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Abstract In this work, we investigate the nature of the O–

O and O–N interactions in protonated 1,2-dioxirane-3-one

derivatives and protonated 1,2-oxaziridine-3-one deriva-

tives, respectively. The quantum theory of atoms in

molecules and the natural bond orbital (NBO) method in

conjunction with the localized molecular orbital energy

decomposition analysis (LMOEDA) have been used.

LMOEDA and NBO analyses reveal that the O–O and O–N

interactions exhibit characteristics of dative covalent

bonds. In addition, the L(r) = -r2q(r) function reveals

that the O–O and O–N interactions can be categorized as

strong hole–lump interactions.

Keywords Hole–lump interaction � Degree of covalency �
Laplacian � QTAIM analysis � NBO analysis � LMOEDA

Introduction

Molecular interactions play a key role in a wide range of

biological, chemical, and physical fields including the

development of new materials, new strategies for drug

design, new supramolecular structures, and crystal engi-

neering [1–6]. At present many molecular interactions as

the lithium bond (LiB) [7, 8], the beryllium bond (BeB)

[9, 10], the boron bond (BB) [11], the pnicogen bond (PB)

[12, 13], the chalcogen bond (ChB) [14, 15], the halogen

bond (XB) [16, 17], and the aerogen bond (AB) [18] are

being extensively analyzed. Grabowski recently suggested

that the term ‘‘Lewis acid–Lewis base interaction’’ seems

to be more proper than the term ‘‘noncovalent interaction’’

for those interactions where the complex formation is

connected with significant electron charge redistribution

[19]. For all interactions, the electrostatic force is very

important since the positively charged Lewis acid center

interacts with the negatively charged Lewis base center.

This is in line with the r-hole concept which was applied to

the halogen bond and to other noncovalent interactions

[20, 21].

On the other hand, there is evidence from the Cambridge

Structural Database, that the O���N interactions may play a

significant role in the control of conformations of biphenyls

carrying several nitro groups in ortho positions. In addition,

the O���N interactions may involve a very small degree of

covalent interaction [22]. Daszkiewicz [23] also stressed
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the importance of the O���N interaction between nitro

groups in crystals. In his study of 104 structural fragments

deposited in the Crystal Structure Database, he found that

the O���N interactions, in most cases, are shorter than the

sum of the van der Waals radii (2.84 Å). Ab initio, cal-

culations of the interaction energy indicate attractive fea-

ture of this interaction, comparable to C–H���O interactions.

Curiously, O���O interactions have been detected in

crystal of sodium nitroprusside. Nelyubina et al. [24]

showed that nitroprusside anion is involved in relatively

strong self-interactions (12.5 kJ mol-1) through the nitroso

group. The strength of this interaction exceeds by far the

corresponding interaction (5.9 kJ mol-1) in crystalline

urea nitrate [25]. Pinkerton et al. [26] have studied through

the quantum theory of atoms in molecules (QTAIM) a

series of weaker and moderate inter- and intramolecular

interactions O���O in the crystals of phthalic acid, 2,6-

dinitrophenol [27] and 2-nitrobenzoic acid [28]. In the

crystals of 2,6-dinitrophenol, they also found O���N inter-

actions [27].

Recently, we have studied through the QTAIM, the

nature of the bonds of the small-ring lactone and lactam

1,2-dioxirane-3-one and 1,2-oxaziridine-3-one (see

Scheme 1 for the atom numbering) [29]. In that work, it

was shown by QTAIM that there is not a bond critical point

and bond path between the atoms O1 and O2, and O1 and

N2, respectively. Also, the distance between O1 and O2 in

1,2-dioxirane-3-one is significantly longer than the O–O

bond in hydrogen peroxide, 1.631 and 1.460 Å, respec-

tively. Similarly, the interatomic distance between O1 and

N2 in 1,2-oxaziridine-3-one is significantly longer than the

N–O bond in hydroxylamine, 1.635 and 1.448 Å, respec-

tively. In addition, the QTAIM topological parameters

calculated at the bond critical point [electron charge den-

sity, q(rb), Laplacian of electron charge density, r2q(rb)

