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Abstract Atoms and bonds are central concepts in structural
chemistry, but neither are concepts that arise naturally from
the physics of condensed phases. It is ironic that the internu-
clear distances in crystals that are readily measured depend on
the sizes of atoms, but since atoms in crystals can be defined in
many different ways, all of them arbitrary and often incom-
patible, there is no natural way to express atomic size. I pro-
pose a simple coherent picture of Atoms-in-Crystals which
combines properties selected from three different physically
sound definitions of atoms and bonds. The charge density of
the free atom that is used to construct the procrystal is repre-
sented by a sphere of constant charge density having the quan-
tum theory of atoms in molecules (QTAIM) bonded radius.
The sum of these radii is equal to the bond length that corre-
lates with the bond flux (bond valence) in the flux theory of
the bond. The use of this model is illustrated by answering the
question: How big are atoms in crystals? The QTAIM bonded
radii are shown to be simple functions of two properties, the
number of quantum shells in the atomic core and the flux of
the bond that links neighbouring atoms. Various radii can be
defined. The univalent bonded radius measures the intrinsic
size of the atom and is the same for all cations in a given row
of the periodic table, but the observed bonded radius depends
also on the bond flux that reflects the chemical environment.
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Introduction

The purpose of this paper is to show that it is possible to define
atoms and bonds in a crystal using a model that is easy to
manipulate, is physically correct, involves only measurable
properties and leads to insights into the factors that determine
chemical structure. The Atoms-in-Crystals model is both sim-
ple and revealing. It is used to answer the question posed in the
title of the paper: How big are atoms in crystals?

The nineteenth century saw the introduction of a model of
chemical structure in which atoms are linked by bonds to form
molecules. The twentieth century saw the development of
quantum mechanics which describes the structure and proper-
ties of isolated atoms and molecules, but fails to identify the
traditional atoms and bonds that were assumed to form the
molecule. The quantum theory of atoms in molecules
(QTAIM, [1]) describes a way of dividing the negative charge
surrounding the nuclei in a molecule into atomic basins, but
the atomic basins do not correspond to the traditional atoms
because they do not all contain a nucleus [1 p.42] nor is the
network of bond paths that link the basins isomorphous with
the network of traditional chemical bonds [2]. Yet, the atom
and bond model shows no signs of being abandoned. Both
models continue in use because they are complementary and
both are needed for a complete description. The atom and
bond model are simple and intuitive and can be used to gen-
erate plausible molecular and crystal structures using insights
that tend to be lost in the quantum mechanical calculations.
The atom and bond model are needed to provide the positions
of the atoms needed by the Schrödinger equation.
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In the original atom and bond model, atoms are assigned a
valence equal to the number of bonds the atom can form. In
the Lewis model, this valence is identified with valence shell
electrons, and each bond is formed by a pair of electrons, one
drawn from each of the atoms forming the bond. Bonds of
higher order are formed when two or three bonds link the
same pair of atoms. The Lewis model assigns one unit of
valence to each bond. The model only works well for organic
molecules, but it can be extended to inorganic crystals by
lifting the restriction that bond orders must be integers.
Instead of each unit of valence generating exactly one bond,
each atom shares its valence charge in the most symmetric
way among as many bonds as it can form, subject to the
constraint that the valence of each atom is conserved and that
the restrictions of three-dimensional space are respected.

These requirements are built into the bond valence model
[3]. In this model, the valence associated with each bond has
the same properties as the electrostatic flux, φ, that links the
positive charge of the atomic core with the negative charge the
atom uses to form the bond. Electrostatic flux, φ, is defined by
Eq. 1:

ϕ ¼ ∫E:dA ð1Þ
where E is the electric field produced by a given charge and
the integral is over the area A. Integrating Eq. 1 over a com-
plete sphere yields the total flux generated by a charge, V, as
shown in Eq. 2:

ϕ ¼ V=ε0 ð2Þ

where ε0 is a dimensional constant. If V is the valence charge
of an atom,φ is the total flux that the atom distributes between
its various bonds. For convenience, V is measured in electron
units, which are also the units of valence, and the constant of
proportionality 1/εo is chosen as 1.0 so that the bond flux is
also measured in valence units, vu. A bond is formed between
two atoms when they each contribute a valence charge −q to
form the bonding charge of −2q. The bonding charge is then
linked by a flux, s, to the positively charged cores of each of
the two bonded atoms. The flux or valence of a bond, s, is thus
equal (in these units) to q, the charge that each atom contrib-
utes to form the bond. The important property of the flux is
that it depends only on the amount of charge contributed to
form the bond. Most importantly, it does not depend on where
the charge is located so that one can imagine the bonding
charge to lie either in the middle of the bond, as assumed in
the covalent model, or on the anion, as assumed in the ionic
model. Whichever model is chosen, the theorems describing
the electrostatic flux yield the same result. If the bond network
is bipartite, the ionic model is usually preferred, because it
allows these theorems to identify stable bond networks and
determine the distribution of bond flux [3]. Equation 1 cannot
be used directly to determine the bond flux from the quantum

mechanical charge distribution because the size and location
of the charge used for bonding are not a quantum mechanical
observable; hence, its electric field can be neither calculated
nor measured, but the bond flux, s, can be determined exper-
imentally because it correlates with the bond length, R, ac-
cording to either Eqs. 3 or 4 where R0, B and ν are empirical
constants that depend on the bond type [4, 5].

s ¼ exp R0−Rð Þ=Bð Þ ð3Þ
s ¼ R=R0ð Þ−ν ð4Þ

An important property of the flux theory is the bonding
strength, S, of an atom, which is the flux of a typical bond
formed by the atom. It is defined by Eq. 5, where V is the
valence of the atom and <N> is its average coordination
number:

S ¼ V= < N > ð5Þ

By convention, the anion is assumed to be oxygen, which
is the only anion considered in the present study. The bond
network can be constructed by recognizing that stable bonds
only form between atoms with similar bonding strengths (the
valence matching rule). The distribution of flux among the
bonds can be calculated using the two bond network equa-
tions. Equation 6 expresses the conservation of bond valence,
and Eq. 7 ensures the most symmetric distribution of bond
flux [3]:

Vi ¼ ∑
j
si j ð6Þ

0 ¼ ∑loopsi j ð7Þ

The subscripts i and j label the bonded atoms. The values of
sij that are the solutions to these equations are the same as the
resonance bond numbers derived by Boisson and collabora-
tors for Si-O bonds using the Lewis model [6].

