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Abstract The Monte Carlo method was used for QSAR

modeling of dimeric pyridinium compounds as acetyl-

choline esterase inhibitors. QSAR model was developed

for a series of 39 dimeric pyridinium compounds. QSAR

models were calculated with the representation of the

molecular structure by the simplified molecular-input line-

entry system. One split into the training and test set have

been examined. The statistical quality of the developed

model is very good. The calculated model for dimeric

pyridinium derivatives had following statistical parame-

ters: r2 = 0.9477 for the training set and r2 = 0.9332 the

test set. Structural indicators considered as molecular

fragments responsible for the increase and decrease in the

inhibition activity have been defined. The computer-aided

design of new dimeric pyridinium compounds potential

acetylcholine esterase inhibitors with the application of

defined structural alerts has been presented.

Keywords QSAR � Acetylcholine esterase inhibitors �
Monte Carlo method � CORAL software � SMILES �
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Introduction

The treatment of disorders with impaired cholinergic

transmission usually involves the inhibition of acetyl-

cholinesterase (AChE), and this approach is prime strategy

in therapy of Alzheimer’s disease, the most common form

of dementia in the elderly population [1]. Further, various

conditions, such as glaucoma, constipation, spasmolysis,

and also antagonise muscle relaxation in anesthesiology,

can be treated with the application of peripherally acting

AChE inhibitors [2, 3]. Also the first-line treatment in early

stages and in the mild forms of myasthenia gravis (MG) is

based on peripheral inhibitors of AChE [4–6]. MG is an

autoimmune disorder which is caused by antibody-medi-

ated destruction of postsynaptic membrane in neuromus-

cular junction. Most commonly, antibodies target the

nicotinic acetylcholine receptors (nAChRs), but other

components of postsynaptic membrane can be affected as

well, leading to painless weakness and fatigue of striated

muscles resulting from impaired neuromuscular transmis-

sion [7, 8]. These compounds enhance cholinergic trans-

mission by inhibiting the hydrolysis of acetylcholine

(ACh), and therefore, they increase its concentration in the

synaptic cleft. The treatment of patients with MG is a

complex task. Quality of life of patients with MG can be

improved with the application of mild physical exercise,

and therefore, physicians specialized in sport medicine,

physiatrist, and experts in sports in general can ease life of

MG patients and help them in the continuous fight against

this severe disorder [9, 10]. In current MG therapy,

Electronic supplementary material The online version of this
article (doi:10.1007/s11224-016-0776-z) contains supplementary
material, which is available to authorized users.

& Aleksandar M. Veselinović
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pyridostigmine bromide or neostigmine bromide (carba-

mate-based AChE inhibitors) are used (Fig. 1). Unfortu-

nately, the usage of these compounds often leads to

development of serious gastrointestinal side effects,

increased bronchial secretion, and cardiac arrhythmia. Also

high intake of these compounds may lead to cholinergic

crisis, characterized by even more severe weakness

[11–14]. Having in mind stated facts, a search is being

continued for a far more effective AChE inhibitor that can

be used in the treatment of MG. One of the main issues

related to drug development for myasthenia gravis treat-

ment is that myasthenia gravis is a rare disease and that all

drugs used for its treatment are considered as orphan drugs.

That term is related to the fact that many pharmaceutical

industries do not want to invest in their development since

it is a very costly process and they do not have economical

benefits. For this reason, also, there is a growing need for

alternative drug development process that will lead to new

and better drugs.

Quantitative structure–activity relationship (QSAR)

modeling is widely used in modern drug design because

these methods can make the early prediction of activity-

related characteristics of drug candidates and eliminate

molecules with undesired properties [15–17]. The main

aim of QSAR modeling is developing a simple mathe-

matical equation that correlates a molecule’s studied bio-

logical activity with its properties and molecular

characteristics calculated as quantitative parameters—de-

scriptors. Therefore, descriptors can be defined as entities

that characterize specific information of the studied mole-

cule in terms of numerical values associated with the

chemical constitution for correlation of chemical structure

with biological activity. The contribution of essential

structural requisites of the molecule to its biological

activity must be defined with developed QSAR model

represented with appropriate equation [18]. QSAR model

built on geometry-dependent molecular descriptors usually

involves a relatively difficult calculation of the optimum

molecular geometry which involves application of high

computational resources and a long time for computational

experiments. For these reasons, the conformation-inde-

pendent 0D, 1D, and 2D QSAR methods emerge as an

alternative approach for developing models based on the

constitutional and topological molecular features of mole-

cules [19, 20]. Further, in QSAR modeling, descriptors

calculated with molecular graphs are often used [20–23].