and total electronic energy density, H(rb)] showed that the

C3–O2 and C3–N2 bonds in these molecules are slightly

stronger than the C–O single bond in formic acid and C–N

single bond in N-methylacetamide, respectively. However,

when the heteroatoms and N2 in (1) and (2) species,

respectively, are ring protonated, the C3–O2 and C3–N2

bonds are broken and the O1–O2 and O1–N2 bonds are

formed, despite the strength of the C3–O2 and C3–N2

bonds in the neutral molecules [30]. That is, non-ring-

protonated derivatives of the (1) and (2) species are in fact

complexes of carbon dioxide and the cations OH? and

NH2
?, respectively.

Identification of the strongest bonds in chemistry as

‘‘bond dissociation enthalpies, BDH (or bond dissociation

energies, BDE) values, although often used in chemistry to

discuss the strength of the chemical bond, are not reliable

bond strength descriptors’’ [31].

It is clear that the formation of the O1–O2 and O1–N2

bonds is somewhat unusual. With the aim to understand the

nature of these bonding interactions, in this work, we

performed a deeper electronic study of the species [OCO–

OY]? and [OCO–N(H)Y]?, with Y = –H, –F, and –CH3.

The nature of the interatomic interactions O1–O2 and O1–

N2 has been compared with the properties of conventional

O–O and O–N bonds in hydrogen peroxide and hydroxy-

lamine, respectively.

Computational details

The geometries of all species were fully optimized using

the Møller–Plesset second-order perturbation theory [32]

(MP2) with the 6-311??G(2d,2p) basis set. The minimum

energy nature of the optimized structures was confirmed by

the absence of imaginary frequencies. We have calculated

the interaction energies (EInt), using the supermolecular

approach, as the difference between the total energy of the

species ([OCO–OY]? or [OCO–N(H)Y]?) and the sum of

total energies of the two isolated constituents (CO2 and

OY? or N(H)Y?). These energies and their components

were obtained at the same level of theory using the local-

ized molecular orbital energy decomposition analysis [33]

(LMOEDA) partition method, according to the equation

below:

EInt ¼ EES þ EEX þ EREP þ EPL þ EDISP

where EES is the electrostatic component, EEX is the

attractive exchange component resulting from the Pauli

exclusion principle, EREP is the interelectronic repulsion

term and EPL and EDISP correspond to polarization and

dispersion terms, respectively. These calculations have

been carried out with the GAMESS program (version

2013-R1) [34]. In this work, the results have been inter-

preted jointly with a real physical property of the system:

the electron charge density. The calculations of local

topological properties of the electron charge density and its

Laplacian function and the integrated atomic properties on

C3

O1 X2

O4

C3

O1 X2

O4

X2 = O; 1,2-dioxirane-3-one: (1)
X2 = NH; 1,2-oxaziridine-3-one: (2)

H

+

+ H+

Scheme 1 Atom numbering scheme of the studied chemical

reactions
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the atomic basin, as well as the display of the molecular

graphs were performed with the AIMAll software [35] with

the wave function obtained at MP2/6-311??G(2d,2p)

level of theory.

The natural bond orbital (NBO) method [36] has been

used to analyze the population and energies of the chemical

bonds O1–O2 and O1–N2. NBO analysis was performed at

B3LYP/6-311??G(2d,2p) level of theory, with the NBO

3.1 program [37], as implemented in Gaussian 03 [38].

Results and discussion

Figure 1 reports the minimum energy paths (MEPs)

resulting from the protonation of an oxygen/nitrogen atom

on 1,2-dioxirane-3-one and 1,2-oxaziridine-3-one, respec-

tively. In both cases, it is observed that the reaction pro-

ceeds without any energy barrier (there is no transition

state structure) into a very deep well for the [OCO–OH]?

and [OCO–NH2]? species.

