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Abstract The adenosine receptors have appeared as potent
and selective drug target in various diseases especially for
central nervous system diseases. Adenosine receptor A2A an-
tagonists have been known as potential treatment for
Parkinson’s disease (PD). Radiolabeled A2AR antagonists
can be used as positron emission tomography (PET) tracers
and diagnostic tools for PD. In the present investigation, we
perform the quantitative structure–activity relationship
(QSAR) analysis and docking studies of a series of PET
tracers as ligands and Adenosine receptors (A2AR) binding
affinity, to elucidate the structural properties required for
A2AR antagonist in treatment for PD. Several variable-
selection methods were used to choose the descriptors that
would lead to good QSAR model. Among several models
developed, the best model was a five-variable multiple linear
regression (MLR) equation with statistical parameters of
squared correlation coefficient R2 = 0.90 ± 0.01 and cross-
validated correlation coefficient Q2 = 0.84 ± 0.02. The
QSAR models were also constructed for A2AR selectivity to
tracer ligands, that yielded a four-variable model with
R2 = 0.94 ± 0.01 and Q2 = 0.89 ± 0.02. The most important
variables contributed in models construction involved: partial
charge, hydrophobic atoms, rotatable bonds, polar van der

Waals surface area, potential energy, and conformation-
dependent charge descriptors. Finally, molecular docking
analysis was carried out to better understand the interactions
between ligands and Adenosine receptors. The importance of
π-π stacking interactions between aromatic moiety of the li-
gands and triazine core of A2AR antagonist was confirmed.

Keywords Adenosine receptors . Positron emission
tomography (PET) . Quantitative structure–activity
relationship (QSAR) . Docking

Introduction

In recent years, the adenosine receptors have appeared as po-
tential drug targets [1, 2]. Adenosine, a purine nucleoside, is
an endogenous modulator of a number of physiological func-
tions in the central nervous system (CNS) as well as in periph-
eral tissues [3–5]. These receptors have been extensively char-
acterized and divided into four different subtypes including:
A1, A2A, A2B, and A3 [4]. It acts at specific membrane G-
protein receptors positively (A2A, A2B) or negatively (A1,
A3) linked to adenylatecyclase [4]. Among these four subtype
adenosine receptors in the CNS, the adenosine A2A receptors
(AR) are densely distributed in the central nervous system
(striatum, nucleus accumbens, and olfactory tubercles) which
controls intracellular AMP (Adenosine monophosphate)
levels and play an important role in the regulation of mood
and motor function [6]. Adenosine A2A receptor antagonists
have developed as potential treatment for Parkinson’s disease
in the past decade [7, 8].

Human Parkinson’s disease (PD) is a very serious neuro-
logical disorder, and current manner of treatment fail to
achieve long-term control. Since adenosine receptors antago-
nists have been shown to restore the deficits arise from decline
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of the striatonigral dopamine system, which is compromised
by the loss of striatal neurons in this disease, A2A antagonism
provides a possible treatment for PD [9]. Dopamine receptors,
as a subclass of G protein-coupled receptors, are important in
the vertebrate central nervous system. The existence of multi-
ple types of receptors for dopamine was first proposed in 1976
[10]. There are at least five subtypes of dopamine receptors,
D1, D2, D3, D4, and D5.Excitation of the A2A receptor was
found to reduce the binding desire of dopamine D2 receptors
for dopamine and to counter the actions of both D1 and D2

receptors on behavior, gene expression, and secondary mes-
senger systems [11, 12]. Consequently, blockade of the aden-
osine receptor could compensate for the lack of dopamine
D2receptor-mediated control of striato-Gpe neurons [12]. At
the moment, a number of pharmacological models that can
recapitulate many of the symptoms displayed in
Parkinsonian patients such as bradykinesia, rigidity, and trem-
or, and A2A receptor antagonists appeared to have a useful
effect in many of these models [13–18].