The simplified molecular-input line-entry system

(SMILES) can be considered as an alternative to molecular

graph, and it can be used for defining of molecular struc-

tures [24–26]. One-variable QSAR models built up by the

Monte Carlo optimization method based on SMILES

descriptors have been published recently [27–29]. One of

the main advantages of this method in comparison with

most commonly used QSAR models is its independence on

molecule conformation since it is based on constitutional

and topological features of molecules. Also QSAR model

based on SMILES notation descriptors has similar or better

statistical characteristics in comparison with 3D descriptor-

based QSAR models [29]. All above stated facts make

QSAR modeling based on SMILES notation descriptors

attractive alternative to commonly used methods in drug

design and discovery.

The aims of this study are to build a QSAR model based

on the SMILES notation optimal descriptors using the

Monte Carlo method for dimeric pyridinium compounds as

AChE inhibitors and attempt to define the molecular

fragments responsible for the stated inhibitory effect.

Further, we used the built model and defined molecular

fragments for the computer-aided drug design of new

potentially promising AChE inhibitors.

Method

The dataset

QSAR model was developed for a series of 39 dimeric

pyridinium compounds acting as AChE inhibitors [30].

General structures of dimeric pyridinium compounds are

presented in Fig. 2. Molecular structures of studied com-

pounds were transformed into canonical SMILES with the

ACD/ChemSketch program (ACD/ChemSketch version

11.0). For representing the pharmacological activity, pIC50

(-log IC50) was used as a dependent variable for building

both QSAR model (Table S1). The QSAR model for was

built up for one random split (30 % of compounds were

used in the test set). The normality distribution plot of the

whole dataset was checked according to literature [31].

QSAR model development

The main concept of the QSAR modeling can be defined as

the following:Fig. 1 Drugs used in myasthenia gravis therapy
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Endpoint ¼ F Molecular Structureð Þ ð1Þ

Simplified molecular-input line-entry system (SMILES)

notation is one of the most convenient molecule structure

representations. In presented QSAR modeling, SMILES

notation is used for defining a molecular optimal descriptor

(DCW) which is calculated as a function of the molecule’s

SMILES notation as presented with Eq. 2:

DCW ¼ F SMILESð Þ ð2Þ

On the basis of SMILES notation, two types of optimal

descriptors defined can be defined. First type of optimal

descriptors is a local SMILES attribute, defined as SMILES

atoms, a fragment of the SMILES notation which contains

one (‘C,’ ‘O,’ ‘#,’ etc.) or two symbols (‘Cl,’ ‘Br,’ ‘@@,’

etc.) which cannot be examined separately. The simplest

way for defining the molecular DCW as a mathematical

function of SMILES atoms can be achieved with the

application of local SMILES attributes, as a mathematical

function of each character of the SMILES. Therefore, the

first and the simplest one SMILES notation-based

descriptor is Sk (SMILES atom), a descriptor related to one

SMILES symbol (or two that cannot be separated). A linear

combination of two or three SMILES atoms are descriptors

defined as SSk and SSSk [29, 32]. Linear combination of

presented SMILES notation-based descriptors is summa-

rized in Eq. 3.

DCW T;Nepoch

� �
¼ aRCW Skð Þ þ bRCW SSkð Þ

þ cRCW SSSkð Þ ð3Þ

The inclusion of SMILES notation-based descriptors in

the QSAR model development can be achieved with the

application of a simple rule—if the value of a coefficient is

1, then an appropriate descriptor is included, or if it is 0,

then an appropriate descriptor is discarded form model

building. For this reason, coefficients a, b, and c from

Eq. 3 are either 1 (yes) or 0 (no). In presented QSAR

model for AChE inhibition, all coefficients were 1, and

therefore, all local SMILES notation-based descriptors

were used in model development.