Experimental and theoretical studies reveal that both,

the hydroxyl cation (OH?) and the nitrenium ion (NH2
?),

are ground state triplets [39]. According to Slipchenko

et al. [39], the singlet–triplet gap (defined as the energy

difference between the lowest energy singlet state and the

lowest energy triplet state) is about -210 and

-125 kJ mol-1, respectively. However, our calculations

indicate that the species [OCO–OH]? and [OCO–NH2]?

are ground state singlets. Singlet–triplet gap in [OCO–

OH]? is 82.3 kJ mol-1, while the triplet state for [OCO–

NH2]? is not an energy minimum on the potential energy

surface. All attempts to find a stable structure lead to dis-

sociation products (CO2 and NH2
? in singlet and triplet

state, respectively).

The species OF? and N(H)F? have different electronic

stabilities. The ground state of OF? is triplet

(DES–T = -179.5 kJ mol-1), and N(H)F? is ground state

singlet (DES–T = 15.8 kJ mol-1). The latter is in agree-

ment with the reported values by Gobbi et al. [40] [DES–T

(average) = 26.1 kJ mol-1]. The species OCH3
? and

N(H)CH3
? are ground state triplets. The species OCH3

?

and N(H)CH3
? in their singlet state are not energy minima

on the potential energy surface, both spontaneously rear-

range to HOCH2
? and NH2CH2

?, respectively without any

energy barrier (there is no transition state structure).

Although most of the cations OY? and N(H)Y? (with

Y = –H, –F, –CH3) are ground state triplets [except

N(H)F?], most of the species [OCO–OY]? and [OCO–

N(H)Y]? are ground state singlets (except OCO–OCH3]?).

In order to compare all species in the same electronic state,

henceforth we only focus on species [OCO–OY]? and

[OCO–N(H)Y]? (with Y = –H, –F, –CH3) in their singlet

state.

In specie [OCO–OH]?, the O1–O2 interatomic distance

(1.476 Å) is slightly longer than the O–O single covalent

bond in hydrogen peroxide (1.460 Å). Similarly, the O1–

N2 interatomic distance in specie [OCO–NH2]? is longer

than a conventional O–N single covalent bond as in

hydroxylamine, 1.529 and 1.448 Å, respectively. It can be

said that the interatomic distances are similar to that of a

single covalent bond O–O and O–N, respectively.

The energy decomposition analysis (EDA) is a powerful

tool for a quantitative interpretation of chemical bonds. In

Table 1, it is reported the interaction energy components

derived from the LMOEDA method. It is observed that the

most important stabilization terms correspond to the

exchange and polarization followed by the electrostatic and

to a lesser extent by the dispersion term. This may indicate

that the orbital interaction plays an important role in the

stability of these complexes.

According to Su et al. [33], ionic bonds are character-

ized by high values of EES and low values of the remaining

components, for example, for the archetypal NaCl:

EES = -602.0 kJ mol-1 (81.3 % of the stabilizing com-

ponents), EEX = -75.3 kJ mol-1 (10.16 % of the stabi-

lizing components), EPL = -54.1 kJ mol-1 (7.30 % of the

stabilizing components) and EDISP = -9.2 kJ mol-1

(5.23 % of the stabilizing components) [33]. Similar

observations were made by Grabowski et al. [41]. On the

other hand, covalent bonds are characterized by large

exchange and polarization energies due to the effective

reduction of the electron–electron Coulomb repulsion

between pairs of bonded atoms and the significant orbital

deformations, respectively. In Table 1, it can be observed

high values of EEX (between 30 and 40 % of the stabilizing

components) and EPL (between 33 and 46 % of the stabi-

lizing components). These values suggest the formation of
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Fig. 1 MEPs for the protonation of an oxygen/nitrogen atom of 1,2-

dioxirane-3-one and 1,2-oxaziridine-3-one. DE denotes the electronic

energy relative to the species [OCO–OH]? and [OCO–NH2]? (Color

figure online)
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a covalent bond. In addition, Fig. 2 shows a good corre-

lation between the polarization term and the interaction

energies. Therefore, the electronic exchange and the orbital

deformation play a key role in O–O and O–N bond for-

mation of the studied species.

