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Abstract It is a great pleasure and honour for us to par-

ticipate to the celebration of the 90th birthday of Alan

Mackay, one of the most inspired crystallographers of our

time who has been the authentic predecessor of the qua-

sicrystal discovery. We discuss here several ways to con-

struct Mackay-type atomic clusters and others for

describing quasicrystalline structures from the standard 6D

framework. We show that they are several simple solutions

for both the 6D natural cluster and the original Mackay

derivation that are consistent with special points of the

basic icosahedral 6D lattice and the actually determined

clusters in usual cubic 1/1 approximants of the icosahedral

phases. This technique works as well for describing the two

first shells of the so-called Bergman clusters but the situ-

ation is far more complicated for the so-called Tsai cluster

that cannot be directly obtained from the icosahedral cut

and projection of the simple 6D lattice special points

without significantly large differences in the radii of the

various orbits with respect to their actual positions in the

YbCd icosahedral-type alloys. This shows that the 6D

approach using special points as locations of the mean

atomic surfaces—although very efficient for constructing

initial simple models of the icosahedral phases—requires

subsequent refinement techniques, especially in the actual

locations and sizes of the various atomic orbits of the

implied clusters, for leading to final acceptable structural

models.

Keywords Quasicrystals � Crystalline structures �
Hyperspace crystallography � Mackay cluster � Bergman

cluster � Tsai cluster

Introduction

On 8 April 1982, at the National Bureau of Standards

(Gaithersburg Maryland USA), Dan Shechtman [1]

observed an impossible electron diffraction pattern in

rapidly solidified alloy close to the composition Al6Mn

with well-defined typical crystalline Bragg peaks but dis-

tributed on regular decagons! In his notebook, he wrote

‘‘ten-fold???’’ in front of the micrograph reference number.

It turned out that most of the basic questions posed by

this apparently paradoxical and revolutionary observation

had already been almost completely answered by Alan L.

Mackay in two previous papers.

The first paper [2] De Nive Quiquangula: On the pen-

tagonal snowflake was submitted to Kristallographyia on 4

April 1981 and published in the September–October issue.

Alan L. Mackay explicitly demonstrated the possible rel-

evance of the Penrose 2D tiling and its 3D equivalent

(rhombic triacontahedron) in modern crystallography. Alan

L. Mackay wrote in this first paper almost exactly 1 year

before Shechtman’s first observation of quasicrystals: ‘‘...it

gives an example of a pattern of the type which might well

be encountered but which might go unrecognized if

unexpected ...’’.

The second paper [3] is the experimental demonstration

that Penrose patterns diffract on an apparently discrete set

of Bragg peaks—in fact, a dense enumerable set with

almost all peaks having weak intensities for being

observable—by irradiating a photograph of a Penrose

pattern by a LASER beam.
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The two papers contained the very basic ingredients for

the understanding of Shechtman’s paradoxical electron

diffractions, but, unfortunately, he and his co-authors—and

perhaps, much later, the members of the Nobel committee

for Chemistry ...—were not aware of them. Beyond these

two outstanding articles, Alan L. Mackay wrote another

fundamental piece [4] of crystallography in 1962 where he

proposed a new possible icosahedral atom packing for

small aggregates. The basic ingredient is the elementary

tetrahedron defined by the center X and the three vertices

fð0; 0; 0Þ; ð1; s; 0Þ; ðs; 0; 1Þ; ð0; 1; sÞg of one of the trian-

gular faces of a regular icosahedron as shown in Fig. 1.

This is an almost perfect regular tetrahedron with two very

close lengths of edge in the ratio 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3� sÞ=5
p

� 1:05146

with one equilateral triangular facet and the three others

with an angle cos a ¼ s=ð2þ sÞ, i.e., a � 63�260.
Mackay’ idea was to design a new type of packing

around a center using this kind of tetrahedra. Hence, the

first shell of the cluster is the icosahedron itself and the

second shell with 42 atoms is an icosahedron twice larger

plus an icosidodecahedron generating the new vertices at

the mid-edges of the large icosahedron as shown in the

right of Fig. 1. The construction process was thus iterated

to any order n by adding icosahedra of radius n times larger

that the initial ico and filling the triangular facets in an

hexagonal 2D network like the (1, 1, 1) planes in a FCC

metal.