Although the bond flux (i.e., bond valence) provides infor-
mation about the lengths of the bonds in a crystal (Eqs. 3 or 4),
it provides no information about the size of the atoms. The
atom size clearly depends on the distribution of negative
charge, which for the reasons given above cannot be deter-
mined from the bond flux. For an isolated atom (a free atom),
the charge distribution is readily calculated, but once the atom
is bonded to other atoms, there is no natural way to associate
the negative charge with a particular nucleus. QTAIM divides
the whole of space into atomic basins or fragments with bond
paths linking the charge maxima of basins that share a com-
mon face [1]. The intersection of each bond path with its
interatomic face is a charge density minimum along the bond
path and is known as the bond critical point. The distance
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between the charge maximum (normally located at the nucle-
us) and the bond critical point is known as the bonded radius
[1]. If the positions of the nuclei are known, all of these prop-
erties can be calculated by solving the Schrödinger equation;
alternatively, they can be measured by X-ray diffraction.

In general, the interatomic faces in this partitioning are
not flat and the bond paths are not straight, but the geom-
etry can be simplified if one replaces the true charge den-
sity by the procrystal or promolecule charge density. This
is generated by placing the neutral free atom charge den-
sities at the locations of their corresponding nuclei in the
crystal. The result is a surprisingly good approximation to
the true charge density [7]. While the difference, known
as the deformation density, is significant, it is small and
rarely exceeds 1 e.Å−3.

The topologies (the arrangements of basins and bond
paths) of the true and procrystal charge distributions are
identical, and their geometries (the locations of the bond
critical points) differ by only a few hundredths of an
Ångström [7]. The principal difference between the
QTAIM and procrystal descriptions lies in the way in
which the atoms are defined. In the QTAIM partitioning,
the atoms are space filling fragments with clearly defined
boundaries separating the atoms, and while the procrystal
density can also be partitioned in this way, it is more
convenient to define atoms by the free atom charge den-
sities used to construct the procrystal. The result is a pic-
ture of overlapping spherical atoms. This definition of an
atom has many advantages. Every atom of a given ele-
ment has exactly the same charge density regardless of its
valence state or bonding environment. All the atoms are
spherically symmetric and electrically neutral and remain
so however they are manipulated. Since the procrystal
charge density is obtained by adding together the charge
densities of the atoms, moving the atoms changes the
procrystal charge density while preserving the charge den-
sities of the individual neutral atoms. The procrystal
charge density is readily calculated from the known free
atom charge densities, though for many applications, a
numerical value is not needed. Finally, the difference be-
tween the procrystal and true charge densities, i.e., the
deformation density, is readily calculated, allowing its
physical significance to be assessed.

The adoption of a picture of neutral atoms does not inval-
idate the use of the ionic model. The charge that actually forms
the bond presumably lies in the region where the atoms over-
lap, but since the bond flux does not depend on knowing the
physical location of this charge, the electrostatic flux theorems
can be used even when the bonding charge is assumed to lie
entirely on the anion. Assigning a formal charge to each atom
does not imply a physical charge transfer, and the true charge
density is always correctly approximated by the neutral atoms
of the procrystal.

This study uses a model that combines these ideas. Atoms-
in-Crystals takes features from each of the above models. The
atoms are defined as the neutral free atoms of the procrystal
model and are represented by a spherical contour of constant
charge density. The radius of this sphere is the QTAIM bonded
radius thus ensuring that the spheres representing two bonded
atoms just touch at the bond critical point. Each bond in this
network is characterized by its electrostatic fluxwhich is equal
to the charge (valence) contributed by each of the two bonded
atoms. Since the bond is usually straight in this model, its
length is assumed to be equal to the sum of its two bonded
radii. Atoms whose bonds are not all the same length are
represented by several concentric spheres, each corresponding
to one of the bond lengths.

Bond lengths

In the early days of the ionic model, atoms were assumed to be
spheres having radii that were characteristic of the ion. The
radii could be calculated from the lengths of the bonds, but
only if the absolute radius of one atom was already known,
which in practice meant that the radius of oxygen had to be
arbitrarily chosen. Different choices led to different scales
which have been well reviewed by Gibbs and colleagues [8].
As the structures of more complex crystals were published, it
was realized that the radius of an atom also depends on its
coordination number, leading to the Shannon-Prewitt list of
atomic radii which define the bond type not only by the chem-
ical element and its valence but also by its coordination num-
ber [9]. While this improved the accuracy with which radii
could be used to predict average bond lengths, it did not ac-
count for the variable lengths of the individual bonds formed
within the same coordination sphere.

Gibbs and collaborators [10] have used quantum methods
to calculate M-O bond lengths, RMO, in symmetric coordina-
tion spheres with different coordination numbers, N, for a
variety of cations, M, to show that in these systems, the rela-
tionship between bond length and the Pauling bond strength,
<s>, is given by Eq. 8.

RMO ¼ 1:39 < s > =nð Þ−0:22 ð8Þ

Here, n is the row number of the cation in the periodic table
(ignoring the row with hydrogen and helium), and the Pauling
bond strength, defined in Eq. 9, is the average flux of the
bonds formed by an atom with a coordination number N.