Each calculated optimal descriptor receives a numerical

value defined as correlation weight (CW) with the appli-

cation of Monte Carlo method. The applied Monte Carlo

method is based on a principle that suitable random num-

bers are generated and further observed how that fraction

of numbers obeys some property/properties. The applica-

tion of iterative algorithms is used for the computation for

obtaining and distribution of an unknown probabilistic

entity [33]. Therefore, the main purpose of the Monte Carlo

optimization process is the calculation of the numerical

data for CW, which gives the maximal value of the cor-

relation coefficient between the endpoint and the optimal

descriptor. The Monte Carlo method is based on two

parameters for the computation of stated numerical val-

ues—threshold (T) and the number of epochs (Nepoch).

Threshold can be defined as the separator of calculated

SMILES notation-based descriptors into active and inac-

tive with application of following principle: If the

descriptor is active, then T has some numerical value, but if

the descriptor is inactive, then T has a fixed value of zero.

The number of epochs (Nepoch) is related to the computa-

tional iterative process with one aim—to obtain the best

statistical quality for the training set [29, 32].

Nepoch can be defined as the number of epochs of the

Monte Carlo optimization. The target function (TF) of the

optimization is given in Eq. 4:

TF ¼ RþWR � R�WC � C0 þ C1ð Þ ð4Þ

where R is correlation coefficient between the optimal

SMILES notation-based descriptor and an endpoint (EP)

Fig. 2 General molecular structures of studied compounds
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for training set; WR = 0.1 and WC = 0.01 are empirical

parameters; C0 and C1 are coefficients from equation

obtained by the least squares method:

EP ¼ C0 þ C1 � DCW Threshold; Nepoch

� �
ð5Þ

Flowchart of one epoch of the Monte Carlo optimization

is presented in Fig. 3.

For development of presented QSAR model, CORAL

software was used (http://www.insilico.eu/coral). Building

QSAR models took into consideration all local SMILES

descriptors and global attributes (Sk, SSk and SSSk). The

search for the most predictive combination of T and Nepoch

for all splits was performed from values 0–10 for T and

0–60 for Nepoch.

Validation of developed QSAR model

The main purpose of any QSAR modeling is developing a

robust model capable of predicting the properties of new

molecules in an objective, reliable, and precise manner

[34, 35]. Validation methods are needed to establish the

predictive power of a model on unseen data and to help

determine the complexity of an equation that the amount of

data justifies validation methods that are necessary. The

data obtained from the created model (an internal method)

or using a separate dataset (an external method) can help to

validate the developed QSAR model. The methods of least

squares fit (R2), cross-validation (Q2), root-mean-squared

error (RMSE), and Y-randomization are some of the most

important methods for validating a model [36, 37]. The

application of three methods can be used for the assessment

of robustness and reliability of a developed QSAR model

[29]: (a) internal validation or cross-validation using the

training set compounds, (b) external validation using the

test set compounds, and (c) data randomization or

Y-scrambling.

Leave-one-out (LOO) cross-validation method is used to

develop models as an internal validation. LOO is based on

principle that one molecule is randomly omitted from

dataset in each cycle and then the rest of molecules are

used for model development. The process is repeated until

all the compounds are eliminated once. Cross-validated

coefficient Q2 demonstrates the predictive ability of the

model [29], where higher value of Q2 means better model

prediction. The cross-validated Q2 is defined as:

Q2 ¼ 1�R Yobs�Ypred
� �2

=R Yobs��Ytrainð Þ2 ð6Þ

In Eq. 7, Yobs is observed property of the training set

compounds, Ypred is LOO-predicted property of the training

set compounds, and �Ytrain is mean observed property of the

training set compounds.

Same principles and statistical methodology can be

applied for external validation. The predictive ability of a

model is determined by calculating Rext
2 which is defined

as:

R2
ext ¼ 1�R YobsðtestÞ�YpredðtestÞ

� �2
=R YobsðtestÞ� �Ytrain

� �2 ð7Þ

In Eq. 8, Yobs(test) is the observed property of the test set

compounds, Ypred(test) is the predicted property of the test

set compounds, and �Ytrain is mean observed property of the

training set compounds.

True predictive potential of developed QSAR models

can be defined with novel statistical metric (Rm
2 ) [38, 39].

