 4URN)
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substitution on it with steric group increases activity.
Hydrogen of isothiozole ring orients toward electronegative
region, replacement of this hydrogen by electronegative fa-
vored group or atom increases the activity. CoMSIA steric
and electrostatic map is similar to the CoMFA steric and elec-
trostatic map showing favored and disfavored regions besides
this methoxy of dihydroquinoline group orients toward elec-
tronegative group. Instead of methoxy, substitution of more
electronegative group will increase activity (Fig. 6).

Figure 7a–c shows the contour maps derived from the
CoMSIA PLS model. To demonstrate its affinity for the hy-
drophobic, H-bond acceptor and H-bond donor regions of
inhibitors. Dihydroisoindole orients toward hydrophobic re-
gion and methoxy of dihydroquinolline toward hydrophilic
region indicate substitution of dihydroisoindole with bulky
group, and substitution instead of methoxy with hydrophilic
group will increase activity.

Structural requirements for inhibitory activity of TOPO-IV
were elucidated based on the contour map analysis of both
CoMFA and CoMSIA (Fig. 8). The molecules were modified
to further improve the inhibition activity toward topoisomer-
ase. Compound 41 was chosen as a reference structure to

design new molecules that are within the applicability domain
range of 3.789. The newly designed molecules (Table 6) were
docked into the protein active site. Dock poses were used to
predict the activity by applying the 3D-QSARmodel (Table 7)
(Fig. 9).

The pharmacokinetic parameters (ADME) were calculated
for the designed molecules using QikProp 3.4. The com-
pounds were assessed for their basic parameters of
Lipinski’s rule of 5 and other pharmacokinetic parameters.
Supplementary file (Table S1) shows the results obtained from
QikProp with their permissible range. The important parame-
ters with their permissible ranges are tabulated in Table S1
(Supplementary Material). The optimum value of rotatable
bonds (0–15) and polar surface area (7–200 Angstroms) holds
a great importance on the oral bioavailability of the drug mol-
ecules. The active test isothiazoloquinolones derivatives dem-
onstrated results of the descriptors to be in the prescribed
range thus owing good bioavailability. Intestinal absorption
or permeation is also one of the important factors to be studied
in concern with the absorption of the drug molecule, which
was further confirmed by predicted Caco-2 cell permeability
(QPPCaco), used as model for gut–blood barrier. Caco-2 cell
permeability prediction of the test compounds indicates excel-
lent results predicting good intestinal absorption. Also, the
QikProp descriptor for blood/brain partition coefficient
QPlogBB showed reliable prediction for all the test com-
pounds and reference drugs. The cell permeability of the
blood brain barrier mimic MDCK cells (QPPMDCK) also
displayed reliable results. The aqueous solubility parameter
(QPlog S) of the test entities was assessed, and the compounds
were also found to be in the permissible range (< 0.5).

Molecular dynamics simulations

Stability, inter-intramolecular interaction and conformational
changes in a protein-ligand complex can be assessed insilco
using molecular dynamics simulations. Hence, 5 ns MD sim-
ulation was performed to compare newly designed molecules

Fig. 11 Average conformation of the binding pocket of protein complexed with a crystal structure ligand and bmolecule S-12 throughout the simulation
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Fig. 10 Root mean square deviations (RMSD) of protein backbone as
the function of simulation time of each complex with respect to initial
structure. Blue color shows RMSD of protein backbone of crystal struc-
ture ligand, whereas red color shows RMSD of protein backbone of
molecule S-12
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based on ligand-based QSAR and the crystal structure ligand.
Figure 10 shows RMSD of protein backbone as a function of
simulation time for each complex with respect to initial struc-
ture. Crystal structure complex showed RMSD change from
0.9 to 1.5 Å during first 200 ps and during the course of
simulation; RMSD ranged between 1.5 Å and 1.9 Å. In the
case of designedmolecule initially, the RMSD ranged from 0.8
to 1.5 Å in first 200 ps and between 1.5 to 2.1 Å for the rest of
the course. The averaged RMSD of the crystal structure com-
plex was found to be around 1.7 Å, whereas for S-1 protein
complex, it was around 1.8 Å indicating similar stability for
both the complexes. To understand the mode of interaction of
the ligand with protein, ligand interaction was analyzed
throughout the course of dynamics run. Figure 11 shows ligand
interaction diagram of crystal structure and designed molecule
complex during the course of the simulation. The binding site
of TOPO-IV protein has the following amino acid residues
GLU 45, ASP 48, ASN 49,ASP 52,GLU 53, ASN 56, TYR
58, ASP 76, ARG 79,GLY 80, MET 81, PRO 82, THR 83,
GLY 84, ILE 85, ILE 96, LEU 100, ARG 138, ASP 139, and
THR 168. The designed molecule showed 96% hydrogen
bond interaction with ASP 76. The crystal ligand showed 57,
35, and 30% hydrogen bond interaction with ARG 138 ASP
52 and GLU 53 respectively in simulation time (Fig. 12). The
interaction diagrams clearly indicate that the designed mole-
cule has similar mode of interaction with the receptor.

