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Abstract A 31-year-old letter from Professor Richard F. W.
Bader to Professor Lou Massa outlining the connections be-
tween the quantum theory of atoms in molecules (QTAIM)
and density functional theory (DFT) especially with regard to
the first Hohenberg-Kohn theorem is brought to light. This
connection has not often been the topic of such a focused
review by Bader and is presented here for the first time. The
scientific importance of this letter is, in the opinion of the
presenter, as timely today as it was back then in 1986. In
Bader’s own opening words: B... that if I sent you a summary
of what I think are the important connections between our
work and density functional theory, ...^. He then takes us in
a grand tour of the foundations of QTAIM culminating into
the antecedents of a paper he later published with Professor
Pierre Becker, whereby the Hohenberg-Kohn theorem is
shown to operate at the level of an atom-in-a-molecule.
Bader closes his letter by suggesting to Massa: BStudy these
two charge distributions – they are proof of the theorem of
Hohenberg and Kohn^. By that Bader meant that when the
charge distributions of two atoms or groups are identical with-
in a given precision, then the kinetic and total energy contri-
butions of these atoms to the corresponding molecular

quantities are also identical. It is revealing to follow the intel-
lectual threads weaved by Bader which provides us with a
glimpse of his thought processes and intuition that guided
him to some of his key discoveries. The lucidity, rigor, and
clarity characteristic of Bader and the informality of style of a
letter makes it of pedagogic and historic interest.

Keywords The quantum theory of atoms inmolecules
(QTAIM) . Density functional theory (DFT) . Quantum stress
tensor . Ehrenfest force . Transferability . Hohenberg-Kohn
theorem

Introductory remarks

On 15 January 2012, Professor Richard F. W. Bader (1931–
2012) [1] passed away. In August of the same year of his
death, Bader’s family asked three of his close friends (Dr.
Todd A. Keith, Professor Paul W. Ayers, and the presenter)
to classify, preserve, and take charge of his scientific archives
representing a 60-year career. The Bader archives include, for
example, copies of all the theses he has supervised, earlier
drafts of manuscripts of papers, correspondence with editors,
and a great number of letters to colleagues on scientific topics.
The family authorized the three of us to use the archive at our
discretion when we see fit for the benefit of science.

Below is an important letter that was written by Bader to
Professor Lou Massa in 1986 that is brought to light from the
dusty archives boxes for the first time. The letter acquires its
importance, in my (the presenter’s) opinion, for at least the
following reasons:

(1) The letter is of current and timely scientific importance,
since it is an early condensed review of what became to
be known in later literature as the quantum theory of

This article is dedicated to Professor Lou Massa and to the memory of
Professor Richard F. W. Bader.

* Chérif F. Matta
cherif.matta@msvu.ca

1 Department of Chemistry and Physics, Mount Saint Vincent
University, Halifax, NS B3M 2J6, Canada

2 Department of Chemistry, Dalhousie University, Halifax, NS B3H
4J3, Canada

3 Department of Chemistry, Saint Mary’s University, Halifax, NS B3H
3C3, Canada

Struct Chem (2017) 28:1591–1597
DOI 10.1007/s11224-017-0946-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-017-0946-7&domain=pdf


atoms in molecules (QTAIM) [2–4]. More importantly, it
seems to be one of the earliest statements by Bader that
focuses primarily on the relation between QTAIM and
density functional theory (DFT) [5] (in addition to rela-
tively few original studies slanted primarily toward DFT,
e.g., [6, 7] and a late definitive paper [8]). Bader Bgives in
words the essential idea that is formally developed in the
papers^, to quote him from the tenth page of his letter.
As he often does, Bader does not use atomic units in this
letter, so all fundamental constants are explicitly written
in the equations, which adds clarity by readily revealing
physical dimensions.