The interaction energy, Eint, provides a measure of the

strength of the interaction between CO2 and the [OY]? and

[N(H)Y]? species. The EInt values are typically of the same

order of magnitude of that of single and dative covalent

bonds [33, 42], are significantly higher than those found for

conventional molecular interactions as HBs [43] and XBs

[44], and are comparable in strength with the values

reported by Grabowski [43] for the strongest hydrogen

bond charge assisted (i.e., 166.8 kJ mol-1 for [F���H���F]-

system calculated at the MP2/6–311??G(d,p) level of

theory). These energies reveal that the O1–O2 interactions

are stronger (except in the [OCO–OCH3]? species) than

the O–O single covalent bond in hydrogen peroxide. In

turn, the O1–N2 interactions are weaker than the O–N

single covalent bond in hydroxylamine.

Moreover, in Table 1, it can be observed that the sub-

stitution of a H atom by a F atom and by the CH3 group in

the [OCO–OH]? and [OCO–NH2]? species has a big

influence on the interaction energy. For example, the

interaction energy in [OCO–N(H)F]? is 46 % lower than

that of [OCO–NH2]?, and the interaction energy of [OCO–

N(H)CH3]? is 51 % lower than that of [OCO–NH2]?.

Something similar is observed in the [OCO–OY]? species.

Therefore, the substitutions of H by an electron-with-

drawing atom (F) or by an electron-donating group (CH3)

produce an important decrease of the stability of the O1–

O2 and O1–N2 interactions.

In Table 2, we report selected geometric parameters and

some topological properties of the electron charge density

of all the studied species. It is well known that the QTAIM

is a powerful tool to inquire about the nature of the

chemical bonds [45–47]. In all species, it is observed that

the O1–O2 and O1–N2 distances (*1.5 Å) are much

smaller than the sum of van der Waals radii for the inter-

acting atoms (i.e., 2.84 Å for oxygen–oxygen and 2.88 Å

for oxygen–nitrogen) and slightly longer than conventional

O–O and O–N single covalent bonds as in hydrogen per-

oxide (1.460 Å) and hydroxylamine (1.443 Å), respec-

tively. This indicates clearly the presence of stronger

bonding interactions between these atoms. Even more, the

topological analysis of the electron charge density, q(r),

shows the presence of a bond critical point (BCP) and a

corresponding bond path in the O1–O2 and O1–N2 inter-

actions, indicative of bonding interactions. The electron

density values range from 0.2120 to 0.2467 a.u. for the

O1–O2 interactions and from 0.1629 to 0.2054 a.u. for the

O1–N2 interactions, thus being lower than the electron

density values for the O–O interaction in hydrogen per-

oxide and O–N interaction in hydroxylamine, respectively.

However, these values are significantly higher than those

found for conventional molecular interactions as HBs [43],

LiBs [48], BeBs [49], PBs [50], ChBs [51], and XBs [44].

It is important to note that in the O–O interaction in

hydrogen peroxide and in the O–N interaction in hydrox-

ylamine, q(rb) is high and r2q(rb)\ 0, that is, present

Table 1 Energy decomposition

analysis of the interaction

energy obtained with the

LMOEDA methodology

Species EES EEX EREP EPL EDISP EInt

HO–OH -546.3 -1060.1 2465.0 -866.0 -228.8 -236.2

[OCO–OH]? -368.5 -700.3 1664.7 -940.1 -149.4 -493.6

[OCO–OF]? -311.0 -601.8 1425.4 -826.8 -48.1 -362.4

[OCO–OCH3]? -298.4 -613.0 1390.7 -625.9 -86.8 -233.5

HO–NH2 -746.5 -1370.7 3238.2 -1233.9 -189.3 -302.1

[OCO–NH2]? -340.5 -644.1 1455.0 -661.9 -99.5 -291.0

[OCO–N(H)F]? -259.6 -490.4 1099.6 -477.2 -29.7 -157.4

[OCO–N(H)CH3]? -285.8 -568.4 1241.6 -457.2 -71.5 -141.3

All values in kJ mol-1

Eint = 0.6913 EPL + 179.77
R² = 0.977
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typical properties of shared-shell interactions (covalent

bond), while in O1–O2 and O1–N2 interactions, q(rb) is

relatively high, but r2q(rb)[ 0. Therefore, these interac-

tions are within the closed-shell regime and have charac-

teristics similar to classic Lewis adducts OC–BH3 and

H3N–BH3, where q(rb)[ 1 and r2q(rb)[ 0.