This metric is calculated based on the correlations between

the observed and predicted values with (R2) and without

(R0
2) intercept for the least squares regression lines as

represented with equation X:

R2
m ¼ R2 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

0

q� �
ð8Þ

Main advantage of this metric is that it avoids overes-

timation of the quality of prediction due to a wide response

Fig. 3 Flowchart of one epoch of the Monte Carlo optimization of

correlation weights (n is the number of correlation weights involved

in building up model)
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range (Y-range) since it does not consider the differences

between individual responses and the training set mean.

For calculating Rm
2 metric, an open-access Web application

‘Rm
2 calculator’ is available at http://aptsoftware.co.in/

rmsquare/.

Y-randomization test is used for testing the robustness

of the developed QSAR model. For an appropriate QSPR

model, the average correlation coefficient (Rr) of random-

ized models should be less than the correlation coefficient

(R) of non-randomized model. A parameter CRp
2 penalizes

the model R2 for a small difference between squared mean

correlation coefficient (Rr
2) of randomized models and

squared correlation coefficient (R2) of the non-randomized

model [40]. The parameter CRp
2 is defined as:

CR2
p ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

r

� �q
ð9Þ

In relation to defined metrics an acceptable QSPR model

must have values of Rext
2 , Q2, CRp

2 should be[ 0.5. Value

for DRm
2 should be lower and average value for Rm

2 [ 0.5.

In addition, values for standard error of estimate (s), mean

absolute error (MAE), and root-mean-square error (RMSE)

should be small, and the value of Fischer’s F ratio should

be large. Also R2 and Q2 values should be close to each

other [36, 39]. Methodology for validating developed

QSAR model used in presented research was already suc-

cessfully applied for the validation of SMILES notation

optimal descriptor-based QSAR models [29, 32, 33].

Applicability domain

One of the main goals of a developed QSAR model is its

applicability domain, defined with compounds from the

training set. Defined AD is further used for the assessment

of the reliability of the developed QSAR model. AD of the

developed QSAR model is defined as the biological,

structural, or physicochemical space, knowledge, or

information on which the model of the training set is

developed and which can be used for predicting whether

the developed QSAR model can be used on compounds

which are not used in model developing. When a com-

pound is very different in comparison with all compounds

of the modeling set (this assessment is made with the

application of AD), then a reliable prediction of its prop-

erty/activity is uncertain [36].

Difference between experimental and calculated values

for studied endpoint can be used for defining AD with the

application of Delta(obs), d and �d [37]. For each molecule

used in QSAR study, Delta(obs) is calculated as difference

between experimental and calculated values from studied

end point. d and �d are defined in Eqs 11 and 12, respec-

tively, where n is the number of studied compounds.

�d ¼
P

Delta obsð Þ
n

ð10Þ

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Delta obsð Þ � Delta calcð Þ½ �2

q

n
ð11Þ

If for studied compound its Delta(obs) belongs inside of

range �d� d and �dþ d, then it falls in defined model

applicability domain. However, if its Delta(obs) does not

belong inside defined range, then that compound does not

belong in defined AD; it is considered as outlier, and it is

discarded from development of QSAR model. This relation

is given in Eq. 12:

Delta obsð Þ 2 ð�d� d; �dþ dÞ ð12Þ

Defined methodology for the determination of AD was

successfully applied in development of various QSAR

models based on Monte Carlo method [29, 37].

Results and discussion

The results from the applied methodology for defining AD

show that all molecules are within the defined AD, and

therefore, all studied compounds have typical behavior and

all were taken into consideration when QSAR model were

developed. Table 1 shows the statistical quality of the built

QSAR model for dimeric pyridinium compounds acting as

AChE inhibitors. The presented results reveal that there is

the reproduction of the statistical quality for the calculated

model in three independent runs of the Monte Carlo opti-

mization. Further, the results from Table 1 show that the

predictability is very good. For further assessment of

developed QSAR model quality, novel statistical metric

was used according to published methodologies and results

are presented in Table 2. Presented QSAR model for IC50

is satisfactory from the point of view of new criteria

[38, 39] (Table 3). Table S2 (supplementary material)

shows Y-randomization [40], which also confirms the

robustness of suggested models. The search for preferable

T and Nepoch revealed that preferable T is 1 and preferable

Nepoch 8. Figure 4 graphically presents the best Monte

Carlo optimization run (the highest value for r2) for

developed QSAR model.