(2) As a former graduate student of Professor Bader, I be-
came immediately aware of the mutual esteem and ad-
miration between him and Professor Massa. As a new
student in his research group, Bader has given me the
assignment of summarizing Lou Massa’s work with
Bill Clinton on the reconstruction, from X-ray structure
factors, of idempotent density matrices that are consistent
with the scattering data. Bader asked me to present it in
his research group meeting and, later, this became the
topic of my first graduate seminar at McMaster
University. In 2011, The Journal of Physical Chemistry
A devoted a special issue to honor Richard F. W. Bader
[9]. Out of the 80 articles that appeared in the Bader
festschrift, three were coauthored by Lou Massa includ-
ing the opening article that gave tribute to Bader’s scien-
tific accomplishments [1]. My 17 years of close friend-
ship with Richard Bader allow me to be almost certain
that should he had been alive today he would have de-
sired to contribute in honoring and celebrating Lou
Massa’s career by contributing to his festschrift.

(3) The letter has historical interest since Bader gives an
insight to what motivated him to explore certain ques-
tions, his intuition at Bsmelling the answer^ (quoting
Walter H. G. Lewin ofMIT) before being able to actually
prove it, and his process of thought in formulating key
concepts that underpin his theory of atoms in molecules.
These aspects cannot usually find their way into print.
Furthermore, this letter summarizes some core concepts,
predates, and leads the way to the principal themes of
Bader’s now classic 1990 Oxford University Press book:
Atoms in Molecules: A Quantum Theory [2].

In the following reproduction of the letter, the following
conventions have been observed:

(1) Equation numbers have been added (which were not in
the original letter) to facilitate future referencing and sci-
entific use of this letter.

(2) In his letter, Bader refers to a number of enclosed re-
prints. Since only a photocopy of the letter itself is what
was recovered and not any of its enclosures, we have no

way to be certain of the references that accompanied the
letter. Bader refers specifically to a BReprint A^ and a
BReprint B^. The information given in the body of the
letter about these reprints, and considering the date of the
letter and the page numbers referred to at various parts of
the letter, etc., it is determined beyond a reasonable doubt
by the presenter that Reprint A is Ref. [10] and Reprint B
is Ref. [11]. These references (in addition to two more
that were published after the letter) were inserted in the
body of the letter for the convenience of the reader.
(There was neither bibliographic citations nor a list of
references in the original text, the only citations were to
Reprints A and B).

(3) Text underlined for emphasis in the original text is itali-
cized in the transcription to conform with current publi-
cation standards.

(4) Any other alteration to—or insertion in—the original
text (e.g., one instance of capitalization after a period,
explanation of an abbreviation, etc.) is included in square
brackets, as customary.

The informality of the letter and the usual rigor and preci-
sion of Bader’s style combined with his characteristic passion
make it a revelation to read. To give the reader a visual sense
of the actual letter, Fig. 1 reproduces the first paragraph of the
first page and the signed last page. It is the hope of the pre-
senter that this recently discovered letter will be incorporated
into the body of literature on Bader’s quantum theory of atoms
in molecules (QTAIM).

Text of Richard F. W. Bader’s 1986 letter to Lou
Massa

November 1, 1986
Dear Lou:
I cannot believe that it is November and that I still have not

written to you. I hope that you have not forgotten the offer you
made at the Gordon conference – that if I sent you a summary
of what I think are the important connections between our work
and density functional theory, you would in turn comment on
these observations. While I have included some reprints, I be-
lieve that the important points are summarized in this letter. The
reprints are there to make certain that all the physics and math-
ematics are as I say they are. You are most welcome to check.

Perhaps you wouldn’t mind however, to start by reading
the reprint labelled A [10]. This is a two page summary of the
theory of atoms in molecules which recently appeared in JCP.
It emphasizes what is most important, that the whole theory is
derived from a single fundamental principle of physics. It is
not a model and most important of all, it is not arbitrary.

The theory is the result of extensive studies we have made
on the properties of molecular charge distributions. We made
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the discovery that regions of space bounded by a surface of
zero flux in the gradient vector of the charge density,

∇ρ rð Þ⋅n rð Þ ¼ 0 ð1Þ
as well as yielding a disjointed partitioning of a molecule into
atoms, were the most transferable pieces of some total system
that one can define. We were at the same time studying the
properties of kinetic energy densities G(r) and K(r) where

G rð Þ ¼ ℏ2

2m
∇r⋅∇r′Γ

1ð Þ r; r′
� �jr¼r′ ð2Þ

and

K rð Þ ¼ −
ℏ2

2m
∇r

2Γ 1ð Þ r; r′
� �jr¼r′ ð3Þ

We observed that when the distribution of charge of an
atom could be transferred between different molecules
with little or no change (and this can happen for a spatial
region bounded by zero flux surfaces) then the kinetic
energy density, either K or G exhibited the same degree
of transferability. Not only can this happen, it happens
even though the neighbouring atoms are totally different