Recently, in the framework of the HBs as well as the

XBs, it was reported that the decrease of the total electronic

energy density at the BCP, H(rb), with increasing q(rb),

could be considered as an indicator of the interaction

strengthening or interaction stabilization, in the same way

as the decrease in the total interaction energy is an indi-

cator of the complex stabilization [52, 53] In Tables 1

and 2, it can be observed that for the same pair of inter-

acting atoms, H(rb) decreases with increasing q(rb) and

decreasing Eint. That is, these results also support the idea

that H(rb) is a good descriptor of the strength of the

interatomic interactions.

In addition, in the context of the AIM theory, we have

calculated the electrostatic interaction energy between the

electron cloud of the O1 atom of the CO2 molecule and the

nucleus of O2/N2 atom and vice versa (see Table 2). It is

observed that |Ve–n(O,X)|[ |Ve–n(X,O)|, that is, the

electrostatic interaction between the electron cloud of the

O1 atom and the nucleus of the O2/N2 atom contributes

significantly to the formation of the O1–O2 and O1–N2

bonds.

Moreover, the NBO method provides a theoretical

framework to interpret the formation of a chemical bond. It

is a useful tool for the investigation of the relative stability

and the nature of the covalent bonds. Table 3 reports the

Table 2 Selected interatomic

distances and topological

parameters

Species Bond d q(rb) r2q(rb) H(rb) Ve–n(O,X) Ve–n(X,O) CTAIM

HO–OH O–O 1.460 0.2779 -0.0558 -0.1939 -24.1708 -24.1708

[OCO–OH]? O1–O2 1.476 0.2467 0.2084 -0.1510 -23.9582 -23.3606 0.7385

C3–O4 1.134 0.4783 0.5493 -0.9033

C3–O1 1.247 0.3862 -0.7869 -0.6745

[OCO–OF]? O1–O2 1.516 0.2254 0.2739 -0.1254 -23.2740 -21.2009 0.7711

C3–O4 1.134 0.4781 0.5681 -0.9030

C3–O1 1.256 0.3802 -0.8467 -0.6567

[OCO–OCH3]? O1–O2 1.530 0.2120 0.2912 -0.1132 -23.3242 -22.5764 0.6562

C3–O4 1.137 0.4758 0.4904 -0.8973

C3–O1 1.238 0.3922 -0.7266 -0.6893

HO–NH2 O–N 1.443 0.2785 -0.1799 -0.2016 -21.8290 -20.7781

[OCO–NH2]? O1–N2 1.529 0.2054 0.0606 -0.1319 -20.9090 -19.6365 0.5074

C3–O4 1.136 0.4769 0.4718 -0.9004

C3–O1 1.232 0.3967 -0.7223 -0.7012

[OCO–N(H)F]? O1–N2 1.636 0.1629 0.1900 -0.0749 -19.6299 -17.0710 0.4796

C3–O4 1.138 0.4746 0.4405 -0.8944

C3–O1 1.229 0.3967 -0.6576 -0.7000

[OCO–N(H)CH3]? O1–N2 1.611 0.1659 0.1818 -0.0828 -20.0002 -18.8756 0.4329

C3–O4 1.140 0.4736 0.4023 -0.8921

C3–O1 1.224 0.4024 -0.6467 -0.7149

Interatomic distances in Å and topological parameters in atomic units

d, interatomic distances; q(rb), electron density at the indicated BCP; r2q(rb), Laplacian of the electron

density at the indicated BCP; H(rb), total electronic energy density; Ve–n(O,X), electrostatic interaction

energy between total charge distribution of O1 atom and nucleus of the O2/N2 atom; Ve–n(X,O), elec-

trostatic interaction energy between total charge distribution of O2/N2 atom and nucleus of the O1 atom;

CTAIM, charge transference between CO2 and [NH2]? or [OH]?