< s >¼ V=N ð9Þ

As the row number, n, is equal to the number of quantum
shells in the atomic core, it can serve as a measure of the
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intrinsic size of an atom. Equation 8 can be rewritten as Eq. 10
(c.f. Eq. 4).

< s >¼ n 1:39=RMO½ �4:55 ð10Þ

Since the bond - flux - bond - length relation can be equally
well represented by either the exponential function (Eq. 3)
or the power law (Eq. 4), it is reasonable to expect that
Eq. 10 could, with a suitable choice of parameters, equally
well describe the relationship between the flux, s, and the
length, RMO, of an individual M-O bond using Eq. 11.

s ¼ n� exp R0−RMOð Þ=bð Þ ð11Þ

Equation 11 can be rewritten in the form of Eq. 12:

RMO ¼ R1−B1ln s=nð Þ ð12Þ

which can be expanded to give Eq. 13:

RMO ¼ R1 þ B1ln nð Þ−B1ln sð Þ ð13Þ

This equation is both physically revealing and easily tested.
Using the two fitted parameters (R1,B1) = (1.38, 0.36) Å, the
calculated values of RMO reproduce the observed M-O bond
lengths for Main Group cations, M, with an accuracy of about
0.1 Å. Although not accurate enough for quantitative work,
Eq. 13 shows that the sizes of atoms, as represented by their
bond lengths to oxygen, follow a remarkably simple pattern
that reveals much about the physics of the chemical bond. The
length of an M-O bond depends primarily on just two param-
eters: n, being the core size of the cation M, representing the
repulsive force tending to lengthen the bond, and s, the bond
flux, representing the attractive force tending to shorten the
bond. The repulsive term depends on the intrinsic size of the
atoms; the chemistry is all contained in the attractive term that
depends on the way the bonding charge relaxes when the
crystal is formed.

Equation 13 can be simplified by replacing the first two
terms by Rn

RMO ¼ Rn−B1ln sð Þ ð14Þ

where

Rn ¼ R1−B1ln nð Þ ð15Þ

When s = 1, RMO and Rn are equal, showing that Rn, which
is the length of a univalent M-O bond, depends only on the
size of the atomic core; Eq. 15 also implies that all the cations

in the same row of the periodic table should have the same
univalent M-O bond length, and presumably the same univa-
lent radius.

Not many Main Group cations actually form univalent
bonds; the fluxes observed for most M-O bonds are either
much larger or much smaller than 1.0 vu. A more typical
M-O bond is one that has a bond flux equal to the cation
bonding strength, S, given by Eq. 5. The length of such a
bond, RS, known as the typical bond length, is the length
of the bond most likely to be found in a crystal.
Substituting the bonding strength, S, for the flux, s, in
Eq. 13 gives Eq. 16 which defines the typical length,
RS, of an M-O bond. Most of the following discussion
focuses on the typical bond.

RS ¼ R1 þ B1ln nð Þ−B1ln Sð Þ ð16Þ

The flux, s, shown in Eq. 13 can be decomposed into two
parts as shown in Eq. 17.

s ¼ S þΔs ð17Þ

S is the bonding strength of the cation that determines the
typical bond length. It is an intrinsic property of the atom
related to its position in the periodic table. Δs is the change
in the bond flux that occurs when the bond network relaxes to
its equilibrium state. The value of s, hence Δs, is determined
by the network equations (Eqs. 6 and 7) the latter being the
condition that leads to the most symmetric distribution of
fluxes among the bonds.

Atomic radii

In order to extend this analysis from bond lengths to
bonded radii, a set of measured bonded radii is needed.
Gibbs and collaborators [8] have reported bonded radii,
rM, and rO, for 14 Main Group M-O bond types in various
high symmetry MON configurations. Since all the bonds
in each of the given configurations are the same length,
their bond fluxes are equal to the Pauling bond strength
(Eq. 9), and the bonded radii of the atoms are all mea-
sured using the calculated true charge-density distribution.
Among the bond types they report are MgON polyhedra
with the four different coordination numbers, N, shown in
Table 1. The bond fluxes, sMgO, are listed in column 2, the
bond lengths, RMgO, in column 3, and the bonded radii,
rMg and rO, in columns 4 and 5.

As expected, the radii of both the magnesium and the ox-
ygen atoms increase as the bond length increases and the bond
flux decreases, but the fractional bonded radii, fMg and fO,
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defined in Eqs. 18 and 19 and listed in the last two columns,
are independent of the bond flux.

f M ¼ rM=RMO ð18Þ
f O ¼ rO=RMO ð19Þ

For Mg-O bonds, the fractional bonded radii ,
fMg = 0.43 and fO = 0.57, are invariant and do not depend
on the bond flux or bond length so that fM and fO can be
calculated if the bonded radii are known for just one
bond. The fractional bonded radii can then be used to
calculate rM and rO for any other Mg-O bond whose
length, RMO, is known. As Gibbs and collaborators point
out, and as the constancy of the fractional bonded radii
show, increasing the length of a bond increases both the
cation and the anion bonded radii in fixed proportions [8].
The anion radius is not a constant as assumed in many
atomic radius models (see the discussion in [8]).

Table 2 lists the bonded radii, rM and rO (columns 4 and 5),
and fractional bonded radii, fM and fO (columns 6 and 7), of
the 14 M-O bond types reported by Gibbs and collaborators
[8]. Although they report some of these radii for MON com-
plexes with more than one coordination number, N, the radii
shown in Table 2 are the typical bonded radii corresponding
to the cation bonding strengths shown in column 2. Some
values have been interpolated between the values given in
reference [8].