Fig. 1 First paragraph of the first
page of the 11-page letter of
Richard F. W. Bader to Lou
Massa (top) and the signed last
page (bottom)
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in the different systems. (Please see reprint B [11], page
72), for a diagram of some of the original examples of
diatomic charge densities containing a Li atom with near-
ly transferable properties). Thus when ρ(r) is transferable
locally over the basin of an atom up to its bounding zero
flux surface, so are the kinetic energy densities G(r) and
K(r) and thus so is the average kinetic energy of the atom
defined as (call the atom Ω)

T Ωð Þ ¼ X
Ω

G rð Þdr ¼ X
Ω

K rð Þdr ð4Þ

This identity between the integrated values of the two ki-
netic energies, which of course is also obtained over all space,
is a result of the zero flux boundary constraint since locally

K rð Þ − G rð Þ ¼ −
ℏ2

4m
∇2ρ rð Þ ð5Þ

and thus

X
Ω

K rð Þdr −X
Ω

G rð Þdr ¼ −
ℏ2

4m X
Ω

∇2ρ rð Þdr

¼ −
ℏ2

4m X dS∇ρ⋅n ¼ 0 ð6Þ

We reasoned (in 1971) that if there was a virial theorem for
an atom in a molecule then not only would the kinetic energy
of the atom be transferable when its charge density was the
same in two different molecules, so would its total energy, for
by the virial theorem one has E(Ω) = – T(Ω). Such a result
would be interesting for a number of reasons: a) one would
have a partitioning of E, the total energy of a molecule (in-
cluding nuclear-nuclear and electron-electron repulsions) into
a sum of spatially additive contributions,

E ¼ −@
Ω
T Ωð Þ¼@

Ω
E Ωð Þ ð7Þ

b) the potential energy contribution to the total energy of an
atom would necessarily be defined as the virial of the forces
exerted on the electron, the virial of the Ehrenfest force. (As
discussed in more detail later, it is this definition of a potential
energy that makes possible the spatial partitioning of potential
energies of interactions such as nuclear-nuclear and electron-
electron repulsions). c) [F]inally, the observation that the
transferability of the charge density over an atom results in a
transferable total energy of the atom is in complete accord
with the theorem of Hohenberg and Kohn which states that
E is a functional of ρ [12]. It would appear that the theorem is
true not only for some total system, but also for an atom in a
molecule, i.e. a quantum subsystem. Furthermore, the energy
that exhibits this transferability is defined by the virial theorem

to be E(Ω) = T(Ω) + V(Ω), where the potential energy V(Ω) is
the virial of the electronic forces. Only this definition of a
potential energy (which as discussed below, contains the
nuclear-nuclear repulsion energies and the virials of the net
forces exerted on the nuclei) has the property of yielding a
total energy that is unchanged when the charge density is
transferable. Corresponding kinetic and potential energy den-
sities can be defined and it is these densities, both the potential
and as already noted above, the kinetic, that exhibit the prop-
erty of transferability in parallel with that for the change den-
sity itself. These are the energy densities of density functional
theory and this is an observation, not an opinion. More about
the parallelism between ρ(r), G(r) and V(r) is given below
after the quantum mechanical basis for all of this has been
outlined.

Because of these observations (and how well they
accounted for the fundamental chemical idea of atomic
and group properties), I became convinced that it should
be possible to obtain a definition of the atoms and their
properties from quantum mechanics – that it should be
possible to extend quantum mechanics to obtain a descrip-
tion of the average properties [of] an open subsystem of
some total system and that the subsystem itself would be
uniquely defined – because our observations applied only
to a region bounded by a surface of zero flux in grad ρ.
This has proved possible through a generalization of
Schwinger’s principle of stationary action.