Table 3 Natural bond orbital (NBO) analysis for O1–O2 and O1–N2

bonds

Species N Energy

HO–OH 1.9963 -3.3

[OCO–OH]? 1.9445 -4.2

[OCO–OF]? 1.9345 -3.8

[OCO–OCH3]? 1.9216 -3.8

HO–NH2 1.9973 -3.1

[OCO–NH2]? 1.9334 -4.4

[OCO–N(H)F]? 1.9020 -4.3

[OCO–NH(CH3)]? 1.9015 -4.0

Occupation numbers (N) and energies of selected molecular orbitals

N the number of electrons and energies in kJ mol-1
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population and energies of the O1–O2 and O1–N2 chem-

ical bonds. It is observed that in all species, the population

of the O1–O2 and O1–N2 bonds is slightly less than in

conventional O–O and O–N single covalent bonds as in

hydrogen peroxide and hydroxylamine, respectively.

However, the orbital energies of conventionals O–O and

O–N single covalent bonds show less stability than the O1–

O2 and O1–N2 bonds.

The analysis of population and orbital energies in the

species [OCO–N(H)Y]? and [OCO–OY]? reveals that the

degree of covalency decreases with Y in the order –H[
–F[ –CH3.

According to Bader et al. [54], ‘‘the value of the delo-

calization index, DI(A,B), always gives the number of

electrons that are delocalized or exchanged between the

basins of A and B, independent of any model.’’ This

parameter, like the NBO analysis, allows us to assess the

degree of covalency of the O1–O2 and O1–N2 bonds.

Figure 3 shows a very good linear relationship between the

population of the O1–O2 and O1–N2 bonds and DI(O1,O2/

N2). Therefore, it appears that the degree of covalency of

the O1–O2 and O1–N2 bonds varies with the O2/N2 atom,

increasing in the same order as the interaction energies.

On the other hand, in Table 2, it can be seen that in all

species upon the complexation, the C3–O4 and C3–O1

interatomic distances are shorter and longer, respectively,

than the C–O covalent double bond in isolated, uncom-

plexed CO2 molecule (1.153 Å). Changes in the topologi-

cal properties at the C3–O4 and C3–O1 BCPs (see Table 2)

are also observed. That is, q(rb) and H(rb) in the C3–O4

bond are higher in magnitude than the values

found in isolated CO2 [q(rb) = 0.4619 a.u. and

H(rb) = -0.8626 a.u.]. In the C3–O1 bonds, it is observed

the opposite. In other words, the C3–O4 bond increases its

double bond character, while the C3–O1 bond decreases its

double bond character with respect to CO2 isolated.

Moreover, the equilibrium bond angle, C3–O1–X2,

ranges from 104.92� (in [OCO–OCH3]?) to 109.20� (in

[OCO–OCH3]?). In addition, the L(r) function shows, on

the valence shell concentration charge (VSCC) of the O1

atom, two nonbonded maxima [CP (3, -3) in L(r) func-

tion], whereas in O4, the L(r) function shows one non-

bonded maxima [CP (3, -3) in L(r) function] in its VSCC.

According to Bader [55] and Gillespie [56], these non-

bonded maxima are associated with lone pairs of the O1

and O4 atoms. In other words, it appears that the O1 atom

has characteristics of a tetrahedral atom and the O4 atom

looks like the oxygen atom of carbon monoxide (see

Fig. 4). A similar analysis shows that the O2 and N2 atoms

in [OCO–OH]? and [OCO–NH2]? species, respectively,

have a tetrahedral electronic structure.

The L(r) = -r2q(r) function has been used to char-

acterized various interatomic interactions involving the

hole–lump concept [9, 12, 13, 57, 58]. According to hole–

lump theory, the areas with charge concentration

[L(r)[ 0] interact with the charge depleted areas

[L(r)\ 0] [45, 46]. Figure 5 shows the contour maps of the

function L(r) for CO2 and the ionic species [OH]?, [OCO–

OH]?, [OCO–NH2]? and [NH2]?. It is observed that the

molecules are oriented so that a local charge concentration

(lump) in the valence shell concentration charge (VSCC) of

the O1 atom is almost aligned with a local charge depletion

(hole) in the VSCC of the O2 (in [OCO–OH]? species) and

N2 (in [OCO–NH2]? species) atoms, respectively. In other

words, the geometry of these species is strongly influenced

N = 0.1641 DI(O1,O2/N2) + 1.7927
R² = 0.9784
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Fig. 3 Correlation between population of O1–O2/O1–N2 bond and

the delocalization index, DI(O1,O2/N2)

Fig. 4 Molecular graph and nonbonded maxima (yellow dots) of the

L(r) function [CPs (3, -3) in L(r)] for the [OCO–NH2]? specie

(Color figure online)
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by the positions of lump and hole in the constituents.