Positron emission tomography (PET) [19, 20] is the most
advanced methods for non-invasive medical imaging modality
that provides 3D maps of the brain. PET studies show better
accuracy and resolution in quantification of regional distribu-
tion and temporal measurements of radioactivity and thus are
superior to all other imaging modalities including single pho-
ton emission computed tomography (SPECT) [21, 22]. Both
agonist and antagonist ligands containing positron emitting
radioisotopes have been introduced for 3-dimensional in vivo
imaging of the receptors [23]. Such ligands for PET might
prove useful for eventual diagnostic use in the CNS. Ligands
for in vivo PET imaging of A1, A2A, and A3ARs have been
developed. A2AR antagonist PET tracers are of two types, xan-
thine and non-xanthine PET tracers [24, 25]. Development of
new ligands that may lead to new candidates for PET tracer to
improve physicochemical and pharmacokinetics properties
and mapping adenosine receptors is of great interest.

The search for new compounds with desired properties
requires enormous human resource and cost. That is why the
pharmaceutical industry has shown great interest in theoretical
approaches that enable the logical design of pharmaceutical
agents. Quantitative structure-activity relationships (QSAR)
studies, as significant research fields in drug design and me-
dicinal chemistry, have obtained an important place within
modern chemistry and therefore, there exists a keen interest
on the development of these techniques [26–28]. The purpose
of QSAR approaches is to develop some quantitative models
to predict activity of a compound, and these models can re-
duce the research time and cost of new drugs.

In this study, we built the QSAR model with molecular
descriptors, to explore the correlations of the molecular struc-
ture of a series of PET tracers as ligands and for A2A receptor
antagonist binding affinity and selectivity of the tracer be-
tween A1 and A2A receptors. Molecular docking analysis

was also carried out to better understand the interactions be-
tween ligands and Adenosine receptors.

Methods

Data set The data set employed for the QSAR analyses con-
tains 35 Xanthine ligands as A2AR antagonist PET tracers
were taken from the literature [29] and applied for QSAR
analysis. The structures of all the compounds along with their
experimental binding affinity and selectivity are presented in
Table 1. The A2AR selectivity (SA2R) and binding affinity
(AA2R) values ranged between 0.1–20 and 7.84–16,500 nM,
respectively. These values were converted into the corre-
sponding logarithm values and utilized as dependent
variables.

Descriptor calculation Optimized and energy-minimized
structures of the molecules were used to calculate molecular
descriptors. The energy minimization of the molecules was
done using AM1 (Austin model) Hamiltonian method avail-
able in MOPAC module with a convergence criterion of
0.001 kcal/molÅ. Various kinds of molecular descriptors in-
volving: physichochemical, structural, partial charge, topolog-
ical, and geometrical descriptors were computed using
Molecular Operating Environment (MOE, Chemical
Computing Group Inc. 2011) package.

As a first step in variables reduction, descriptors exhibiting
constant or nearly constant values as well as those with poor
correlation to the dependent variables (R2 < 0.10) were
removed.

Descriptor selection Feature selection is of considerable im-
portance in QSAR modeling to reduce the computational
complexity, improving the prediction performance of con-
structed models and providing a better understanding of the
underlying process [30]. Three feature selection procedures
including: genetic algorithm (GA), enhanced replacement
method (ERM), genetic function approximation (GFA), and
stepwise multiple linear regression (stepwise-MLR) were ap-
plied to choose the best subset of descriptors out of a large
pool of descriptors.

Genetic algorithms Genetic algorithms (GA), explained by
Holland [31], mimic natural evolution and selection. In bio-
logical systems, genetic data that distinguishes the individual-
ity of an organism is stored in chromosomes. Chromosomes
are replicated and passed onto the next generation with selec-
tion criteria depending on fitness. Genetic information can
however be changed through genetic operations such as cross-
over and mutation.
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Table 1 Structures and experimental A2AR selectivity and A2AR binding affinity for A2AR antagonist PET tracers

Structures and experimental A2AR-selectivity and A2AR Binding affinity for A2AR 
antagonist PET tracers