You have probably seen the operational statement of
this principle given in texts on field theory, that the vari-
ation in the system Lagrangian as caused by the action of

some generator Â on the state function is given by

δL̂ ÂΨ
h i

¼ i
ℏ

Ĥ ; Â
h iD E

; ð8Þ

where

δΨ ¼ − iεℏÂΨ ð8’Þ

(In the texts you read the principle is probably given in the
operator representation, where the operators are varied but that
is not important.) This statement can be generalized to a sub-
system Ω of the total system if the subsystem is bounded by a
surface through which the flux in the gradient vector of the
charge density is zero. The generalized statement of the prin-
ciple reads

δL ÂΨ;Ω
h i

¼ ε

2

� � i
ℏ

Ψ Ĥ ; Â
h i��� ���ΨD E

Ω
þ complex conjugate

� �

ð9Þ
The symbol 〈〉Ω denotes a particular form of averaging. One

integrates the coordinates of all the electrons but one over all
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space [followed by a sum over both spins] and the coordinates
of the remaining electron over the space of subsystem,

Â
D E

Ω
¼ X

Ω

dr X dτ
0
Ψ*ÂΨ ð10Þ

This definition of a subsystem average is determined by the
atomic statement of the principle of stationary action.

Just a brief word about the principle being unique to a
subsystem bounded by a zero flux surface. In the variation
of the Lagrangian, one must include a variation of the surface
of the subsystem. This leads to the term

X
t2

t1

dt X dS rð ÞL rð ÞδS rð Þ ð11Þ

appearing in the general result. Its presence prevents any fur-
ther progress in the general case and Schwinger’s principle is
not recovered in the general case. At the point of variation,
where this term is obtained, the Lagrangian density of a many-
particle system (including interactions between indistinguish-
able particles, a true many-body system) reduces to

L rð Þ ¼ −
ℏ2

4m
∇2ρ rð Þ ð12Þ

(see p. 76 of reprint B [11]) and the troublesome term may be
replaced by the corresponding variations

ℏ2

4m X dS rð Þ ∇2ρ rð ÞδS rð Þ ¼ δf ℏ2

4m X
Ω

dr ∇2ρ rð Þg
−

ℏ2

4m X dS rð ÞX dτ ′ ∇Ψ*� �
δΨþΨ*∇ δΨð Þ þ ∇ δΨ*� �

Ψþ δΨ*∇Ψ
	 


⋅n rð Þ

ð13Þ

Demanding the variation of the first term on rhs [right hand
side] vanish at every stage of the variation is mathematically
equivalent to imposing the zero flux boundary condition on
every trial density and this is how the zero flux surface con-
dition enters.

The result is a great simplification in the variation of the
Lagrangian – the remaining surface terms combine to yield
an integral of the varied quantum mechanical current density.
This physical result may be combined with the remaining terms
to yield an expression free of all surface terms (a characteristic
of the general statement of Schwinger’s principle) and it leads
to the final statement as given above, a statement which is the
analogue of the all space result and which reduces to the all
space result when the bounding surface is taken to infinity.

The two most important equations governing the mechan-
ics of an atom in a molecule are obtained by setting the oper-

ator Â in the atomic statement of the principle of stationary
action equal respectively to p̂, the momentum operator for an
electron and to r̂⋅p̂, the virial operator, r̂ being the electronic
position operator. The former operator gives the Ehrenfest

force and thus yields the equation of motion for an atom in a
molecule. The latter yields the atomic statement of the virial
theorem and through it, a definition of the potential, kinetic
and total electronic energies of an atom in a molecule. All of
these properties are expressible in terms of the quantum me-
chanical stress tensor, a quantity introduced by Pauli. This
tensor is totally determined by the one-density matrix. Thus
every property, including the potential energy, is expressible
in terms of a corresponding three-dimensional density distri-
bution which is then integrated over the atom to obtain its
average value. These atomic values, when summed over all
the atoms in a molecule, yield the average values for the total
molecule. This additivity of atomic properties is a necessary
requirement for the existence of additivity schemes which
result from the transferability of atomic properties between
molecules as is observed for the energy and other properties.