According to Eq. 15, the univalent bond lengths are
expected to be the same for all elements in the same
row of the periodic table, and one might therefore expect
the fractional bonded radii to be equal as well. This is
seen to be at least approximated true if one ignores the
highly anomalous nitrogen and oxygen. The deviations
are small but appear to be systematic, and while they
are worthy of further study, they are ignored in this anal-
ysis. The best values of the fractional bonded radii for
each row, n, of the periodic table are shown in columns
2 and 3 of Table 3, though for consistency with later
analysis, the values listed are derived from Table 4 rather
than Table 2.

Table 5 Definition of columns

1. Element
2. S taken from Table 2.1 of reference [3] calculated using

Eq. 5 with <NO>
3. S from Eq. 5 using <N> in column 14
4. R0 bond valence parameter from [5]
5. rSM calculated from Eq. 21
6. rSM calculated from column 9 minus column 7
7. rSO calculated from Eq. 22 with radius valence parame-

ters (0.93, 0.25) Å
8. RS calculated using Eq. 25 with S in column 2
9. RS calculated from Eq. 3 using parameters (R0, 0.37) Å

with the R0 given in column 4 and S in column 2
10. RS taken from [8] and shown in Table 2
11. fM calculated by subtracting column 12 from 1.0
12. fO calculated from Eq. 19 with values of rSO in column 7
13. fO taken from Table 2
14. <N> calculated from rM using Eq. 27
15. <NO> average coordination numbers in observed struc-

tures taken from Table 2.1 of reference [3, 12]

Following Eq. 14, the typical bonded radii, rsi, of the atoms
i in each row of the periodic table shown in Tables 2 can be

Table 2 Typical and fractional radii of cation bonds to oxygen

SM (vu) RS (Å) rM (Å) rO (Å) fM fO

6Li 0.20 2.21 0.82 1.39 0.37 0.63
4Be 0.50 1.65 0.58 1.07 0.35 0.65
3.5B 0.87 1.43 0.48 0.95 0.34 0.66
3C 1.33 1.29 0.46 0.83 0.36 0.64
3N 1.67 1.24 0.60 0.64 0.48 0.52
1Oa 2.00 1.15 0.58 0.58 0.50 0.50
6Na 0.16 2.44 1.09 1.35 0.45 0.55
6Mg 0.33 2.14 0.94 1.20 0.44 0.56
5Al 0.57 1.86 0.78 1.08 0.42 0.58
4Si 1.00 1.62 0.67 0.95 0.41 0.59
4P 1.25 1.54 0.63 0.91 0.41 0.59
4S 1.50 1.47 0.58 0.89 0.39 0.61
6K 0.13 2.87 1.44b 1.43b 0.50 0.50
8Ca 0.27 2.52 1.25 1.27 0.50 0.50

Transition metalsc 0.50 0.50
4Ge 0.89 1.74 0.83 0.91 0.48 0.52

Bonding strengths, SM, are taken from [3]. Bonded radii, r, and bond
lengths, R, are taken from [8]. Fractional radii, f, are calculated using
Eqs. 18 and 19 from values given in the table
a Determined from the observed O-O distance in O2. This value is not
reported in [8]. It is not strictly comparable to the other values given since
it applies to the O2+ -O2− bond, not the O6+ -O2− bond
b Estimated. Reference [8] only gives radii for a bond flux of 0.17 vu
c The transition metals reported in [8] are divalent Mn, Fe and Co.

Table 1 Variation in the bond radii, r, and fractional bonded radii, f, of
Mg2+ and O2− with bond flux, s, and bond length, R

sMgO (vu) RMgO (Å) rMg (Å) rO (Å) fMg

Eq. 18
fO
Eq. 19

MgO4 0.50 1.91 0.84 1.07 0.44 0.56

MgO5 0.40 2.07 0.90 1.17 0.43 0.57

MgO6 0.33 2.14 0.94 1.20 0.44 0.56

MgO8 0.25 2.27 0.96 1.31 0.42 0.58

Values of the bonded radii, rM and rO, are taken from [8]. The bond
fluxes, sMgO, are calculated from Eq. 9
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Table 4 Bonding strengths, S, typical bonded radii, rS, typical bond lengths, RS, fractional bonded radii, f, and typical coordination numbers <N> for
main group elements determined in different ways

Element S vu
Eq. 5

S vu
Eq. 28

R0 Å rSM Å
Eq. 21

rSM Å
Eq. 23

rSO Å
Eq. 22

RS Å
Eq. 25

RS Å
Eq. 3

RS Å
[8]

fM 1-fO fO Eqs. 19
and 22

fO Table 2 <Ncalc>
Eq. 17

<NO>
[12]