Compd. no. Structure Name A2A (nm) Selectivity

1
2-(furan-2-yl)-7-(3-((4-(4-(2-methoxyethoxy)phenyl)piperazin-

1-yl)methyl)phenyl)-[1,2,4]triazolo[1,5-f]pyrimidin-5-amine
2.8 601

2
7-(3-((4-(2-fluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-

yl)methyl)phenyl)-2-(furan-2-yl)-[1,2,4]triazolo[1,5-
f]pyrimidin-5-amine

2.7 642

3
2-(furan-2-yl)-7-(3-(4-(4-(2-methoxyethoxy)phenyl)piperazin-

1-yl)phenyl)-[1,2,4]triazolo[1,5-f]pyrimidin-5-amine
1 1059

4
5-(7-((3-fluorophenoxy)methyl)-hexahydro-1H-pyrido[1,2-

a]pyrazin-2(6H)-yl)-2-(furan-2-yl)-[1,2,4]triazolo[1,5-
a][1,3,5]triazin-7-amine

0.2 16500

5 2-butyl-9-methyl-8-(3H-1,2,4-triazol-3-yl)-9H-purin-6-amine 6.6 11.92
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Table 1 (continued)

6 9-methyl-2-pentyl-8-(3H-1,2,4-triazol-3-yl)-9H-purin-6-amine 3.3 7.84

7
9-methyl-2-phenethyl-8-(3H-1,2,4-triazol-3-yl)-9H-purin-6-

amine
4.7 17.02

8
8-(furan-2-yl)-3-(2-(4-(4-methoxyphenyl)piperazin-1-yl)ethyl)-

3H-[1,2,4]triazolo[1,5-g]purin-5-amine
0.1 1695

9
8-(furan-2-yl)-3-(2-(4-(4-(2-methoxyethoxy)phenyl)piperazin-

1-yl)ethyl)-3H-[1,2,4]triazolo[1,5-g]purin-5-amine
0.9 669

10
8-(furan-2-yl)-3-(2-(4-(4-(2-methoxyethoxy)phenyl)piperidin-

1-yl)ethyl)-3H-[1,2,4]triazolo[1,5-g]purin-5-amine
0.7 519

11
N5-(2-(4-(2,4-difluorophenyl)piperazin-1-yl)ethyl)-2-(furan-2-
yl)-N5-methyl-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diamine

4 205

12
5-(4-(6-chloro-2,3-difluorobenzyl)piperazin-1-yl)-2-(furan-2-

yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-amine
5 100
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Table 1 (continued)

13
2-(furan-2-yl)-5-(4-(2,4,6-trifluorobenzyl)piperazin-1-yl)-

[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-amine
3 433

14
4-(furan-2-yl)-1-(3-methoxybenzyl)-1H-pyrazolo[3,4-

d]pyrimidin-6-amine
2 -

15
(S)-N5-((1-(2,3-difluorobenzyl)pyrrolidin-2-yl)methyl)-2-

(furan-2-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diamine
5 250

16
(S)-2-(furan-2-yl)-N5-((1-(2,4,5-trifluorobenzyl)pyrrolidin-2-
yl)methyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diamine

8 250

17
(S)-2-(furan-2-yl)-N5-((1-(2,4,6-trifluorobenzyl)pyrrolidin-2-
yl)methyl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-5,7-diamine

2 800

18
(S)-N5-((1-(2-chloro-3,6-difluorobenzyl)pyrrolidin-2-

yl)methyl)-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazine-
5,7-diamine

4 250

19
4-hydroperoxy-N-(7-methoxy-4-morpholinothiazolo[5,4-

c]pyridin-2-yl)benzamide
3 450
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Table 1 (continued)

20 3-(3,4-dimethylbenzyl)-5-(3-methoxyphenyl)-1H-1,2,4-triazole 20 69

21
7-(2-(4-(2-fluorophenyl)piperazin-1-yl)ethyl)-2-(furan-2-yl)-
7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine

0.6 894

22
7-(2-(4-(2,4-difluorophenyl)piperazin-1-yl)ethyl)-2-(furan-2-

yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine
0.6 1600

23
2-(furan-2-yl)-7-(2-(4-(2,3,4-trifluorophenyl)piperazin-1-

yl)ethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-
amine

0.6 1498

24
2-(furan-2-yl)-7-(2-(4-(4-(2-methoxyethoxy)phenyl)piperazin-
1-yl)ethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-

5-amine
1.1 1340

25
7-(2-(4-(2-fluoro-4-(2-methoxyethoxy)phenyl)piperazin-1-

yl)ethyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-
c]pyrimidin-5-amine

0.4 1736

26
7-(2-(4-(2-fluoro-4-(3-methoxypropoxy)phenyl)piperazin-1-

yl)ethyl)-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-
c]pyrimidin-5-amine

0.6 1158
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Table 1 (continued)

27
2-(furan-2-yl)-N7-(4-methoxyphenethyl)-N7-methyl-

[1,2,4]triazolo[1,5-f]pyrimidine-5,7-diamine
1.8 473

28
2-(furan-2-yl)-7-(2-(4-(4-(2-methoxyethoxy)phenyl)piperazin-

1-yl)ethoxy)-[1,2,4]triazolo[1,5-f]pyrimidin-5-amine
2.8 405

29
2-(furan-2-yl)-7-(2-(4-(4-(2-methoxyethoxy)phenyl)piperazin-

1-yl)ethylthio)-[1,2,4]triazolo[1,5-f]pyrimidin-5-amine
1.5 965

30
2-(furan-2-yl)-N7-(2-(4-(4-(2-

methoxyethoxy)phenyl)piperazin-1-yl)ethyl)-N7-methyl-
[1,2,4]triazolo[1,5-f]pyrimidine-5,7-diamine

1 1580

31
N7-(2-(4-(2,4-difluorophenyl)piperazin-1-yl)ethyl)-2-(furan-2-

yl)-N7-methyl-[1,2,4]triazolo[1,5-f]pyrimidine-5,7-diamine
2.5 694

32
4-(hydroxymethyl)-N-(4-methoxy-7-phenylbenzo[d]thiazol-2-

yl)benzamide
0.5 -

33
N-(7-(3-aminophenyl)-4-methoxybenzo[d]thiazol-2-yl)-5-

methylthiophene-2-carboxamide
0.8 -
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Genetic function approximation (GFA) GFA is a helpful
technique for searching in a large parameter space when the
data is small. This technique can choose descriptors automati-
cally and optimize parameters, expand a population of models
simultaneously, and avoid local optima. Models are improved
by performing a crossover operation to recombine terms of
better scoring models. GFA technique is a method using the
idea of natural selection and evolution in higher dimensional
space to choose optimal descriptor combinations able of
explaining bioactivity variation among training compounds
from a large pool of possible descriptor combinations [32, 33].

The best subset selection version 1.2 program available at
https://teqip.jdvu.ac.in/QSAR_Tools/ was used to carry out
the GFA variable selection.

Enhanced replacement method Enhanced replacement
method (ERM) suggested by Mercader et al. [34] is an im-
proved version of replacement method (RM) [35, 36]. This
technique approaches the minimum of S by judiciously taking
into account the relative errors of the coefficients of the least-
squares model given by a set of d descriptors d = X1, X2,..., Xd.

SD2 ¼ 1

N−d−1
∑N

i¼1res
2
i ð1Þ

In this equation, N is the number of molecules in the set of
train, and resi the residual for molecule i, the difference be-
tween the experimental activity and predicted activity. More
detailed information about these algorithms can be found in
reference [34].

Stepwise-multiple linear regressions Stepwise-MLR, a
multiple-term linear equation was constructed step-by-step.
The basic approach contains (1) recognized an initial model,

(2) iteratively Bstepping,^ that is, frequently altering the model
at the previous step by adding or removing a predictor variable
in accordance with the Bstepping criteria,^ and (3) terminating
the research when stepping is no longer possible given the
stepping criteria, or when a specified maximum number of
steps have been attained. Especially, at each step all variables
are reviewed and evaluated to determine which one will con-
tribute most to the equation. That variable is then contained in
the model, and the process starts again.

