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Abstract An example of substitution rules for the con-

struction of heptagonal rhombic tilings is proposed. Rig-

orous inflation/deflation rules make it possible to expand

the tiling up to infinity without additional ad hoc rear-

rangements. The derived tilings are self-similar and consist

of characteristic patterns with seven-pointed stars sur-

rounded by similar seven-pointed stars.
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He from the centre of the realm upraised a Behistun, from which that of

Farhad fled.

In such a Behistun, which seven columns had, he raised up to the heavens

seven domes.

And in those walls, which touched upon the sky, he saw a rampart round

the lofty spheres.

He saw seven domes within those walls built up after the nature of the

planets seven.

Nizami Ganjavi, ‘‘The Seven Beauties’’.

Introduction

John D. Bernal was probably one of the first who drew the

attention of researchers to the origin of the sevenfold sym-

metry in molecular and atomic systems. According to his

suggestion, the possible reason for unusual symmetries in

living and non-living matter is due to that the complex

systems are made up of subunits, which were almost but not

absolutely identical. In particular, he wrote that ‘‘the new

crystallography, generalized crystallography, has been

growing up to include structures and polymers where some

of the conditions of crystallography are relaxed to include

polymers with a helical structure or the presence of fivefold

and sevenfold axes’’ [1]. Alan L. Mackay laid down the

foundations of generalized crystallography (see, e.g., [2–5]),

especially emphasizing the importance of self-similarity,

curvature, hierarchy, and information, as well as the need in

higher dimensional and non-Euclidean approaches instead of

the ‘‘orthodox’’ crystallography, and the decision-tree algo-

rithms and cellular automata instead of simple face-to-face

packing of single unit cells. The sevenfold symmetry is also

among his multifarious interests [6, 7]. Recently, Schoen [8]

derived a variety of fascinating quasi-recursive rhombic

sevenfold tilings and made them available on his website, as

well as the calculated by Mackay diffraction pattern from

the central core of one of the most representative sevenfold

samples. Since we continuously drew inspiration from his

works [9, 10], we deemed appropriate to make a small

contribution to the problem of heptagonal symmetry as a

humble tribute for his influence.

The search for novel materials exhibiting the sevenfold

symmetry continues. At this time, only a few examples of

relating quasicrystals have been reported [11–13]. Thus,

theoretical models of heptagonal tilings could be very

useful for these purposes.
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The quasicrystalline tilings of the plane are rather

diverse. According to Danzer [14], there exist several

infinite series of such tilings, as well as quite a few spo-

radic tilings with exotic properties. First, the analogues of

the Penrose tiling [15, 16] exist for every natural n C 7

(except for n = 8, 10, 12) when the de Bruijn method is

used [17, 18]. These tilings seem to lack simple inflation

rules in many cases. Alternatively, the tilings that are

defined by inflation rules proposed by Nischke and Danzer

[19] exist for every odd n C 7 not divisible by 3, but these

tilings can hardly be constructed by the de Bruijn method.

There exist several substitution tilings of the Ammann–

Beenker type, which can be also compatible with the n-fold

rotational symmetry [20–22].

Next, a series of tilings of congruent rectangular trian-

gles can be derived similarly to the pinwheel tiling, which

was introduced by Conway and Radin first [23]. These

tilings can neither be produced by a strip projection

method, nor be defined by some local matching rules.

Generally, in the global pinwheel tiling, the triangles occur

in infinitely many orientations. So, it is hard to imagine that

such tilings may be compatible with repeatedly appearing

n-fold rotational symmetry, though the similar construction

being applied to isosceles triangles could probably give rise

to the sevenfold symmetry.

A great number of heptagonal tilings have been pub-

lished as both triangular and rhombic. Both strip projection

and substitution algorithms have been used for the pattern

generation. Different inflation factors have been found to

be compatible with the sevenfold symmetry. The resulting

tilings were with and without repeatedly appearing hep-

tagonal patterns [24–35]. For example, the rhombic tiling

proposed by Harriss [27] was characterized by very clear

inflation rules but lacked the repetitive sevenfold patches,

even if seven or fourteen rhombuses were initially arranged

into a star. Kari and Rissanen [34] discussed two types of

local environments, which they referred as roses, and

offered an original and very attractive solution, though the

assumption that all vertices of initial rhombuses had

equivalent local environments led to an enormously large

inflation factor.

To make the general problem more clear and under-

standable, let us discuss some special features of the great

family of heptagonal quasi-recursive rhombic tilings

derived by Schoen [8]. He highlighted that, in contrast to

the Penrose tiling, the multiple reflections of the initial

heptagon create overlapping regions in each newly gener-

ated heptagonal annulus. Overlapping regions must be

replaced by an orderly ad hoc arrangement of tiles called a

wedge, in order to connect the adjacent tiled regions

seamlessly. After the second recursion stage, the wedge

design becomes challenging already because of the large

number of tiles involved. Schoen intended to assume—

without proof—that it was possible to construct a wedge at

every stage of recursion [8].