DCW (T, Nepoch) for compounds in the training and test

set is calculated as described in the Method part of this

manuscript. The application of the above-mentioned T and

the Nepoch gives the following model for the pIC50 calcu-

lated according to Eq. 5:

pIC50 ¼ �7:912 �0:128ð Þ þ 0:05� DCW 1; 8ð Þ ð13Þ

According to calculated correlation weight (CW) values

of molecular features (SAk) from three Monte Carlo

Struct Chem (2016) 27:1511–1519 1515
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optimization runs, SAk can be classified as promoters of

increase or promoters of decrease in a studied activity, and

as undefined molecular features. A simple rule is applied

for this classification: If CW (SAk) obtained from three

independent Monte Carlo optimization runs is positive,

then that SAk is the promoter of increase; likewise, if CW

(SAk) from three independent Monte Carlo optimization

runs is negative, then that SAk is the promoter of decrease;

if there are both positive and negative values of CW(Sk) in

three runs of the Monte Carlo optimization process, then

that SAk is undefined [29, 41, 42]. The list of all SAk, with

the correlation weights for three runs of the Monte Carlo

optimization process of the built QSAR model for mal-

eimide derivatives, is given in Table S3. The built QSAR

model represented with Eq. 6 has the mechanistic

interpretation as well as calculated SAk, which can be

further defined as molecular fragments. According to the

presented data, several important SAks that can be classi-

fied as promoters of pIC50 value decrease are C………..

(methyl group), C…C……. (ethyl group), C…C…C…
(propyl group), and C…C…(… (ethyl group connected to

carbon atom with molecular branching). Several important

SAks that can be classified as promoters of pIC50 value

increase are (……….., C…(……. and (…C…(… all SAks

related to molecular branching, O……….. (sp3 hybridized

oxygen atom), N……….. (sp3 hybridized nitrogen atom),

Cl………. (chlorine atom) O…C……. (methoxy group),

O…C…C… (ethoxy group), etc.

The analysis of SAk presented in Table S3 can be useful

in the search and computer-aided design of novel

Table 1 Statistical quality of

developed QSAR model for

dimeric pyridinium compounds

as acetylcholine esterase

inhibitors

Training set Test set

r2 q2 s MAE F r2 q2 s MAE RMSE F

1 run 0.9477 0.9315 0.213 0.124 471 0.9332 0.8214 0.707 0.464 0.674 126

2 run 0.9445 0.9281 0.219 0.119 442 0.9209 0.7715 0.726 0.461 0.692 105

3 run 0.9412 0.9238 0.225 0.125 417 0.9225 0.7740 0.727 0.462 0.693 107

Av 0.9445 0.9278 0.219 0.123 443 0.9255 0.7890 0.720 0.462 0.686 11

r2 correlation coefficient, q2 cross-validated correlation coefficient, s standard error of estimation, MAE

mean absolute error, F Fischer’s F ratio, RMSE root-mean-square error, Av average value for statistical

parameters obtained from three independent Monte Carlo optimization runs

Italics indicate the best Monte Carlo optimization run

Table 2 Criteria of

predictability of developed

QSAR model related to test set

form three independent Monte

Carlo optimization runs

Normal Scaled

rm
2 rm

2 (rev) rm
2 (av) Drm

2 rm
2 rm

2 (rev) rm
2 (av) Drm

2

1 0.8145 0.8573 0.8359 0.0428 0.7975 0.8391 0.8183 0.0416

2 0.8344 0.8752 0.8548 0.0408 0.8175 0.8570 0.8373 0.0395

3 0.8295 0.8699 0.8497 0.0404 0.8125 0.8516 0.8321 0.0391

Av 0.8261 0.8675 0.8468 0.0413 0.8092 0.8492 0.8292 0.0400

rm
2 (rev) reverse rm

2

rm
2 (av) average rm

2

AV average value for statistical parameters obtained from three independent Monte Carlo optimization runs

Each entry of submitted dataset is scaled as follows: scaled Z(observed or predicted) = [Z - minimum of

observed]/[maximum of observed - minimum of observed]

For an acceptable QSAR model, the value of rm
2 (av) should be[ 0.5 and Drm

2 should be\ 0.2 [38, 39]

Table 3 SMILES notation and

Ac values calculated using

Eq. (13) for dimeric pyridinium

compounds designed with the

application of the results of

QSAR modeling obtained in

this study

Molecule SMILES notation Ac (calc.)