Model construction and validation The data set was ran-
domly divided into a training set (80%), which was used to
adjust the parameters of the models, and a test set (20%) to
evaluate the prediction ability of the models obtained.

QSARmodels were generated for this series using multiple
linear regression (MLR) and partial least squares (PLS) re-
gression methods and those which come out with promising
results are discussed here.

For each model cross-validated correlation coefficient (Q2),
correlation coefficients of calibration of train set (R2train), cor-
relation coefficient of prediction set (R2pred), root mean square
error of calibration (RMSEC) and root mean square error of
prediction (RMSEP) were calculated. Y-randomization test was
also applied to internally validate the models obtained. In Y-
randomization test, the model was reconstructed based on ran-
domized values of Y variable. The correlation coefficients of
randomization (R2Yrand) values imply that acceptable models
were obtained for the given data sets by the current modeling
method and they did not show any chance correlation [37]. The
external validation of final model was also checked by mean
absolute error (MAE) based criteria [38]. The applicability
domain (AD) of final QSAR models was explored based on
standardization approach proposed by Roy et al. [39].

Table 1 (continued)

34
N-(7-(3-aminophenyl)-4-methoxybenzo[d]thiazol-2-yl)-5-

methylfuran-2-carboxamide
1 -

35
(S)-(8-amino-2-(5-bromofuran-2-yl)-[1,2,4]triazolo[1,5-

a]pyridin-6-yl)(2-(methoxymethyl)pyrrolidin-1-yl)methanone
16 65.8
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Molecular docking

For the present docking study, AutoDock program, version 4.1.1,
was adopted. Discovery Studio Visualizer (Accelrys Software
Inc) and Pymol (The PyMOL Molecular Graphics System) pro-
grams were employed for docking simulation. Fine 3D structure
with a resolution of 3.27 Å of Adenosine A2A receptor was re-
trieved from the Protein Data Bank (PDB ID, 3UZA).

All of the compounds in the dataset were docked into the
binding site of Adenosine receptor to provide the interaction
between the ligand and the receptor. Initially, for the purpose
of docking studies, the protein was considered without ligand
and water molecules. Hydrogen atoms and the active torsions
of ligand were assigned using Autodock Tools (ADT).
AutoGrid was employed to generate grid maps around the
active site. The volume of the grid was set to cover the binding
site with a grid-spacing interval of 1.0 Å with dimensions of
40 × 40 × 40 Å.When docking was performed, some residues
in the protein active site and all the torsional bonds in the
ligand were set free. Lamarckian Genetic Algorithm (LGA)
was employed then for conformational search with standard
protocol. The final structures were clustered and ranked ac-
cording to the Autodock scoring function.

Results and discussion

Tables 2 and 3 represent the statistical performance of model
obtained based on selected descriptors with different variable
selection methods for A2AR binding affinity and selectivity o
respectively. GFA, ERM, GA, and stepwise procedures were
used for variable selection. MLR and PLS methods were used
to build models. The number of descriptors base on the

statistical parameters arriving from the models with different
number of descriptors. From Tables 2 and 3, it is observed that
for all the models the data fit (R2 = 0.68–0.92) and the predic-
tive capability of models (R2

pred ≥ 0.68) is acceptable.
The best QSAR model obtained forA2AR binding affinity

was ERM-MLR, although the stepwise-MLR model showed
similar statistical performance (Table 2). The multiple linear
regressions based on ERM-selected descriptors, were performed
to set up a statistically reliable model with good predictive abil-
ity for A2AR binding affinity including: R2train = 0.90 ± 0.01,
Q2 = 0.84 ± 0.02, and R2pred = 0.80 ± 0.15.The optimal QSAR
model of A2AR binding affinity according to ERM-MLR was

Log AA2Rð Þ ¼ − 8:77� 0:01ð Þ þ 0:33� 0:01ð Þ density

− 0:24� 0:01ð Þ Q VSA POL

− 1:3� 0:10ð ÞweinerPol þ 1:46� 0:11ð ÞKier1
− 0:40� 0:01ð ÞE ang:

ð2Þ

Both of density and Kier1 descriptors, which represent the
molecular shapes, showed positive effect impact on binding
affinity whereas weinerPol descriptor as a distance-based mo-
lecular structure showed negative impact on binding affinity.
Q_VSA_POL describes the total polar van der Waals surface
area of molecules and showed negative impact on binding af-
finity. Table 4 gives a brief description of the most important
descriptors which selected and involved in all constructed
QSAR models for binding affinity. The capacity factor descrip-
tors (vsurf_CW1 and vsurf_CW2) represent hydrophilic regions
and computed as the ratio of hydrophilic surface on the overall
molecule surface. GCUT_SLOGP descriptors represent the
atomic contribution to logP (octanol-water partition coefficient).
Most of involved descriptors indicate on the importance of par-
tial charge properties and volume, shape, and subdivided surface

Table 2 Statistical parameters of models by QSAR for prediction power A2AR Binding affinity.

Model RMSEc RMSEp RMSEcv R2
train Q2 R2

pred R2 Yrand No. of vars

Stepwise MLR 0.18±0.02 0.22±0.06 0.24±0.03 0.87±0.02 0.78±0.06 0.79±0.08 0.18±0.03 5

GFA – MLR 0.22±0.02 0.26±0.09 0.29±0.04 0.80±0.04 0.68±0.08 0.71±0.22 0.17±0.02 4

GA - PLS 0.27±0.02 0.27±0.11 0.37±0.04 0.72±0.05 0.56±0.07 0.72±0.12 0.18±0.02 6

ERM – MLR 0.16±0.01 0.19±0.04 0.20±0.01 0.90±0.01 0.84±0.02 0.80±0.15 0.17±0.01 5

The significance level of 0.05 was set for all calculations

Table 3 Statistical parameters of models by QSAR for prediction power A2AR-selectivity

Model RMSEc RMSEp RMSEcv R2train Q2 R2
pred R2

Yrand No. of vars

Stepwise MLR 0.20+0.01 0.24+0.03 0.30+0.05 0.92+0.01 0.84+0.04 0.81+0.01 0.24+0.03 5

GFA – MLR 0.20±0.01 0.23±0.03 0.29±0.03 0.92±0.01 0.84±0.02 0.78±0.18 0.21±0.03 4

GA - PLS 0.21±0.01 0.45±0.10 0.62±0.23 0.91±0.01 0.52±0.16 0.72±0.05 0.48±0.07 6

ERM – MLR 0.17±0.01 0.18±0.06 0.23±0.03 0.94±0.01 0.89±0.02 0.88±0.01 0.21±0.02 4

The significance level of 0.05 was set for all calculations
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area properties of Xanthine ligands, as PET tracer, on binding
affinity to A2AR.

Table 3 showed the statistical performance of different
QSARmodels obtained based on selected descriptor of various
variable selections for A2AR selectivity to Xanthine ligands. As
could be seen, the best QSAR model obtained for A2AR selec-
tivity was ERM-MLR with five variables. The multiple linear
regressions based on ERM-selected descriptors, were per-
formed to set up a statistically reliable model with good predic-
tive ability for A2AR selectivity including R2train = 0.94 ± 0.01,
Q2 = 0.89 ± 0.02, and R2pred = 0.88 ± 0.01.The optimal QSAR
model of A2AR selectivity according to ERM-MLR was

Log SA2Rð Þ ¼ 2:62� 0:03ð Þ þ 0:65� 0:02ð ÞPEOE PC−

− 0:41� 0:01ð Þb rotRþ 0:65� 0:01ð ÞE ang

− 0:79� 0:02ð ÞPC−:

ð3Þ

Total negative partial charge (PEOE_PC-) and angle bend
potential energy (E_ang) with positive regression coefficients

showed positive impact on selectivity of A2AR. The next two
variables, namely b_rotR, that calculate fraction of rotatable
bonds, and PC-, which describes the negative partial charge,
have negative contributions to the A2AR selectivity to
Xanthine ligands.