Therefore, the L(r) function reveals a hole–lump interac-

tion between O1 and O2 and between O1 and N2 atoms,

respectively.

Moreover, it is observed that the interacting atoms

modify their VSCC. A polarization of the VSCC of O1

atom of CO2 in direction of the bond paths O1–O2 and O1–

N2 is observed. Moreover, it is also seen an accumulation

of electron charge density at the hole of the O2 and N2

atoms in species [OCO–OH]? and [OCO–NH2]? with

respect to the free cations [OH]? and [NH2]?, respectively.

This is because of the charge transfer from the lone pair of

O1 of CO2 to the [OH]? and [NH2]? species. It appears

that there is a tendency to form continuous accumulation

region of charge density between the interacting nuclei.

These observations allow us to establish that the nuclei of

atoms O2 and N2 cause a polarization of the electronic

cloud on the VSCC of the O1 atom of CO2.

In Fig. 5, it is reported the atomic population in all the

atoms of the species [OH]?, [OCO–OH]?, OCO, [OCO–

NH2]?, and [NH2]?. A considerable rearrangement of the

electronic charge density with respect to the free con-

stituents is produced. Something similar happens in the rest

of the studied species. The existence of a ‘‘hole’’ on the

surface of the O2 and N2 atoms valence shell in the [OH]?

and [NH2]? species is indicative of a local deficiency in

electrons. It appears that it is through this ‘‘hole’’ that

electronic charge transfer occurs during the formation of

the [OCO–OY]? and [OCO–N(H)Y]? species. The total

electron charge density transferred, in the framework of the

AIM theory, CTAIM, was calculated as the CO2 electron

charge density loss during the formation of the complex.

These values are reported in the last column of the Table 2.

It is observed that CTAIM in [OCO–OY]? is higher than in

[OCO–N(H)Y]? for the same Y, like the interaction

energies.

Conclusions

In this work, a deep theoretical study, within the QTAIM

framework and NBO method in conjunction with

LMOEDA, has been carried to determinate the nature of

the interactions O–O and O–N in [OCO–OY]? and [OCO–

N(H)Y]? species, respectively.

Based on LMOEDA analysis, we have found that the

exchange and polarization components have the most sig-

nificant contributions to the total interaction energy.

Therefore, the electronic exchange and the orbital defor-

mation play a key role in O–O and O–N bond formation in

the studied species.

Topological analysis of the L(r) function reveals that O1

of the CO2 molecule and O2 and N2 of the [OCO–OY]?

and [OCO–N(H)Y]? species have characteristics of tetra-

hedral atoms, while O4 atom of CO2 looks like the oxygen

atom in carbon monoxide. Additionally, the L(r) function

and calculating |Ve–n(O,X)| reveal that the stability of the

O–O and O–N bonds is established between the lone pair

of the oxygen atom of the CO2 molecule and the charge

density depletion region of the O2/N2 atom. That is, these

interactions can be categorized as strong hole–lump inter-

actions; a region charge concentration (lump) in the VSCC

O1 (CO2) atom combines with that of a region of charge

depletion (hole) in the VSCC of O2/N2 atom.

Fig. 5 Contour map of the L(r) = -r2q(r) function. Blue lines

denote L(r)[ 0 and red lines, L(r)\ 0. The black lines indicate the

bond paths and the green dots indicate the BCP of the q(r) topology.

Note the anisotropic distribution of the charge concentration in the

VSCC of the O1 atom of the CO2 molecule (Color figure online)
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In addition, the geometry of these species is strongly

influenced by the positions of lump and hole in the con-

stituents CO2 and [OY]? and [N(H)Y]?.
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