The goal of this paper is to develop a rigorous procedure

to construct a sevenfold tiling that satisfies a number of

strict requirements. First, the inflation/deflation rules

should allow the expansion of the tiling up to infinity

without additional ad hoc rearrangements. The enlarged

rhombuses should either contain the smaller rhombuses

wholly within themselves or their edges should bisect the

smaller tiles. Second, the tiling should be self-similar and

contain repeatedly appearing patches with sevenfold rota-

tional symmetry. In other words, it should consist of seven-

pointed stars surrounded by seven-pointed stars, each of

which is surrounded by seven-pointed stars, and so forth.

Third, the inflation/deflation rules must ensure that after

several iterations, the local environment of every vertex

transforms into one of the standard sevenfold patterns from

a certain atlas. Actually, we expect only two different

vertex types in corresponding infinitely fragmented fractal

[36] and, consequently, only two different types of sev-

enfold patterns are expected to exist in the whole two-page

atlas. Thus, we are looking for a pair of complementary

heptagonal tilings constructed according to the common

rules. Finally, the inflation/deflation procedure should not

move the origin of the tiling and should not permute the

vertices of both types (compare with the Penrose tiling, the

substitution rules of which permanently interchange the

‘‘sun’’ and ‘‘star’’ patterns).

Heptagonal tiling: an example

We used the basic concepts of the fractal approach that

have already successfully proven themselves for explana-

tion of structural peculiarities of icosahedral quasicrystals

[36–38]. We presumed that a rhombic tiling of the Eucli-

dean plane E2 has a corresponding fractal ‘‘parent’’ in the

extended complex plane or the Riemann sphere PC1, the

symmetry operations of which—linear fractional transfor-

mations or the Möbius homography—predefine the infla-

tion/deflation rules for its ‘‘daughter’’. We were not able to

avoid completely some trial-and-error procedures and ad

hoc steps. So, let us report the final result and provide some

comments for clarification.

The substitution rules use the set of rhombuses with

angles 2pk/14 and with integer k [ {1…6}. There are only

two types of vertices. They are referred by us as the A and

B types and denoted as open and solid circles, respectively.

There are only two types of edges marked by the single and

double arrows. The arrows always begin at the vertices of

the first type and point to those of the second type. In any

rhombus, two opposite vertices belong to the first type,

whereas two other vertices belong to the second type. The
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local environment of any vertex in the tiling is a subgraph

of fourteen alternating edges, both as single- and double-

arrowed (Fig. 1).

There are exactly six different rhombuses, which can be

designated as T1
7, T2

7, T3
7, T4

7, T5
7, and T6

7. The pairs of tiles—T1
7

and T6
7, T2

7 and T5
7, T3

7 and T4
7—seem to be equal, but they

differ by the types of opposite vertices. Quasicrystalline til-

ings can have a special kind of defects referred to as phason

shifts [39]. The heptagonal tilings also have the similar type

of disorder. For example, the cluster of two narrow rhom-

buses T6
7 and one medium T2

7 may be always replaced by the

complementary cluster of two T1
7 and one T5

7 without affecting

the adjacent tiles. A lot of such rearrangement rules can be

found for a specific tiling. This means that, once derived, the

substitution rule cannot be considered as a unique solution.

The local matching rules that are considered as alternating

order of smaller rhombuses along the edges of inflated ones

also are not unique. For example, when the initial global

heptagonal tiling has had mirror planes, it can lose this kind of

symmetry after several subsequent rearrangements of indis-

tinguishable clusters. The rearrangement of indistinguishable

clusters can affect the global symmetry of tiling! The rear-

rangement can also reduce the number of tiles in the funda-

mental basic set. Clearly, we have entered into a virtually

unexplored area of geometry, relating to the polymorphism of

aperiodic tilings. After some trial-and-error steps, we have

succeeded to exclude the last narrow rhombus T6
7 from the

basic set of tiles. On one the hand, our motivation was to

simplify the rules, and on the other hand, to reproduce at least

the central core of the known tiling [8]. Thus, the basic set of

prototiles is formed by only five different rhombuses (com-

pare with [8, 27, 28, 33, 34, 40]).