Table 5 represents a brief description of the most important
descriptors which selected and involved in all constructed
models for A2AR selectivity to Xanthine ligands. The
vsurf_DW23 descriptor intents to describe lipophilicity and
vsurf_IW1 represent hydrophilic regions of a molecule. As
could be obvious from Table 5, the molecular flexibility and
electrostatic interactions play important role in the selectivity
of adenosine A2A receptor to Xanthine ligands.

Xanthine ligands that show high affinity and selectivity to
A2AR antagonists usually contain alkyl/alkynyl moieties at N
atoms of Xanthine backbone [40]. The ability of Xanthine
ligand to form hydrogen bonding and steric hindrances in
molecular structure has considerable impact on A2AR selec-
tivity and A2AR binding affinity.

Table 5 Selected descriptors for
the QSAR study of A2AR
selectivity

Descriptor Description

a_hyd Number of hydrophobic atoms

b_rotN Number of rotatable bonds. A bond is rotatable if it is not in a ring, and
neither atom of the bond is such that (di + hi) < 2.

BCUT_SLOGP_0 The BCUT descriptors using atomic contribution to logP (using the
Wildman and Crippen SlogP method) instead of partial charge.

BCUT_SMR_2 The BCUT descriptors using atomic contribution to molar refractivity
(using the Wildman and Crippen SMR method) instead of partial charge.

E_ang Angle bend potential energy. In the Potential Setup panel, the term
enable flag is ignored, but the term weight is applied.

GCUT_SMR_3 The GCUT descriptors using atomic contribution to molar refractivity
(using the Wildman and Crippen SMR method) instead of partial charge.

PC+ Total positive partial charge.

PEOE_VSA + 0 Sum of vi where qi is in the range (0.00, 0.05).

rings The number of rings.

vsurf_DW23 Contact distances of vsurf_EWmin.

vsurf_IW1 Hydrophillic integy moment.

Table 4 Selected descriptors for
the QSAR study of A2AR binding
affinity

Density Molecular mass density: weight divided by vdw_vol.

Dipole y The y component of the dipole moment (external coordinates).

E_ang Angle bend potential energy. In the Potential Setup panel, the term enable flag is
ignored, but the term weight is applied.

GCUT_SLOGP_3 The GCUT descriptors using atomic contribution to log P (using the Wildman and
Crippen SlogP method) instead of partial charge.

Kier1 First kappa shape index: (n-1)2/m2

Q_VSA_POL Total polar van der Waals surface area. This is the sum of the vi such that |qi| is
greater than 0.2. The vi are calculated using a connection table approximation.

vsurf_CW1 Capacity factor

vsurf_CW2 Capacity factor

WeinerPol Wiener polarity number: half the sum of all the distance matrix entries with a
value of 3 as defined in [Balaban 1979].
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Figure 1 compares the experimental and the predicted
values of A2AR selectivity and A2AR binding affinity for
ERM-MLR models.

Table 6 shows the performance parameters of MAE-based
criteria for validation tests of A2AR binding affinity and selec-
tivity QSAR models. MAE and MAE + 3δ values, concor-
dance correlation coefficient (CCC),Q2

F1, andQ
2
F2 [41] were

calculated for both QSAR models. These parameters were
calculated using BXternal Validation Plus^ tool that is freely
available at http://dtclab.webs.com/software-tools. As can be
seen from Table 6, both QSAR models show high values for
CCC, Q2

F1, and Q2
F2 indicating the reliability and high-

performance prediction of proposed models to estimate and
predict new compounds A2AR selectivity and A2AR binding

affinity. If aQSARmodel follows the criteria:MAE≤ 0.1 × da-
ta range and MAE ± 3σ ≤ 0.2 × data range, then the model
could be consider as good predictor. From Table 6, these
criteria are preset in both final QSAR models.

The performance ofmodels obtained from prediction errors
was shown in Table 6. The values of variance, Bias2 and mean
square error (MSE) parameters confirm no systematic error in
quantitative predictions.