In fact, only the icosahedral cluster made of the two first

atomic shells has so far been experimentally identified in

complex metallic alloys. It is made of (see Fig. 1):

• a center that is or not occupied by an atom;

• a first shell of a inner icosahedron of radius1
ffiffiffiffiffiffiffiffiffiffiffi

2þ s
p

=2;

• a second shell with a large icosahedron of radius
ffiffiffiffiffiffiffiffiffiffiffi

2þ s
p

twice larger that the previous one;

• an icosidodecahedron of radius s belonging to the

second shell.

This specific cluster of 54 sites is actually called the

Mackay cluster. It was proven early on [5–8] to be one of

the basic atomic units in the structure of many icosahedral

quasicrystals and their approximants.

By extension, we designate as Mackay-type clusters,

atomic clusters that have a double icosahedron plus an

icosidodecahedron not necessarily in the ideal ratio previ-

ously given. Finally, pseudo-Mackay clusters are clusters

with an icosahedron plus a icosidodecahedron as second

shell with no specific requirement concerning the first shell

(see for instance [9]).

Our present purpose here is to discuss how the Mackay

clusters and their derivatives are easily and nicely gener-

ated in the cut algorithm from periodic 6D description of

the icosahedral phases. To achieve this goal, we shall first

give a brief review of the cut and project method and the

basic ND crystallography concepts used to describe qua-

sicrystals. In the second part, we will review the various

avatars of the Mackay clusters that are encountered in both

icosahedral and approximant structures and discuss how

they integrate into the general 6D scheme of using special

points in the frame of the cut and project method. We will

finally discuss shortly the other typical atomic clusters

frequently encountered in the icosahedral phases.

N-dim crystallography

As initially demonstrated by de Bruijn [10, 11] for Penrose

tilings, ideal quasicrytals can be described as 3-dim cuts of

periodic objects in N[ 3-dim space, EN , irrationally ori-

ented with respect to the N-dim lattice K of the periodic

Fig. 1 Ideal Mackay cluster is

the stacking of the two first

shells of an almost perfect

tetrahedron, drawn on the left,

defined by a triangular facet and

the center of a regular

icosahedron. This cluster is

made of 54 sites plus a center: a

small inner icosahedron (12)

and extra shell of an

icosidodecahedron (30) with

atoms on the middle of the

edges of an external

icosahedron (12) of radius twice

larger than the inner one

1 This choice of length scale will be made clear latter in the text.
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structure, sketched in Fig. 2 as independently proposed by

Duneau and Katz [12], Elser [13] and Kalugin et al. [14].

This method, known as the cut method, is a direct and

simple way of generating quasiperiodic tilings often called

model sets M. It uses the following ingredients:

• a N-dim space EN , here R6, having a pair of

complementary subspaces: Ek, here R3, is the physical

space containing the model set characterized by the

projector p̂k and E?, here R3, the internal space

characterized by the complementary projector p̂?, and
such that:

EN ¼ Ek � E? ð1Þ

8X 2 EN X ¼ xk þ x?; xk ¼ p̂kX; x? ¼ p̂?X

ð2Þ

• a lattice K � EN ; and

• one or several bounded windows or acceptance win-

dows r � E? that define the so-called atomic surfaces

in E?. The quasiperiodic set M is thus defined by:

M ¼ fp̂kk; k 2 K j p̂?k 2 rg ð3Þ

Real quasicrystals are usually described with several

acceptance windows ri associated with the various

atomic species and their geometric environments; they

play the same role as Wyckoff positions for standard

crystals.

Atomic surfaces associated with atomic clusters

The first task to achieve is to find a systematic procedure

that allows for the definition of the atomic surfaces (AS)

associated with a given atomic cluster defined as a set of

neighbor atoms that repeats with a high frequency in the

structure such that if one atom of the set is present in the

structure then all atoms of the set are present: the same

set of atoms occurs in the same configuration.

Let r0 be the AS associated with the center of the

cluster. Our main assumption is that the cluster is a set of

positions p̂ktj corresponding to the parallel projections of

rational positions2 tj in K of EN . The way of defining the

complete set of ASs generating the cluster in N-dim spaces

is sketched in Fig. 3 and goes as follows.

• Copy r0 parallel to Ek at the various locations p̂ktj
defining the cluster.

• Associate each translated r0 on the locations tj
displaced in E? by p̂?tj.

• Complete this AS around tj with all its copies in the

little group H of tj.