Conclusion

Combined computational approach was applied to give an in-
sight into the structural basis and inhibition mechanism for a
series of isothiazoloquinolone derivatives as TOPO-IV inhibi-
tors. 3D-QSAR studies were performed to provide a structural
framework for understanding the structure activity relationship
of these compounds. The generated pharmacophore model
AHHRR.3 exhibited good correlation and predictive power
and satisfactory agreement between experiment and theory.

Receptor-based 3D-QSAR by using CoMFA and CoMSIA
methodologies were used to build models for topoisomerase
IV inhibitory activity of the isothiazoloquinolone derivatives.
Based on the detailed contour map analysis, improvement in
topoisomerase IV binding affinity can be achieved through
conformationally restricted substitution at dihydroisoindole
and at nitrogen of isothiozole in reference molecule. The 3D-
QSAR model generated has a good predicative ability and can
be used to design newmolecules with better activity. Molecular
docking and molecular dynamics studies were performed to
understand possible binding poses and their stability for these
compounds. The low value of RMSD between the initial com-
plex structure and the energy minimized final average complex
structure suggests that the derived docked complex is close to
equilibrium. Further, ADME predictions were performed for
these compounds to determine their drug likeness.

Acknowledgments We greatly acknowledge Tripos Inc., USA and
Schrödinger LLC, New York, for providing the software. This research
was made possible through grants from DST-SERB (SB/EMEQ-004/
2013), CSIR (01/(2436)/10/EMR-II), and UGC (42-233/2013(SR)),
New Delhi, India. The authors SB and RI would like to acknowledge
the financial support from UGC for research fellowships. We wish to
express our gratitude to the Department of Chemistry, Osmania
University for providing facilities to carry out the research work.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Roca J (1995) The mechanisms of DNA topoisomerases. Trends
Biochem Sci 20:156–160

2. Peng H, Marians KJ (1995) The interaction of Escherichia coli
topoisomerase IV with DNA. J Biol Chem 270:25286–25290

3. Kampranis SC, Maxwell A (1996) Conversion of DNA gyrase into
a conventional type II topoisomerase. Proc Natl Acad Sci U S A 93:
14416–14421

Fig. 12 Protein-ligand contact interaction over trajectory with respect to a crystal structure ligand and b molecule S-12

604 Struct Chem (2018) 29:593–605



4. Shubham S, Bhanwar SC, Manish S, Ruchi M (2016)
Pharmacophore modeling and 3D-QSAR studies of galloyl
benzamides as potent P-gp inhibitors. Med Chem Res 25:1140–
1147

5. Mohammed AA, Janarthanan T, Naga ST (2017) Molecular in-
sights on analogs of imidazo[1,2-a] pyridine, azaindole, and
pyridylurea towards ParE using pharmacophore modeling, molec-
ular docking, and dynamic simulation. Struct Chem 28:1187–1200

6. Sree KS, Vijjulatha M (2010) Molecular docking and 3D-QSAR
studies on triazolinone and pyridazinone, non-nucleoside inhibitor
of HIV-1 reverse transcriptase. J Mol Model 16:1169–1178

7. Cramer III RD, Patterson DE, Bunce JD (1988) Comparative mo-
lecular field analysis (CoMFA). 1. Effect of shape on binding of
steroids to carrier proteins. J Am Chem Soc 110:5959–5967

8. Cramer III RD, Patterson DE, Bunce JD (1988) Cross validation,
bootstrapping, and partial least squares compared with multiple
regression in conventional QSAR studies. Quant Struct Act Relat
7:18–25

9. Klebe G, Abraham U, Mietzer T (1994) Molecular similarity indi-
ces in a comparative analysis (CoMSIA) of drug molecules to cor-
relate and predict their biological activity. J Med Chem 37:4130–
4146

10. Wold S, Johansson A, Cochi M (1993) PLS-partial least squares
projection to latent structures. In: Kubinyl H (ed) 3D–QSAR in
drug design: theory, methods and application. ESCOM, Liedin,
pp 523–550

11. Ujashkumar AS, Hemantkumar SD, Shivajirao SK, Vithal MK
(2010) Pharmacophore generation and atom-based 3D-QSAR of
novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors.
Mol Divers 14:559–568