A CN(C)c3 cc[n?](Cc2cccc(C[n?]1 ccc(cc1)N(C)C)c2)cc3 0.3362

A1? ClCN(C)c3 cc[n?](Cc2cccc(C[n?]1 ccc(cc1)N(C)CCl)c2)cc3 0.4137

A2? CN(c3 cc[n?](Cc2cccc(C[n?]1 ccc(cc1)N(C)C(C)C)c2)cc3)C(C)C 1.114

A3? CN(COC)c1cc[n?](cc1)Cc2cccc(c2)C[n?]3 ccc(cc3)N(C)COC 0.3755

A1- CN(CC)c3 cc[n?](Cc2cccc(C[n?]1ccc(cc1)N(C)CC)c2)cc3 0.1448

A2- CN(CCC)c3 cc[n?](Cc2cccc(C[n?]1ccc(cc1)N(C)CCC)c2)cc3 0.0155

1516 Struct Chem (2016) 27:1511–1519

123



maleimide derivatives with desired pIC50 values. The

structures of novel dimeric pyridinium compounds

obtained by molecular modeling are presented in Fig. 5.

As a template for molecular design, the molecule 1 from

dataset was selected. One of the goals of the presented

molecular design was to obtain molecules with higher

pIC50 values in comparison with the template molecule,

since higher pIC50 values mean that a lower concentration

is needed to inhibit 50 % of an enzyme. Molecular struc-

tures presented as the SMILES notation of designed

molecules and their calculated pIC50 values obtained with

the application of the built QSAR model for dimeric

pyridinium compounds (Eq. 13) are presented in Table 3.

Table S4 presents an example of calculation DCW(1,5)

for the template molecule A. When Eq. 13 is applied for

calculating DCW, the resulting endpoint value (pIC50) is

0.3362. In molecule A1? on hydrogen from CH3 bonded to

amino, nitrogen atom was substituted with chlorine atom.

As already stated, chlorine atom is a promoter of endpoint

increase, and therefore, molecule A1? calculated IC50

value was 0.4137. Molecule A2? has additional molecular

branching in amino group, and since most branching

descriptors are defined as promoters on endpoint increase,

calculated IC50 value was 1.114. In molecule A3?, meth-

oxy group was inserted in amino group part of molecule.

Both oxygen atom and methoxy group are promoters on

endpoint increase, and calculated IC50 value was 0.3755. In

presented research, methyl , ethyl , and propyl groups are

defined as promoters on endpoint decrease. Molecules

A1- and A2- have inserted additional carbon atom in

amino part of molecule. With this, additional descriptors

were calculated for molecules A1- and A2- (C………..

and C…C……. for molecule A1- and C………..,

C…C……. and C…C…C… for molecule A2-). Since all

of these descriptors are promoters of on endpoint decrease,

calculated IC50 values for molecules A1- and A2- were

0.1448 and 0.0155, respectively.

Conclusion

QSAR models for dimeric pyridinium compounds as

acetylcholine esterase inhibitors were built. The Monte

Carlo optimization process incorporated within CORAL

software was capable to be an efficient tool to build up

robust model with good statistical quality. The predictive

potential of the applied approach was tested and the

robustness of the model was proven with different meth-

ods. The SMILES attributes, defined as SMILES notation-

based molecular descriptors, which are promoters of IC50

increase/decrease, are identified. The suggested modeling

process and computer-aided drug design are based on

computational experiments with the application of statis-

tically stable structural alerts (promoters of increase or

Fig. 4 Graphical representation of developed QSAR model for

dimeric pyridinium derivates as acetylcholine esterase inhibitors

Fig. 5 Molecular design of perspective acetylcholine esterase inhibitors using the QSAR model calculated with Eq. (6) and SAks calculated

using the Monte Carlo method
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decrease of IC50). This approach can be applied in the

search for new potential acetylcholine esterase inhibitors

which can be used further for the treatment of myasthenia

gravis.
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