Li 0.20 0.18 1.466 0.695 0.729 1.332 2.008 2.061 2.21 0.35 0.65 0.63 5.50 4.90

Be 0.50 0.48 1.381 0.567 0.534 1.103 1.650 1.637 1.65 0.33 0.67 0.65 4.37 3.99

B 0.87 0.79 1.371 0.489 0.458 0.965 1.434 1.423 1.43 0.32 0.68 0.66 3.80 3.46

C 1.35 1.17 1.390 0.430 0.426 0.859 1.269 1.284 1.29 0.33 0.67 0.64 3.43 2.96

N 1.67 1.51 1.432 0.398 0.440 0.802 1.242 1.242 1.24 0.35 0.65 0.52 3.32 3.00

Na 0.16 0.15 1.803 1.068 1.093 1.388 2.346 2.481 2.44 0.44 0.56 0.55 6.62 6.40

Mg 0.33 0.36 1.693 0.930 0.896 1.207 2.117 2.103 2.14 0.43 0.57 0.56 5.62 5.98

Al 0.57 0.60 1.651 0.826 0.788 1.071 1.877 1.859 1.86 0.42 0.58 0.58 4.96 5.27

Si 1.00 0.92 1.630 0.720 0.700 0.930 1.630 1.630 1.62 0.43 0.57 0.59 4.35 4.02

P 1.25 1.22 1.617 0.677 0.660 0.874 1.531 1.534 1.54 0.43 0.57 0.59 4.10 4.01

S 1.50 1.52 1.624 0.642 0.645 0.829 1.451 1.474 1.47 0.44 0.56 0.61 3.94 4.00

Cl 1.75 1.84 1.632 0.613 0.635 0.790 1.383 1.425 0.45 0.55 3.80 4.00

K 0.13 0.13 2.132 1.355 1.447 1.440 2.775 2.887 2.87 0.50 0.50 0.50 7.71 7.90

Ca 0.27 0.31 1.967 1.180 1.194 1.257 2.417 2.451 2.52 0.49 0.51 0.50 6.54 7.31

Ga 0.65 0.60 1.730 0.969 0.852 1.038 1.987 1.889 0.45 0.55 5.04 4.62

Ge 0.89 0.84 1.748 0.893 0.832 0.959 1.833 1.791 1.74 0.46 0.54 0.52 4.78 4.51

As 1.13 1.09 1.767 0.836 0.822 0.899 1.716 1.722 0.48 0.52 4.60. 4.41

Se 1.50 1.33 1.788 0.803 0.827 0.864 1.647 1.691 0.49 0.51 4.52 4.00

Br 1.5 1.58 1.810 0.768 0.831 0.829 1.577 1.660 0.50 0.50 4.43 4.00

Rb 0.12 0.12 2.263 1.510 1.583 1.450 2.940 3.032 0.52 0.48 8.10 8.00

Sr 0.23 0.28 2.118 1.347 1.363 1.294 2.621 2.656 0.51 0.49 7.09 8.57

In 0.50 0.52 1.902 1.148 1.055 1.102 2.231 2.157 0.49 0.51 5.76 5.98

Sn 0.68 0.73 1.905 1.068 1.021 1.025 2.074 2.046 0.50 0.50 5.64 5.86

Sb 0.83 0.94 1.912 1.019 1.005 0.978 1.976 1.983 0.51 0.49 5.29 6.05

Te 1.00 1.17 1.917 0.969 0.987 0.930 1.879 1.917 0.52 0.48 5.18 6.00

I 1.32 1.38 2.003 0.897 1.040 8.600 1.737 1.900 0.55 0.45 5.07 5.30

Cs 0.11 0.12 2.417 1.712 1.752 1.482 3.173 3.234 0.54 0.46 8.63 9.20

Ba 0.20 0.26 2.285 1.532 1.548 1.332 2.845 2.880 0.54 0.46 7.69 10.21

Tl 0.49 0.50 2.003 1.263 1.159 1.108 2.352 2.267 0.51 0.49 6.05 6.40

Pb 0.70 0.69 2.042 1.156 1.155 1.019 2.156 2.174 0.53 0.47 5.80 5.73

Bi 0.8 0.87 2.060 1.116 1.157 0.986 2.082 2.143 0.54 0.46 5.72 6.00

Table 3 Best values of the
fractional, f, and univalent bonded
radii, r0, and the corresponding
bond length, Rn, for univalent M-
O bonds for M in different rows,
n, of the periodic table

n

Row

fM fO r0M Å
(s = 1 vu)

r0O Å
(s = 1 vu)

Rn Å
r0M + r0O

R0
a Å [11] Rn Å Eq. 15

1 0.33 0.67 0.47 0.93 1.40 1.38 1.38

2 0.43 0.57 0.72 0.93 1.65 1.62 1.63

3 0.49 0.51 0.83 0.93 1.76 1.80b 1.76

4 0.51 0.49 0.99 (0.93) 1.92 1.88

5 0.53 0.47 1.09 (0.93) 2.02 1.96

The fraction radii, f, are obtained by averaging those shown in Table 4. The univalent bonded radii, r0, are taken
from Table 5 (method 2) Values in parenthesis are assumed
aValues of R0 for bonds by cation row are taken from Table 2 of reference [11]
b Fitted to the cations from K+ to Cr6+ and so not strictly comparable with the other values or Rn
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reproduced using Eq. 20 with the parameters (r0i,bi) shown in
Table 5.

rSi ¼ r0i−biln Sð Þ ð20Þ

where S is the cation bonding strength.
The parameters for Eq. 20 shown in Table 5 are calculated

in two different ways. Those labelled (1) were fitted against all
the bonded radii reported in [8], some of which are shown in
Table 2. Those labelled (2) were fitted against the radii calcu-
lated bymultiplying RS in column 8 of Table 4 by the values of
f in Table 3. The difference between these two sets of param-
eters is not significant, except for the values of bM which
reflect the different estimates of the values of RS. Excluding
the cations nitrogen and oxygen, the parameters (r0i,bi) in
Table 5 reproduce the radii fromwhich they were derived with
a root mean square deviation of less than 0.02 Å.

The values of r0M and r0O in Table 5 are the univalent
bonded radii of the cations and anions, respectively. They
are an invariant measure of atom size that does not depend
on the nature of the bonds that they form.

By analogy with Eq. 16, Eq. 20 can be expanded to include
both the terms n and S.

rSM ¼ r1M þ bnM ln nð Þ−bnM ln Sð Þ ð21Þ

The typical bonded radius of any cation is given by Eq. 21
using the fitted parameters (r1M,bnM) = (0.47,0.36) Å. These
radii are shown in column 5 of Table 4. Equation 21 shows that
the typical bonded radii, like the typical bond lengths, depend
only on n and S. They are therefore characteristic properties of
an atom that can be determined without reference to the charge

density distribution, further justifying the use of bonded radii as
an appropriate measure of the size of an atom in a crystal.