(a) (b)

Fig. 2 a The cut method corresponding to the Definition 3 is

equivalent in copying the acceptance window r at each lattice node as

drawn in (b). This allows for a natural generalization of the notion of

Wyckoff positions in EN : a quasiperiodic structure is defined by a set

of positions Xi in the N-dim unit cell, each associated with a given

specific acceptance window ri that we call atomic surface to conform

to the superspace description (see for instance [15]) used for

incommensurate structures

2 The key point in the present approach is that each atomic position in

Ek must unambiguously be considered as the parallel projection of

one and only one position in EN .
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Thus, an atomic cluster AC made of N orbits of atoms,

each orbit j of Mj surrounding atoms characterized by

translations p̂ktkj is defined by:

AC ¼ [N
j¼1 [

Mj

k¼1 p̂kt
k
j ;

its corresponding generating global AS, say ASAC, is

obtained by the union of all r0’s located in E? at p̂?tkj sites

in 6D:

ASAC ¼ [N
j¼1 [

Mj

k¼1 r0ðp̂?tkj Þ:

The AS attached to the position tj is a copy of r0 displaced
by p̂?tj completed by its copies in the little group H of

order nj, of tj:

ASj ¼ [nj
k¼1r0 ĥkp̂?tj

� �

; ĥk 2 H ð4Þ

This formula applies for any kind of atomic clusters

whatever symmetry and/or dimension of the configura-

tional space. The choice of r0 is crucial. The first criterion
is to choose r0 as large as possible in order to have the

highest frequency of clusters—that are supposed to be

typical—in the structure. The second criterion is that most

of the atoms of the clusters should belong to one cluster

only. This requires that for any two r0, say k and k0, of a
given orbit of the cluster has no intersection:

8hk; hk0 2 H k 6¼ k0; r0ðĥkp̂?tjÞ \ r0ðĥk0 p̂?tjÞ ¼ ;

The icosahedral phase is described in a 6D space that

decomposes into the two usual 3D subspaces Ek and E?.

The real physical space Ek is generated by the three vectors

orthonormal vectors fjaig, and E? is generated by the

three orthonormal vectors fj�aig. The orthonormal basis of

the 6 unit vectors fj1i; . . .; j6ig in 6D projects in Ek and E?

according to the coordinates given in Table 1. Introducing

K ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ sÞ
p

, we thus obtain the matrix bR relating

the reference frame fj1i; . . .; j6ig with fjai; j�aig:

bR ¼K

1 s 0 � 1 s 0

s 0 1 s 0 � 1

0 1 s 0 � 1 s

�s 1 0 s 1 0
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Fig. 3 A simple example of constructing the AS necessary to

generate a specific cluster starting from the AS r0 (blue) generating

the center of the cluster. a The red–green cluster is defined by two

orbits, red and green, that are projections in Ek of lattice points

t1 ¼ ðn;mÞ. We copy r0 along the horizontal line (Ek) at the level of

the projections of the lattice nodes (red) and (green). b Copying these

surfaces on all equivalent sites, we obtain the set of atomic surfaces

that generates the red–green cluster. c General drawing of the full 2D

model: any horizontal cut leads to a quasiperiodic sequence of red–

green clusters (Color figure online)

Table 1 Coordinates of the projections of the 6 unit vectors jii, hajii
in Ek, and h�ajii in E?, for the icosahedral phases in 6D

hajii 1 2 3 4 5 6

x 1 s 0 -1 s 0

y s 0 1 s 0 -1

z 0 1 s 0 -1 s

h�ajii 1 2 3 4 5 6

x0 �s 1 0 s 1 0

y0 1 0 �s 1 0 s

z0 0 �s 1 0 s 1

126 Struct Chem (2017) 28:123–132

123



Under these notations, the main special positions of the

groups Pm35 and Fm35 are listed in Table 2.

The simplest possible atomic clusters are those that are

generated from the highest symmetry special positions Vj

in E6. In the present case of P and F 6D-lattices, these are

the lattice node (0, 0, 0, 0, 0, 0) and the body-center of

type (1, 1, 1, 1, 1, 1) / 2 that decomposes in four orbits in

Ek, all of little group m35.

Using these two positions, we generate several important

orbits as those given in Fig. 4. The best r0 is defined by the

elementary triacontahedron, convex hull of the projection in

E? of the primitive unit cell, rescaled by s�2 and truncated

along the 5f-directions as introduced long ago by Hen-

ley [7, 16]. We designate it for short as the Henley Tria-

contahedron and note it TH in Fig. 4 (on top left).