The applicability domain (AD), as a tool to check the reli-
ability of prediction power of QSAR models, was calculated
using BApplicability domain using standardization approach^
freely available at http://dtclab.webs.com/software-tools. The
AD analysis of the A2AR binding affinity model reveals that
one outlier in train set (compound 2, Table 1). Removing of
compound considered as outlier had no significant effect on
the predictive power of the model. The AD analysis of the
A2AR selectivity model show no outliers in both train and test
set.

Molecular docking

Molecular docking studies of these compounds with adeno-
sine A2A receptor represented very good binding interactions
and warrants further studies to corroborate their binding with
human A2A receptor for the design and development of better
treatment for PD. All of the ligands were docked into the
active site of A2A receptor to study the possible mode of their
interactions. Docking of these ligands into inhibitor binding
cavity ofA2AR confirms that these ligands dock in a similar
binding modus like native co-crystallized ligand (Fig. 2).
Inhibitor binding cavity of A2AR is predetermined by residues
I1e-66, Ala-63, Leu-85, Phe-168, Met-177, Leu-249, His-
250, Asn-253, Ala-277, Ile-274, T4g-330, and His-278.
Analysis of the receptor/ligand complex models generated
after successful docking of the compounds was based on pa-
rameters such as (1) hydrogen bond interactions, (2) hydro-
phobic interaction, (3) binding energy, (4) RMSD of active
site residues and (5) orientation of the docked compoundwith-
in the active site (Fig. 3). Lowest RMSD value was 1.37 Å (for
compound 14) and RMSD value lower or close to 2 Å was
considered as a successful docking [42]. In this research,
RMSD values were within 2.0 Å representing our docking
methods are valid for the given structures.

The most powerful ligand was selected to perform the
docking study in the dataset. Figure 3 shows the several of
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Fig. 1 The fitted values resulting from linear models on the x-axis
relative to the experimental values on the y-axis for ERM-MLR method
for (a) binding affinity and (b) selectivity of PET tracer ligands to A2A

antagonist

Table 6 Performance parameters from validation of QSAR models obtained

Model Data range MAE MAE + 3δ Range × 0.1 Range × 0.2 CCC Q2
F1 Q2

F2 Variance Bias2 MSE

Log(AA2R) 7.82 0.137 0.356 0.782 0.1564 0.940 0.999 0.889 0.0407 0.1395 0.0895

Log(SA2R) 7.82 0.123 0.367 0.782 0.1564 0.965 0.998 0.932 0.0512 0.1486 0.01121
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interactions between the ligand and the receptor. An aromatic
π-π stacking between aromatic ligand with Phe168 for all
ligands was the common interaction pattern. An amino group
of the ligand as hydrogen bond donor has main role in the
high-affinity ligands and with side chain of the conserved
Asn253 are established the powerful polar interactions. Also,
a hydrophobic interaction between amino triazine core and the
side chain of Asn253 can be observed.

Conclusions

As a first study on QSAR modeling of binding affinity and
selectivity of Xanthine PET tracers to A2AR antagonist, dif-
ferent modeling strategies including ERM-MLR, GA-PLS,
stepwise-MLR, and GFA-MLR were performed to achieve a
reliable and robust model. The QSAR models obtained indi-
cated the impact of molecular properties such as van derWaals
surface area combination with the electrostatic property, the
number of double bonds and rotatable bonds, partial charge,
hydrophilic properties and molecular potential energy in the
binding affinity, and selectivity of A2AR antagonist to
Xanthine-type PET tracers. The provided model could be a
helpful tool in the prediction of the A2AR binding affinity and
A2AR selectivity, in a fast and costless manner, for any future
studies that may require an estimation of these important char-
acteristics of A2AR antagonist PET tracers.

Docking study reveals that the π-π stacking interactions
between aromatic ligand and triazine core was the common
interaction pattern in the binding affinity and selectivity of
A2AR antagonist to Xanthine-type PET tracers. The impor-
tance of hydrogen bonding interactions of ligands and amino
group of A2AR antagonist was also confirmed.
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