In the earlier scales of atomic radii, the radius of oxygen was
assumed to be a constant, but in their study of bonded radii,
Gibbs and collaborators [8] illustrated that this was not so; the
radius of oxygen increases in the same proportion as the radius of
the cation as the bond length increases, as shown by the constan-
cy of the fractional radii, f, for all the bonds of the same type. The
typical bonded radius of oxygen therefore depends, not as one
might have expected, on the coordination number of the oxygen
atom, but rather on the typical bonded radius of the cation; hence,
it depends on the typical coordination number, <N> of the cat-
ion. The reason for this unexpected result is discussed below, but
the consequence is that the typical bonded radius of oxygen is
different for every bond type and can only be determined once
the cation is known. The relationship between the typical bonded
radius of oxygen, rSO, and the bonding strength of the cation, SM,
is illustrated in Fig. 1 and given by Eq. 22.

rSO ¼ r0O−bOln SMð Þ ð22Þ

with (r0O,bO) = (0.93,0.25) Å taken from Table 5.
Since the fitted parameters of Eq. 22 are independent of the

choice of the cation, subtracting the oxygen bonded radius of
Eq. 22 from the typical bond length, RS, provides an alterna-
tive method of calculating the typical bonded cation radius as
shown in Eqs. 23 and 24.

rSM ¼ RS−rSO ¼ R0−Bln Sð Þð Þ− r0O−bOln Sð Þð Þ ð23Þ
hence

rSM ¼ R0−r0Oð Þ− B−bOð Þln Sð Þ ¼ r0M−bM ln Sð Þ ð24Þ
where R0 = r0M + r0O and B = bM + bO.

Table 5 Parameters used in Eq. 20

r0M (Å)
Eq. 20

r0M (Å)
Eq. 21

bM (Å)
Eq. 20

r0O (Å)
Eq. 20

bO (Å)
Eq. 20

Bn=
bM + bO

First row (1)a 0.48 0.20 0.91 0.26 0.46

First row (2)a 0.47 0.47 0.14 0.93 0.28 0.42

Second row (1) 0.67 0.25 0.97 0.21 0.45

Second row (2) 0.72 0.73 0.19 0.93 0.25 0.44

Third row (1)b 0.83 0.33 0.89 0.30 0.63

Third row (2) 0.83 0.88 0.24 (0.93) (0.25) 0.49

Fourth row (2) 0.99 0.97 0.26 (0.93) (0.25) 0.51

Fifth row (2) 1.09 1.06 0.30 (0.93) (0.25) 0.55

Values in parentheses are assumed

(1) means fitted to all the bonded radii and distances reported in [8]. (2)
means fitted to bonded radii equal to f × RSwith f given in Table 3 and RS

calculated using Eq. 3
a Excluding nitrogen and oxygen
b These values are less reliable as reference [8] provides no radii for high
valence cations
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Fig. 1 The relationship between the bonding strength of the cation and
the typical bonded radius of the oxygen atom. The points are the radii
reported in [8]. The open circles are nitrogen and oxygen (see Table 2).
The l ine is calculated using Eq. 22 with the parameters
(r0O,bO) = (0.93,0.25) Å
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Table 4 brings together all the properties of theMain Group
cations, some calculated in more than one way. The bonding
strengths, S, for the Main Group cations in their highest oxi-
dation state are listed in column 2 [3]. These are used to cal-
culate the typical M-O bond lengths, RS, (column 9) using
Eq. 3 with bond valence parameters (R0,0.37) Å, where R0 is
given in column 4. Equation 22 was used to calculate the
corresponding bonded radius of oxygen, rO, (column 7). The
difference between RS (column 9) and rSO (column 7) calcu-
lated with Eq. 23 is the typical bonded radius of the cation,
rSM, shown in column 6. The root mean square difference
between the values of rSM calculated using Eq. 21 (column
5) and those calculated using Eq. 23 (column 6) is 0.05 Å. If
one excludes nitrogen, the same difference is found between
the cation radii shown in columns 5 and 6 and the radii mea-
sured from the calculated charge densities reported in [8] and
shown in column 4 of Table 2.

The fractional bonded radii of oxygen, fO, shown in column
12 are obtained from the typical bonded radii, rSO, calculated
using Eq. 22. The values of fM shown in column 11 are cal-
culated by subtracting fO from 1.0. These values were used to
calculate the fractional bonded radii shown in Table 3. The
root mean square difference between the fractional bonded
radii of oxygen, fO, derived from the bonded radii reported
in [8] (column 13) and those calculated using Eq. 19 (column
12) is 0.02 if nitrogen is excluded.

The univalent cation bonded radii, r0M, for each row in the
periodic table are shown in Table 5. The radii in column 3,
calculated by setting S = 1.0 vu in Eq. 21, are in satisfactory
agreement with those in column 2 calculated using Eq. 20.

There is no reasonwhy both the prelogarithmic parameters,
B1, in Eq. 13 should be the same. Equation 24 suggests that a
better parameter, Bn, is given by the sum bM + bO shown in the
last column of Table 5. By substituting this value in Eq. 13,
one gets Eq. 25:

RS ¼ R1 þ B1ln nð Þ−Bnln Sð Þ ð25Þ

where, as before, (R1,B1) = (1.38,0.36) Å and the values of Bn

are taken from the last column of Table 5 (method 2). The
values of RS calculated this way are shown in column 8 of
Table 4. The difference between values of RS calculated using
Eq. 25 (column 8) and those calculated using Eq. 3 (column 9)
is 0.07 Å, where much of the variation can be attributed to a
systematic tendency of Eq. 25 to underestimate RS by about
0.05 Å for cations in Groups 1 and 17, and overestimate it for
cations close to Group 13 by a similar amount. As mentioned
above, exploring the origin of this deviation is beyond the
scope of this paper.