Close examination of the large ASs noted from 1 to 9 in

Fig. 4 shows that the TH of the orbits 1 to 4 around the

node, and those of the orbits 5 and 6 around the bc, are

remarkably optimized: the TH are perfectly connected

together by either the 2f- or 5f-directions with no overlaps.

Moreover, the ASs 1 to 4 on the node and 5 and 6 on the bc

fit perfectly, here too with no overlaps between the TH.

These basic ASs in E? generate the following cluster orbits

in Ek (see [17, 18]):

T1: center of the cluster localized at (0, 0, 0, 0, 0, 0);

T2: icosahedron of radius3
ffiffiffiffiffiffiffiffiffiffiffi

2þ s
p

ð1:902Þ localized at

(0, 0, 0, 0, 0, 1) and equivalents;

T3: icosidodecahedron of radius 2 localized at

(0, 0, 0, 0, 1, 1) and equivalents;

T4: dodecahedron of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 3s
p

ð1:07Þ localized at

(0, 0, 0, 1, 1, 1) and equivalents;

T5: dodecahedron of radius
ffiffiffi

3
p

ð1:732Þ localized at

ð1; 1; 1; �1; �1; �1Þ=2 and equivalents;

T6: icosahedron of radius
ffiffiffiffiffiffiffiffiffiffiffi

3� s
p

ð1:1756Þ localized at

ð�1; 1; 1; 1; 1; �1Þ=2 and equivalents.

This set is the simplest set of atomic orbits built from the

node and bc sites of the 6D-lattice. It can be resumed in a

first shell generated by T4 plus T6 forming an inner tria-

contahedron, a second shell generated by T2 plus T5
forming a second triacontahedron s times larger, and finally

a third shell generated by T3 that forms a

icosidodecahedron.

The three remaining ASs noted 7 to 9, have TH that

intersect each others, and therefore, their corresponding

clusters share common atoms. These ASs generate:

T7: dodecahedron of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 3s
p

ð2:802Þ localized at

(1, 1, 1, 1, 1, 1)/2 and equivalents;

T8: icosahedron of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4s
p

ð3:078Þ localized at

ð1; 1; 1; 1; 1; �1Þ=2 and equivalents;

T9: icosidodecahedron of radius 2s ð3:236Þ localized at

(1, 1, 0, 0, 0, 0) and equivalents;

T7 and T8 generate the third triacontahedron s times

larger than ðT2; T5Þ and that links the inner atomic clusters.

All together, as already described in [17], the atomic

orbits generated by the highest symmetry special points

only are three concentric triacontahedra of increasing size

by ratio of s and two icosidodecahedra of sizes in the same

ratio. These are shown in Fig. 4.

The other special points of Pm35 and Fm35 have lower

symmetry and are listed in Table 2. Among them, are the

mid-edge locations (1, 0, 0, 0, 0, 0) / 2 of symmetry �5m
and the mid-facet locations (1, 1, 0, 0, 0, 0) / 2 of sym-

metry mmm that both will play an important role for the

Mackay clusters 6D descriptions as will be made clear in

the next section. Their corresponding ASs, constructed

using formula 4, are shown in Fig. 5. These ASs are made

of 2 adjacent TH, connected along a fivefold for the mid-

edge position and along the twofold for the mid-facet

position with little groups, respectively �5m and mmm.

Observe that the small size of the present AS is compen-

sated by the multiplicity of the site. For example, for a P-

Table 2 Special positions and their little groups in the 6D unit-cell

for the groups Pm35 (GP) and Fm35 (GF)

½N;M	 � 4 l X6 GP GF

[0, 0] 1 (0,0,0,0,0,0) m35(120) m35(120)

[2, 1] 12 (1,0,0,0,0,0)/2 �5m(20) 5m(10)

[4, 0] 30 (1,0,0,0,0,1)/2 mmm(8) mmm(8)

[4, 4] 30 (1,1,0,0,0,0)/2 mmm(8) mmm(8)

[6, 9] 20 (1,1,1,0,0,0)/2 �3m(12) 3m(6)

[6, 5] 60 (1,1,0,1,0,0)/2 �3m(12) 3m(6)

[6, 1] 60 (1,0,0,0,1,1)/2 �3m(12) 3m(6)

[6, -3] 20 (0,0,0,1,1,1)/2 �3m(12) 3m(6)

[8, 12] 30 (1,1,1,1,0,0)/2 mmm(8) mmm(8)