Fig. 1 Inflation/deflation rules for the sevenfold rhombic tiling. There exist two types of vertices (A and B), two types of edges (single and

double-arrowed), and five types of inequivalent rhombuses (T1
7, T2

7, T3
7, T4

7, and T5
7)
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The inflation/deflation rules are presented in Fig. 1. The

inflation factor is m = 3 ? 3a ? 2b ? c, where a =

2 cos (2p/14), b = 2 cos (2 9 2p/14), and c =

2 cos (3 9 2p/14). These rules can be applied iteratively till

the entire plane is covered by rhombuses. Figures 2 and 3

show the results of the inflation/deflation procedure applied to

the local environment of the A- and B-type vertices,

respectively.

Now, let us give some comments on how we got these

rules. We started with highly symmetrical rosettes to ensure

the repetitive appearance of seven-pointed stars. Next, we

selected the appropriate value of the inflation factor, such as

to guaranty that the opposite vertices of the narrowest tile T1
7

coincide with the existing vertices of the proper type. Fur-

ther, we took into account that every vertex should, in turn,

act as a centre of the sevenfold symmetry after inflation. We

thus placed the corresponding rosettes at every vertex of the

inflated tiles—and here we came to a peculiar problem—the

rhombuses T5
7 overlap at the acute angles of the inflated T4

7, as

well as those at the obtuse angles of the T2
7. One of the pos-

sible solutions is to assume that two stars of seven rhombuses

T5
7 generated by rotations around opposite B-type vertices

should be considered as indistinguishable in the fractal par-

ent and differ only by rotation on the angle 2p/14. By other

words, the single- and double-arrowed edges always alter-

nate around any vertex, though some of them are missing in

the finite tiling. As a consequence, the stars of seven T5
7 at the

opposite obtuse angles of the enlarged T1
7 should be placed in

such a manner that the enlarged single-arrowed edges bisect

the star-forming rhombuses, whereas the double-arrowed

Fig. 2 First of two complementary heptagonal tilings (with A-type vertex at the origin). Initial region and the result of the first iteration are

presented
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edges do not bisect those next to the opposite angle. That is

why two types of edges exist. Such arrangement of tiles

imposes additional constraints on the inflation factor value.

Several trial-and-error attempts were necessary to make the

correct decision. After that, finally, we placedmissing tiles in

the middles of the inflated edges, replicated the as-obtained

patterns on the equivalent edges, and filled the rest. There is a

relative freedom in placing the last tiles and filling the large

areas inside the inflated tiles. The smaller is the inflation

factor, the less is the uncertainty. We were focused on the

aesthetic appeal and gaining the highest possible local

symmetry.

We have to admit that another solution also exists. It

may be referred to as the ‘‘entangled’’ substitution rules, for

which some highly symmetrical patterns cyclically morph

each into another and finally turn back into original ones

after several iterations. In this case, the self-similarity

factor of the entire tiling is an integer power of the inflation

factor. By using such rules, we were able to construct an

original 14/7 tiling, which aesthetically is even more

beautiful and will be published elsewhere soon.

Discussion and conclusions

So, we offered example of substitution rules that make it

possible to construct the heptagonal rhombic tilings. The

tilings exhibit polymorphism. Due to polymorphism, the

difference between derived and existing heptagonal tilings

is a complex issue to discuss. Probably, our tiling is not the

only one that can be constructed according to similar rules,

including rules with different inflation factors. The

Fig. 3 Second of two complementary heptagonal tilings (with B-type vertex at the origin). Initial region and the result of the first iteration are

presented
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question then arises what are the general algebraic

restrictions on the permissible values of the inflation fac-

tor? What is the lowest possible value of the scaling factor

compatible with the aforesaid requirements of self-simi-

larity? Can essentially different tilings with equal scaling

factors exist? Is it possible to transform the heptagonal

rhombic tilings into triangular and vice versa; in the same

manner as the Penrose rhombic tiling was possible to

transform into the kite-and-darts tiling? All these questions

await further investigations.

The described rules can be generalized for infinite tilings

with higher order axes (with n = 9, 11, 13, and so forth).

Indeed, one can start with ‘‘roses’’ [12, 34] resembling

Buddhist mandalas, inflate them with a suitable factor to

ensure that two pairs of opposite vertices of the inflated T1
n

rhombuses coincide with the vertices of two alternative

types, and find the way to fill the rest. However, even

though it sounds very easy, it actually requires significant

efforts.

Our results may stimulate further research in various

fields of generalized crystallography including scale and

superspace crystallography [41–45]. We expect that our

mathematical models will help researchers to better

understand the ordering phenomena in soft matter and

relating materials, to explain the appearance of anomalous

symmetries in colloidal layers, and to design new types of

photonic crystals, artificial solids, metamaterials, and so

forth [46–53]. We believe that the nature of the sevenfold

symmetry will become a little less puzzling in both science

and art [54–57].

Acknowledgments I thank Jelena R. Kambak for proofreading and

writing assistance.
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