Alternatively, Eq. 25 can be written as

RS ¼ Rn−Bnln Sð Þ ð26Þ

whereas before Rn is the univalent bond length equal to r0M +
r0O shown in column 6 of Table 3. Earlier, Shannon and I
showed empirically that Eq. 4 could be used with a single
set of parameters (R0,ν) to calculated the M-O bond strengths
(i.e., bond fluxes) for all the Main Group cations in the same
row of the periodic table [11]. The values of R0 we reported at
that time are the univalent bond lengths shown in column 7 of
Table 3. The univalent radii calculated using Eq. 15 with
(R1,B1) = (1.38,0.36) Å are shown in column 8. The three
different determinations of Rn agree within 0.03 Å.

A key concept in the bond flux model is the bonding
strength of an atom which describes the flux expected for a
typical bond as defined in Eq. 5. There should therefore be a
direct relationship between the typical coordination number
<NO> and the typical bonded radius, rSM. The values of
<NO> shown in the last column of Table 4 are averages of
the coordination numbers of MON groups in an early unpub-
lished version of the Inorganic Crystal Structure Database
(ICSD) [12, 13]. In spite of the inherent biases in this sample,
the bonding strengths derived using these values of <NO>
have proved to be robust. There is a correlation between
<NO> and rSM, but a simpler correlation is found between
<NO> and the typical bond length, RS (Eq. 27):

< Ncalc>¼k
0
RS ð27Þ

where k′ = 2.67 Å−1 and the values of RS are those calculated
using Eq. 3. The typical coordination number <Ncalc> predict-
ed by Eq. 27 is shown in the second to last column of Table 4.
With a few exceptions, the observed and calculated values of
the typical coordination number differ by less than 0.5. The
calculated values are systematically higher than those ob-
served for the first row, particularly for lithium. The large
calculated values for carbon and nitrogen may well be better
estimates than the observed average of 3.00 since the average
is a poor estimate of the ideal coordination number when the
cation is known with only one coordination number. This
problem also affects the cations in Groups 16 and 17. The
exploitation of the unusual properties of perovskites resulted
in the early versions of the Inorganic Crystal Structure
Database containing many reports of barium coordination
number 12, which accounts for the high observed value of
<NO> for barium (10.21 against the calculated value of
7.69). The distribution of barium coordination numbers for
oxygen ligands has a mode at 9 and a spike at 12. If the
structures with N = 12 are omitted (many are likely
misassigned and others stabilized only by high temperatures
and by the high symmetry of the perovskite structure), the
average coordination number drops to 8.33, which is close
to the mode and the value predicted by Eq. 27.

Combining Eq. 27 with Eqs. 5 and 25 gives Eq. 28 which
shows that the calculated value <Ncalc> is not independent of
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the assumed value of<NO>, but since the value <NO> appears
in a relatively small correction term, any error in <NO> results
in an error in <Ncalc> that is ten times smaller.

< Ncalc>¼k
0
R1 þ B1ln nð Þ−Bnln V= < NO >ð Þð Þ ð28Þ

Equation 5 can be used to convert the values of <Ncalc>
(Eq. 27) to the values of S shown in column 3 of Table 4. The
root mean square difference between the two values of S in
columns 2 and 3 is 0.04 vu which is a little larger than the
estimated uncertainties in either value.

Oxygen, lone pairs and the VSEPR model.

Implicit in this analysis of the size of atoms in crystals is the
asymmetry between the bonding properties of cations and an-
ions; most notably, the typical bonded radii of both the cation
and the anion are determined by the bonding strength of the
cation. The valence matching rule mentioned in the
‘Introduction’ states that a bond will only form between atoms
whose bonding strengths differ by less than a factor of two [3].
Assuming an average coordination number of four, oxygen has
a bonding strength of 0.50 vu and so should only form bonds to
cations with bonding strengths between 0.25 and 1.00 vu, but
the bonding strengths of cations in Groups 15 to 17 are much
larger; for example, Cl7+, which is found in ClO4

−, has a bond-
ing strength of 1.75 vu. The ability of oxygen to form bonds
stronger than 1.00 vu arises from the presence of nonbonding
‘lone-pair’ charge in its valence shell. According to the octet
rule, anions have more charge in their valence shells than they
can use for bonding. When an anion forms many weak bonds,
the bonding and nonbonding charge is uniformly distributed
around its spherical valence shell, but when the anion is re-
quired to bond to cations with large bonding strengths, it uses
most of its bonding charge to form strong primary bonds, leav-
ing any residual bonding charge able to form only weak sec-
ondary bonds. In order to maintain a spherical valence shell, the
nonbonding lone pairs must be moved into the region occupied
by the secondary bonds. Bickmore and collaborators [14] have
shown that when the bonding strength of the cation exceeds the
bonding strength of oxygen (0.50 vu), the lone pairs become
stereoactive with the degree of stereoactivity increasing as the
bonding strength of the primary cation increases.

This picture mirrors the Valence Shell Electron Pair
Repulsion (VSEPR) model of Gillespie and collaborators [15,
16] with the electron pairs of the VSEPRmodel replaced by the
flux that links them to the atom core. The bonding strength of
the primary cation determines the flux, hence the length, of the
primary bonds, and the extent of the stereoactivity of the lone
pair. Any remaining valence determines the flux available to
form the secondary bonds. The rules of the VSEPR model

determine how the primary bonds and lone pairs are arranged
within the spherical valence shell and indicate the angles be-
tween the bonds. The Atom-in-Crystals model displays atoms
with lone pairs that simultaneously form both primary and
secondary bonds by using several concentric spheres, one for
each of the different bond lengths. For example, the oxygen
atoms in Na2SO4 would be displayed by two or more spheres,
one having a bonded radius of 0.83 Å representing the flux of
1.50 vu that forms the primary bond to sulphur, and one or
more spheres having a bonded radius of ~1.37 Å representing
the flux of ~0.17 vu used to form bonds to two or three sodium
atoms as shown in Fig. 2.