[8, 8] 60 (1,1,0,1,1,0)/2 mmm(8) mmm(8)

[8, 4] 60 (0,1,1,1,1,0) /2 mmm(8) mmm(8)

[8, 0] 60 (0,0,1,1,1,1)/2 mmm(8) mmm(8)

[8, -4] 30 (0,0,�1,1,1,1) /2 mmm(8) mmm(8)

[10, 13] 60 (1,1,1,1,1,0)/2 �5m(20) 5m(10)

[10, 5] 12 (0,1,1,1,1,�1)/2 �5m(20) 5m(10)

[10, 5] 60 (1,0,1,1,1,1)/2 �5m(20) 5m(10)

[10, -3] 60 (0,�1,1,1,1,1)/2 �5m(20) 5m(10)

[12, 16] 12 (1,1,1,1,1,�1)/2 m35(120) m35(120)

[12, 12] 20 (1,1,1,1,1,1)/2 m35(120) m35(120)

[12, 0] 20 (�1,1,1,1,1,1)/2 m35(120) m35(120)

[12, -4] 12 (�1,1,1,1,1,�1)/2 m35(120) m35(120)

3 All distances are given in A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð2þ sÞ
p

where A is the 6D-lattice

parameter.
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(a)

(b)

Fig. 4 Top optimal atomic surfaces associated with the main orbits generated by the nodes and body-centers for P and F 6D-lattices using the

Henley triacontahedron TH as r0. Bottom the corresponding atomic clusters
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type 6D lattice, the mid-edge AS has a volume of 2 in TH

units, but the position has multiplicity jm35j=j�5mj ¼
120=20 ¼ 6 so that the total volume is 6� 2 ¼ 12 equal to

the volumes of T1 and T6; the same applies for the mid-

facet position with an AS of volume 2 but has multiplicity

jm35j=jmmmj ¼ 120=8 ¼ 15 and thus corresponds to a

total volume of 15� 2 ¼ 30 equal to the volume of T3.

The Mackay clusters

The easiest way of generating Mackay-type clusters in the

6D approach is to select the ASs corresponding to high-

symmetry locations leading to the simplest Mackay-type

cluster M1 ¼ fT1; T3; T2; T6g, as seen on the left of Fig. 6

and made of an inner small icosahedron of radius
ffiffiffiffiffiffiffiffiffiffiffi

3� s
p

, a

large icosahedron of radius
ffiffiffiffiffiffiffiffiffiffiffi

2þ s
p

and an icosidodeca-

hedron of radius 2. This cluster differs from the original

Mackay cluster in two ways:

• the size ratio of the two icosahedra is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3� sÞ=ð2þ sÞ
p

¼ s� 1 ð� 0:618Þ instead of 1 / 2;

• the size ratio of the icosidodecahedron with respect to

the large icosahedron is 2=
ffiffiffiffiffiffiffiffiffiffiffi

2þ s
p

ð� 1:05Þ instead of

s=
ffiffiffiffiffiffiffiffiffiffiffi

2þ s
p

ð� 0:85Þ.

These two discrepancies can easily be eliminated as

shown in Figs. 7 and 8:

• to correct the inner icosahedron, we remove T6 located

on the high-symmetry special point bc and replace it by

ME, the AS located at the mid-edge (Fig. 5a); as

already noted, this makes nothing else but shrinking the

radius of the icosahedron from s� 1 to 1 / 2;

• to correct the icosidodecahedron, we remove T3 located

at the high-symmetry special point n and replace it by

MF, the AS located at the mid-facet (Fig. 5b) that

shrinks the radius of the icosidodecahedron from 2 to s.

Finally, performing the two changes together leads to the

6D definition of the exact original Mackay cluster on the

right in Fig. 6 M2 ¼ fT1;ME; T2;MFg where ME and MF

are the ASs, respectively, (a) and (b) of Fig. 5.

Mackay clusters in approximants and icosahedral
phases

To compare these geometric considerations with actual

structures showing Mackay-type clusters, we choose the

1/1 cubic approximants in the (Sc,Ru), (Al,Fe,Si),

(Al,Mn,Si) and (Al,Fe,Si) alloys. We take the radius of the

large icosahedron, Rico as the reference for measuring the

quality of the approximant (Fig. 9):

R0
ico ¼ A6s

�1=
ffiffiffi

2
p

where A6 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð7� 4sÞ=2
p

� 0:5137 a

ð5Þ

for a perfect 1/1 cubic approximant of parameter a.