It is to be stressed that only for a quantum subsystem can
the theorems of quantummechanics and in particular the virial
theorem be derived variationally from the principle of station-
ary action. While one can partially integrate Heisenberg’s
equation of motion for the operator r̂⋅p̂ over any arbitrarily
defined region of space, this does not yield an expression
which is the analogue of the virial theorem for the total system
for two reasons: the kinetic energy is not uniquely defined for
a subsystem with arbitrarily defined boundaries and the virial
for an arbitrary subsystem contains a spurious contribution,
either positive or negative in sign, arising from the nonvanish-
ing of the integral of (ℏ2/4m)∇2ρ. The vanishing of this inte-
gral and the unique definition of a kinetic energy for an atom
are both consequences of the quantum boundary condition of
zero flux. Thus only a quantum subsystem has a uniquely
defined energy.

The quantum stress tensor is

σ
$

rð Þ ¼ ℏ2

4m
∇∇ þ ∇′∇′
� �

− ∇∇′ þ ∇′∇
� �	 


Γ 1ð Þ r; r′
� �j

r¼r′

ð14Þ

The equation for the Ehrenfest force is

F Ω; tð Þ ¼ mX
Ω

dr
∂J rð Þ
∂t

� �
− X dS rð Þ σ

$
rð Þ⋅n rð Þ ð15Þ

and the corresponding differential statement or density expres-
sion obtained from the divergence equation satisfied by the
energy-momentum tensor is

F r; tð Þ ¼ m
∂J rð Þ
∂t

− ∇⋅ σ$ rð Þ; ð16Þ

where

F r; tð Þ ¼ X dτ ′Ψ* −∇V̂
� �

Ψ ð17Þ
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V̂ is the total potential energy operator and ∇ is the gradient

operator for an electron of coordinate r. (Xdτ' means integra-
tion over coordinates of all electrons but one [and summation
over all spins]).

For a stationary state, the atomic statement of the virial
theorem is

−2T Ωð Þ ¼ V Ωð Þ ð18Þ
where the potential is defined as the virial of the Ehrenfest

force, −r � ∇� σ$. It includes the virial of the forces acting over
the surface of the atom.

V Ωð Þ ¼ Vb Ωð Þ þ VS Ωð Þ
¼ X

Ω

drX dτ
0
−r � ∇V̂� �

Ψ*Ψþ X dS rð Þ r� σ$ rð Þ � n rð Þ

ð19Þ
The local expression of this law obtained from the diver-

gence relationships is

− 2G rð Þ ¼ − r⋅∇⋅ σ$ rð Þ þ ∇⋅ r⋅ σ$ rð Þ
h i

−
ℏ2

4m
∇2ρ rð Þ ð20Þ

Since the integral of ∇2ρ(r) over an atom vanishes, the
integration of this local expression yields the atomic statement
of the virial theorem. All energy densities and integrated

values are expressible in terms of σ
$
.

V rð Þ ¼ −r⋅∇⋅ σ$ þ∇⋅ r⋅ σ$
� �

¼ Tr σ
$

rð Þ ð21Þ
and

K rð Þ þ G rð Þ ¼ −Tr σ
$

rð Þ ð22Þ

where Tr σ↔(r) denotes the trace of σ
$
. Because of the atomic

virial theorem, all of the following expressions integrate to the
same total energy for an atom Ω or for the total system

X
Ω

K rð Þ þ V rð Þ½ �dr ¼ 1

2 X
Ω

Tr σ
$

rð Þdr ¼ −X
Ω

G rð Þdr

¼ E Ωð Þ ð23Þ
When Ω equals all space the energy E is

E ¼ X Tr σ
$

rð Þdr ¼ T þ V ð24Þ

This differs form the usual molecular energy W in that the
virial V equals the average of the usual potential energy oper-

ator V̂ (which includes the nuclear-nuclear repulsions) plus
the virial of the net force exerted on the nuclei

V ¼ V̂
D E

þ@
α
Xα⋅∇αW ð25Þ

When the forces are zero – an equilibrium geometry,

V ¼ V̂
 �

and E = W. For an isolated atom V ¼ V̂
 �

.

Thus transferability of the one-density matrix over a spatial
region bounded by a zero flux surface yields transferability of

the stress tensor σ
$

rð Þ (which in turn yields a transferable energy
E(Ω) for the atom) and transferability of the charge density ρ(r),
the diagonal elements of the one-density matrix. It is only nec-
essary that the properties of the one-matrix, Γ(1)(r, r') be trans-
ferable in the immediate neighbourhood of its diagonal ele-
ments r = r' for the kinetic energy density to be transferable.
We have shown that all of the information necessary for the
definition of the charge and current densities and of the kinetic
and potential energies are obtained from a Taylor series of ex-
pansion of Γ(1)(r, r') about a point r = r' by retaining terms only
up to second-order.