Discussion

Atoms-in-Crystals is a model in which a procrystal is con-
structed from the charge densities of the neutral free atoms.
These atoms can be visualized by one or more spherical con-
tours of constant charge density, each having a radius equal to
one of the bonded radii of the QTAIM partitioning of the true
charge density. The atoms are linked by bonds whose electro-
static bond flux is equal to the amount of valence charge
contributed by each atom. The charge density of this model
closely follows the true charge density, and while the differ-
ence between the procrystal and true density is significant, it is
small; it can readily be assessed from the deformation density.
The purpose of this paper has been to show that the atoms of
this model have a natural bonded radius that can be deter-
mined in two ways, either from a QTAIM partitioning of the

Fig. 2 The depiction of an asymmetrically bonded anion in the Atoms-
in-Crystals picture. The procrystal atoms are shown as shaded circles,
where the dark circles are contours of higher charge density and bond
flux. The central anion is represented by two concentric circles whose
inner and outer radii correspond to the primary and secondary bonds, the
QTAIM topology is shown by the straight lines. The spheres touch at the
bond critical points and their tangents show where the bonding surfaces
of the QTAIM anion intersect the plane of the figure
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charge density or from an Atoms-in-Crystals analysis of the
core sizes of the atoms and the network of the bonds.

While the model describes chemical structure using the con-
cepts of the traditional atom and bond model, it also provides a
close approximation to the true physical charge density. As
shown elsewhere [3], it can be used for quantitative predictions
of both the topology and geometry of chemical structures and
their related properties, using little more computing power than
is provided by a pocket calculator. Its description of the charge
density is sufficiently accurate to allow it to be used for quali-
tative analysis. For example, when two atoms with nearly full
valence shells form a bond, such as that in the F2 molecule, the
Atoms-in-Crystals model places more charge in the bonding
region than it can accommodate. Some charge must be moved
into the unoccupied space of the valence shells in the regions of
the lone-pairs. This polarization is seen in the deformation den-
sity as negative charge transferred from the bond to the empty
portion of the nonbonding region of the valence shell. The
amount of charge transferred is small, but it has a large effect
on the bond energy; the electrostatic bond energy is reduced
from 133 × 10−3 a.u. in the procrystal to 6 × 10−3 au in the real
crystal [17], an effect that puzzled Sanderson [18] who called it
the ‘lone pair weakening effect’.

The model is not offered as a replacement for the full quan-
tum theory of chemical bonding, but rather as a simpler and
more intuitive complement. It presents an alternative way of
decomposing the charge density into atomic fragments. The
Atoms-in-Crystals description of the charge density is an ap-
proximation, but what is lost in this approximation is more
than compensated for by the simplicity of the model: All
atoms of a given element have the same simple geometry,
and all are, by definition, electrically neutral and unaffected
by changes in their environment. This makes it easy to visu-
alize the changes that occur in the charge density when the
bond lengths are altered by changing, for example, the oxida-
tion states (valences) of the atoms. Unlike the atomic basins
and bond paths of QTAIM, the atoms and bonds of the Atoms-
in-Crystals model have the same properties as the traditional
atoms and bonds of structural chemistry, thus providing the
familiar empirical terms with a physical description.

Atoms-in-Crystals is a simple model that is accessible to
anyone with a secondary school science education, and be-
cause the model is based on a qualitatively correct picture of
the charge density, it can be developed into a proper quantum
mechanical description later in the undergraduate curriculum.
It also has many features that make it ideal for exploring the
physics of chemical bonding. For those who like to interpret
chemical structures in terms of atoms and bonds, it provides
atoms that are always rigid and electrically neutral, and bond-
ing relationships determined by classical electrostatics. The
properties of the bond flux show that the ionic model is a
legitimate mathematical fiction which can be used to develop
theorems that confirm and extend the rules of the more

successful empirical models, such as the ionic and VSEPR
models, while revealing the limitations of models that use
concepts that have no basis in physics, such as electron or-
bitals and Lewis electron pairs.

Glossary

V Atomic valence The amount of charge in valence
units (electron units) an atom
uses for bonding.

Bond critical point The minimum in the charge density
along a bond path.

s Bond flux A measure of the strength of a bond
in valence units equal to the
amount of charge contributed by
each atom to form the bond, also
known as the bond valence.

RMO Bond length The distance between a cation M
and oxygen.

Bond path The path of steepest descent in the
charge density linking two
neighbouring nuclei.

r Bonded radius. The distance between the atomic
nucleus and the bond critical
point.

S Bonding strength. The valence of a typical bond equal
to the atomic valence divided by
the typical coordination number
(Eq. 5).

QTAIM Quantum theory of atoms in
molecules [1].

f Fractional bonded
radius

(Equations 18, 19).

n Row number In the periodic table, the rows are
numbered with the H and He
row as zero. The row number is
equal to the number of quantum
shells in the atom core.

N Coordination number The number of bonds formed by
an atom

<N> Typical coordination
number

The average observed coordination
number (Eq. 5).

S Typical bond flux See bonding strength.

RS Typical bond length The length of a bond with a flux
equal to the cation bonding
strength (Eq. 16).

rS Typical bonded radius The radius of an atom when forming
a bond with a flux equal to its
bonding strength (Eq. 21)

Rn, R1 Univalent bond length Length of the M-O bond with a
bonding strength 1.0 vu where
M is in the nth (or first) row of the
periodic table (Eqs. 12, 15).

r0 Univalent bonded radius Typical bonded radius that an atom
would have if its bonding strength
were 1 vu.

vu Valence unit Unit of charge or flux, equal
to one electron unit.
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