The values of the various radii are given in Table 3. We

observe that the experimentally determined radii of the

shells of the clusters are between the two models; the

radius Rico of the large icosahedron deduced from the

length of the cubic lattice parameter is in quite good

agreement of what is expected from the models: These

three structures can indeed be qualified as good approxi-

mants of the icosahedral phase. The radius rico of the small

icosahedron is a bit larger that the one of the Mackay

model for a-AlMnSi and a-AlFeSi, but significantly closer

to the one of the ideal Z-model for (Sc,Ru). Finally, in all

three cases, the size of the icosidodecahedron is much

closer to the value of the ideal Z-model than from the

Mackay model. This is not surprising because this second

shell of the cluster is occupied by two different types of

atoms, one for the large icosahedron and the other for the

icosidodecahedron. A best compromise to relax short dis-

tances along the edge of the elementary tetrahedra is to

increase the size of the icosidodecahedron up to its natural

Z-module value. This is clearly the most evident effect of

the present comparison: The Z-model is very efficient for

generating an initial set of atomic positions in Mackay

clusters, then relaxations occur that optimize the

(a) (b)

Fig. 5 Typical ASs for secondary special points for a P-type 6D

lattice, a the mid-edge AS, say ME, along 5f of little group �5m and

b the mid-facet AS, say MF, along 2f of little group mmm (see

Table 2)
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interatomic distances and leave to the actual equilibrium

atomic positions that are between the two models.

Beyond Mackay clusters

The two first shells of the so-called Bergman cluster

originally discovered by Bergman et al. [19] in

(AlZn)49Mg32 are made of:

• a center (possibly empty);

• a small internal icosahedron;

• a large icosahedron (twice larger);

• an large dodecahedron forming a triacontahedron with

the large icosahedron.

This cluster is very similar to the original Mackay except

that the second shell corresponding to the large triaconta-

hedron is the large icosahedron completed by atoms along

the ternary axes (dodecahedron) instead of the binary axes

(icosidodecahedron). This cluster of 44 (?1) atoms is

slightly lighter than the Mackay one.

The lifting of the Bergman in the 6D space is very

simple and similar to the one previously performed for the

original Mackay. The small inner icosahedron is generated

by locating ME ASs at the mid-edge. The large

Fig. 6 Simplest Mackay-type cluster issued from 6D is generated using T1, T2, T3 and T6. It differs significantly of the original Mackay in the

sizes of the inner icosahedron and of the icosidodecahedron
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Fig. 7 Correcting the size of the inner icosahedron consists in moving two T0’s subAS issued from ð3; �1; �1; �1; �1; 1Þ=2 and ð�1; 1; 1; 1; 1; �1Þ=2 at the
level of (1, 0, 0, 0, 0, 0)/2, thus leading on removing T6 at bc and replacing it by ME at mid-edge
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icosahedron is as usual generated by T2 at the node and the

large dodecahedron is generated by T5 at the bc (see the

T2T5 subfigure in Fig. 4). Thus, as often quoted in the Im�3

cubic phase (AlZn)49Mg32 determined by Bergman et al. is

an excellent 1/1 cubic approximant of an hypothetical

icosahedral phase of 6D-lattice parameter A6 ¼ 0:7274 nm.

Numerous new icosahedral quasicrystals have atomic

structures based on the so-called Tsai cluster that has been

discovered in the i-Cd5:7Yb = i-Cd85Yb15 binary alloy (see

for instance [18, 20–22]). Taking a 6D-lattice parameter of

A ¼ 0:80 nm, we can describe the Tsai cluster as:

• an empty center;

• a small dynamically distorted inner tetrahedron;

• an inner Cd dodecahedron also dynamically distorted of

average radius 0.46 nm;

• a basic Yb icosahedron of radius 0.57 nm;

• a Cd icosidodecahedron of radius 0.65 nm;

(-1,-1,0,0,0,0)

(-1,-1,1,0,1,0)

(0,0,-1,0,-1,0)

(0,0,1,0,1,0)

(1,1,-1,0,-1,0)

(1,1,0,0,0,0)

(-1,-1,0,0,0,0)

(-1,-1,1,0,1,0)

(0,0,-1,0,-1,0)

(0,0,1,0,1,0)

(1,1,-1,0,-1,0)

(1,1,0,0,0,0)

(-1,-1,0,0,0,0)