12. Ramesh I, Srilata B, Sree KS, Vijjulatha M (2017) Molecular
modeling-driven approach for identification of Janus kinase 1 in-
hibitors through 3D-QSAR, docking and molecular dynamics sim-
ulations. J Recept Signal Transduc 37:453–469

13. JasonAW,QiupingW, Edlaine L, Akihiro H, Yongsheng S, Jijun C,
Christopher WM, Yangsi O, Steven DP, Jane AT, Christy LT,
Milind D,Michael JP, Barton JB (2006) Isothiazoloquinolones con-
taining functionalized aromatic hydrocarbons at the 7-position: syn-
thesis and in vitro activity of a series of potent antibacterial agents
with diminished cytotoxicity in human cells. Bioorg Med Chem
Lett 16:1272–1276

14. JasonAW,Yongsheng S, QiupingW, Edlaine L, Akihiro H, Jijun C,
Christopher WM, Yangsi O, Steven DP, Jane AT, Christy LT,
Milind D, Michael JP, Barton JB (2006) Biological evaluation of
isothiazoloquinolones containing aromatic heterocycles at the 7-
position: in vitro activity of a series of potent antibacterial agents
that are effective against methicillin-resistant Staphylococcus
aureus. Bioorg Med Chem Lett 16:1277–1281

15. Qiuping W, Edlaine L, Akihiro H, Godwin CGP, David MN,
Yongsheng S, Jane AT, Christopher WM, Christy LT, Jijun C,
Steven DP, Yangsi O, Milind D, Pucci MJ, Douglas DB, Barton
JB, Wiles J (2007) Isothiazoloquinolones with enhanced

antistaphylococcal activities against multidrug resistant strains: ef-
fects of structural modifications at the 6-, 7-, and 8-positions. J Med
Chem 50:199–210

16. Jun L, Sangita P, Nandini S, Stephen MS, Ryuta K, Masaya T,
Yasumichi F, Kevin JL, Sheo BS (2014) Structures of
Kibdelomycin bound to Staphylococcus aureus GyrB and ParE
showed a novel U-shaped binding mode. ACS Chem Biol 9:
2023–2031

17. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz
DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE,
Francis P, Shenkin PS (2004) Glide: a new approach for rapid,
accurate docking and scoring. 1.Method and assessment of docking
accuracy. J Med Chem 47:1739–1749

18. Ramesh I, Srilata B, Sree KS, Vijjulatha M (2016) Molecular
docking, 3D QSAR and dynamics simulation studies of imidazo-
pyrrolopyridines as janus kinase 1 (JAK 1) inhibitors. Comp Bio
Chem 64:33–46

19. Sybyl-X-2.1 version, (2013) Tripos Inc., St. Louis (MO)
20. Gasteiger J,Marsili M (1980) Iterative partial equalization of orbital

electronegativity—a rapid access to atomic charges. Tetrahedron
36:3219–3228

21. Kaminski GA, Fr iesner RA (2001) Evaluat ion and
reparametrization of the OPLS-AA force field for proteins via
comparison with accurate quantum chemical calculations on pep-
tides. J Phys Chem 105:6474–6487

22. Strahan GD, Keniry MA, Shafer RH (1998) NMR structure refine-
ment and dynamics of the K+-[d(G3T4G3)]2 quadruplex via parti-
cle mesh Ewald molecular dynamics simulations. Biophys J 75:
968–981

23. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term
in effective pair potentials. J Phys Chem 91:6269–6271

24. Andersen HC (1983) Rattle: a Bvelocity^ version of the shake al-
gorithm for molecular dynamics calculations. J Comput Phys 52:
24–34

25. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error
measures. Further studies on validation of predictive QSAR
models. Chemom Intell Lab Syst 152:18–33

26. Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O
(2016) Applicability domain for QSAR models: where theory
meets reality. Int J Quant Struct Prop Relat 1(1):45–63

27. Roy K, Kar S, Ambure P (2015) On a simple approach for deter-
mining applicability domain of QSAR models. Chemom Intell Lab
Sys 145:22–29

28. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) A novel
automated lazy learning qsar (all-qsar) approach: method develop-
ment, applications, and virtual screening of chemical databases
using validated all-qsar models. J Chem Inf Model 46:1984–1995

29. Kaur M, Kumari A, Bahia MS, Silakari O (2013) Designing of new
multi-targeted inhibitors of spleen tyrosine kinase (Syk) and zeta-
associated protein of 70 kDa (ZAP-70) using hierarchical virtual
screening protocol. J Mol Graph Model 39:165–175

Struct Chem (2018) 29:593–605 605


	Pharmacophore...
	Abstract
	Introduction
	Materials and methods
	Result and discussion
	Molecular dynamics simulations
	Conclusion
	References