Transferability of group properties is not a consequence of a
corresponding constancy in the orbitals or geminals that are used
to construct the density matrices. By their very nature, orbitals
and geminals extend over the total space of a system and even
when chosen in some localized formwill have Btails^ that belong
to different environments of the group in question as the group is
transferred between systems. An atom on the other hand, can
exhibit a transferability of form in the one-density matrix (in
the neighbourhood of its diagonal elements) over its entire basin
up to its atomic surface of zero flux sufficient to insure a change
in energy between systems of less than one kcal/mole (less than
0.001 au). Atoms have no tails and what is most remarkable is
that this consistency in their properties is obtained in spite of
changes in their neighbouring fragments. This essential property
of the chemical atom has its basis in the observation that an atom
of theory responds only to changes in the total (Ehrenfest) force
exerted on its charge distribution and not to changes in the indi-
vidual contributions to this force, changes which are large even
between closely related systems, be they members of a homolo-
gous series or chemically similar in structure. If it was not for this
property of responding only to the total force, there would be no
chemically recognizable atoms or functional groups.

One does not in general, encounter such near perfect exam-
ples of transferability. They simply serve to illustrate that the
constancy in the total energy that is obtained when the charge
density ρ(r) is transferable is a consequence of the transferability

of the stress tensor σ
$

rð Þ. This implies that the potential energy
that is thus defined by a transferable ρ(r) is necessarily the virial
of the Ehrenfest force, V rð Þ locally and V Ωð Þ over an atom.

That the potential is defined as the virial of the force on an
electron is significant for there is no other way of obtaining a
physically unique partitioning of potential energies of interac-
tion. First of all, one cannot partition the Hamiltonian as this
violates the indistinguishability of the electrons form the start
and is therefore, physical unacceptable. It is the potential en-
ergy of interaction between two systems that is difficult to
partition. How much of an energy of repulsion between two
systems belongs to one and how much to the other? Physics
does provide an answer to this problem. A force is local – the
Ehrenfest force acting on an electron is the force at the
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position of the electron. The virial of the force then gives a
local potential energy. The virial of the Ehrenfest force for one
electron gives the share of the total potential energy belonging
to that electron. This gives in words the essential idea that is
formally developed in the papers – a development which in-
cludes a proof that such a definition of the potential energy
leads to a variational definition of the corresponding total
energy.

I shall close with one final example of a chemical group
that is essentially completely transferable both experimentally
and theoretically – the methylene group of a saturated straight
chain hydrocarbon. Professor Wiberg of Yale and my group
have just completed a study of the atomic properties in hydro-
carbon molecules and we have used the theory to identify the
fragments that are responsible for the additivity of the energy
in the normal alkanes and to find the physical origin of
Bstrain energy^ in small ring organic compounds [this study
appeared the following year in Ref. [13]]. The two charge
distributions shown in the figure are for the central methylene
group (CH2) in pentane and one of the two equivalent such
groups in hexane. Their charge distributions are identical, their
kinetic and total energies are identical to within better than
0.001 au (better than one kcal/mole which is also the experi-
mental result), they have the same net charge and the same
values for their multipole moments, they have the same cor-
relation energy as calculated using the gradient corrected func-
tional of Langreth, Mehl, Perdew and Hu and they have the
same atomic volume as determined by the intersection of the
zero flux interatomic surfaces for the group and the outer
envelope of the charge density. This is the repeating methy-
lene group whose contribution to the energy of a hydrocarbon
was measured experimentally years ago by Rossini at NBS.
The atoms of theory are indeed the atoms of chemistry. I find it
most exciting, not only to be able to identify the atoms of
chemistry in general, but to look at the individual examples
that we find. Study these two charge distributions – they are
proof of the theorem of Hohenberg and Kohn.

Sincerely yours,
Signed: Richard [See Figure 1]
R.F.W. Bader,
Professor of Chemisty
RFWB/ks
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