(-1,-1,1,0,1,0)

(0,0,-1,0,-1,0)

(0,0,1,0,1,0)

(1,1,-1,0,-1,0)

(1,1,0,0,0,0)

(-1,-1,0,0,0,0)

(-1,-1,1,0,1,0)

(0,0,-1,0,-1,0)

(0,0,1,0,1,0)

(1,1,-1,0,-1,0)

(1,1,0,0,0,0)

(0,0,0,0,0,0)

Fig. 8 Correcting the size of the outer icosidodecahedron consists in moving two T0’s subAS issued from ð1; 1; �1; 0; �1; 0Þ and (0, 0, 1, 0, 1, 0) at

the level of (1, 1, 0, 0, 0, 0) / 2, thus leading on removing T3 at n and replacing it by MF at the mid-facet

Fig. 9 Mackay clusters of the (Sc, Ru) 1/1 cubic approximant phase drawn in the middle are almost exactly between the two ideal models, the

6D natural cluster on the left and the original Mackay cluster on the right (see Table 3)

Table 3 Radii of the basic shells of the Mackay cluster for the original Mackay ideal model, the simple Z model, and for three Mackay clusters

as experimentally determined in (Sc,Ru), a-AlMnSi and a-AlFeSi structures

Original Natural Sc57Ru13 (A = 1.4394 nm) a-AlMnSi (A = 1.268 nm) a-AlFeSi (A = 1.231 nm)

Mackay 6D bc n bc n bc n

rico 0.5 0.618 0.570 0.574 0.534 0.527 0.543 0.534

Rico 1.0 1.0 1.074 1.074 1.027 1.057 1.045 1.015

Ricosið6Þ 0.85 1.05 0.995 1.031 1.069 1.00 1.059 1.059

Ricosið24Þ 0.85 1.05 0.995 1.018 1.029 1.025 1.044 1.046
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• a large triacontahedron of radius 0.78 nm along the

twofold directions, with atoms at the middle of the edges.

Contrary to the Mackay case, the corresponding 6D-lattice

nodes are definitely not obvious to be found.

First, there is no 6D-orbit that would generate the small

tetrahedron owning the fact that none of the standard cell

decompositions of ASs generating dodecahedra can give

the ratio of 4/20. The simplest artifact that can be used to

simulate this tetrahedron is to introduce the inner dodeca-

hedron generated by T4 with an statistical occupation factor

of 4 / 20.

The situation is slightly better for the small Cd dodec-

ahedron of radius of 0.46 nm which can be approximated

by the AS T5 localized in ð�1; 1; 1; 1; 1; 1Þ=2 corresponding

to a radius of 0.515 nm instead of the expected 0.46 nm.

The large Yb icosahedron is the reference orbit out of

which the 6D-lattice parameter A has been calculated: the

AS T2 localized at (1, 0, 0, 0, 0).

The Cd icosidodecahedron can be approximately gen-

erated by T3 localizied at ð0; 1; 0; 0; �1; 0Þ with a radius of

0:7435 A ¼ 0:595 nm instead of 0.65.

Finally, the large triacontahedron can be generated by T7
at (1, 1, 1, 1, 1, 1) / 2 and T8 located at ð1; 1; 1; 1; 1; �1Þ=2
with atoms at 0.833 nm along the 3-f, 9.15 nm along the

5-f and 0.828 nm along the 2-f instead of the 0.78 nm

expected. The atoms at the middle of the edges of this

triacontahedron are generated by a original new AS located

at (1, 1, 1, 1, 1, 0) / 2.

These results are summarized in Table 4 that shows

quite important deviations between the actually observed

radii of the various orbits and their theoretical values issued

from the 6D special points description.

Conclusion

We have shown here how the lifting in 6D space of the

original Mackay and Bergman clusters is simple and nat-

ural with very little distortion between theoretical and

experimentally determined atomic positions. This lifting is

far from being as simple for the Tsai clusters that show an

inner shell that is unexplained by the 6D scheme and is

finally constructed using large displacements in the phys-

ical space from the theoretical positions of the Z-module.

This is by no mean in contradiction with the 6D approach

where it is always possible to shift atoms in the parallel

space consistently with the local internal symmetry; it is,

however, clearly the sign that, in that case, the ideal 6D

special points approach—that is still the most efficient tool

for building ideal basic structures—does require large local

relaxations to conform the ideal model to the experimental

diffraction data.
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