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Abstract Enormous progress in computational chemistry

shifted experiments toward predictive approaches. Such a

paradigm shift applies to all branches of chemistry, especially

to structural chemistry. To help the transfer of new knowledge

in drug design practice, we reconsider a few vibrant topics of

protein dynamics engaged in making predictions based on the

timing of the events that are simulated. However, a complete

explanation of the ‘‘dynamic evidence’’ also requires a ref-

erence to the time window allowing a prediction of the end-

point. Pioneering achievements disclosing the structure of

large membrane proteins and their assemblies enabled the

prediction of traverse pathways shaping membrane protein

functions—essentially the efficacy of membrane proteins.

Invoking significant advances made in characterizing the

solute and ion symport of specific proteins through molecular

dynamic simulations, early formation of a new type of solute–

ion structure has been exposed as a prerequisite of Na?

symporter function. We demonstrate that the computational

chemistry is one of the most appropriate models to study

traverse pathways, and we also clarify the importance of the

art of fast experimental techniques.
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Introduction

Prediction of new types of inorganic structures that cannot

easily be measured by experimental techniques is one of

the main fields of interest of Hargittai [1–10]. In presenting

Hargittai, we wish to recall Bacon first. In The New

Organon (1620) [11], Bacon surveyed experimental para-

digms revealing various forms of nature ingeniously

phrasing ‘‘…the form that comes to light in a single in-

stance leads the way to the discovery of it in all the rest…..

shifting instances include not only those in which the na-

ture under study shifts toward production or toward de-

struction, but also those in which the nature shifts towards

increasing or decreasing. It’s because these also contribute

to revealing the form.’’ Better understanding beside protein

structure, the protein folding and unfolding in a crowded

[12–14] milieu has been significantly advanced through the

past years by different methods of protein structure deter-

mination [15–21] and by recent developments in protein

modeling and molecular dynamics (MD) simulations [22–

27]. Rapidly expanding data were delivered on proteins’

in vivo functions, by covering topics such as conforma-

tional selection versus induced fit, agonism versus an-

tagonism, prediction of substrate efficacy, antidepressant

mechanism, or biotechnological applications of intrinsi-

cally unstable/disordered proteins [28–33].

Traverse pathways, forced intrinsic dynamics,
and efficacy

Below, we aim to introduce the emergent conception of tra-

verse pathways as autonomous elementary functions of

membrane proteins, and key players of molecule and infor-

mation transformation between the extra- and intracellular
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space of living cells. Recurrent alteration of integral mem-

brane proteins in water environment operated by specific

perception of forces and forced intrinsic dynamics invokes the

existence of cause-related autonomous traverse pathways

from active to relaxed conformational states. Here, we intend

to use the word ‘‘traverse’’ as the leading explanatory factor

which should no doubt be the most important specification of

signalling membrane proteins at work. Choosing the traverse

rather than the transition conformation of the system helps to

understand causality (i.e., what steps are required to reach the

endpoint). Forces at work include (1) membrane- and H-bond

network environment-associated mechanical forces [34, 35]

and (2) water [36–39], pH [40, 41], ion [42–44], or ligand

[45–51] reliant chemical as well as electric [52, 53] forces, or

(3) light absorption [54].

By framing quantitative description of movement, called

first into question by Zenon’s ‘‘The Achilles’’ paradox

(Fig. 1), we rephrase the contradiction as to finding the

traverse pathway of a membrane protein by a Gibbs

functional takes infinite time. However, membrane proteins

respond within a definite time. In order to understand the

uniqueness of protein function, we refer to forced intrinsic

dynamics of membrane proteins based on Ben-Naim’s ar-

guments on ‘‘Levinthal’s question revisited, and answered’’

[55] and subsequent discussions (see for example [56, 57]).

We may also rephrase Ben-Naim’s claim answering

Levinthal’s question ‘‘How proteins fold to give such a

unique structure’’ into the paradox of ‘‘How membrane

protein traverse from the starting to the endpoint confor-

mations to give such a unique pathway.’’ In addition to

hydrophobic effects, local Gibbs energy minima are also

shaped by hydrophilic interactions [55], which can make

intrinsic dynamics of membrane proteins causal and predict

the ratio (output response)/(input force), i.e., efficacy—the

major enigma of drug design and discovery.

Membrane transporters

When taking examples of autonomous traverse pathways,

we turn to membrane transporters in general and neuro-

transmitter sodium symporter (NSS) family in particular.

This is because the information on structure and function of

various types of membrane transporters, including galactose

[58, 59], excitatory aspartate [60], glutamate [61–64], in-

hibitory c-aminobutyric acid (GABA) [30, 65–69], dopa-

mine [70], ATP-binding cassette [24, 71–75] transporters,

and cystic fibrosis transmembrane conductance regulator

(CFTR) [76–78] is promptly expanding. Taking alternate

access traverse pathway of sodium and chloride ion move-

ment-driven substrate transport as an example, we and

others have shown how validated all-atom MD calculations

may reveal traverse conformations of the protein–substrate

complex enabling the design of more effective transporter

inhibitors or activators in the future [70, 79–84].

MD simulations of NSSs subtypes, i.e., modeling in-

teractions between the solute and the transporter protein in

the presence of structurally bound sodium and chloride

ions have provided a ring-like sodium-GABA structure

[80] (Fig. 2). Previously being only known in vacuo, the

formation of the ring-like GABA in the proteinaceous

media is rather unique and draws attention to sodium ion

coordinated within the substrate-binding crevice as an

important factor in the formation of an intramolecular

H-bond. The formation of GABA-Na? structure is ener-

getically favoured, asserting an unbounded traverse con-

formation of the substrate [30, 66–68, 80]. This result may

also be conceivable by manifesting the principle of the

Fig. 1 Competition of forced movement cycle from states A1

through A(i ? 1) and T1 through Ti. All states are represented by a

conformational ensemble. Which assembly does prevail?

Fig. 2 Non-bonding ring-like traverse conformation of GABA in

GAT1. GABA-O(2)-Na?(1) = 2 Å, GABA-O(1)-N = 3 Å. Data

correspond to the structure of sodium-complexed GABA in the

homodimer of neurotransmitter sodium symporter family member

GAT1 [80]
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simplest mechanistic clue in the case of sodium-facilitated

substrate transport. Furthermore, we can also depict events

like (1) interactions between structurally bound chloride

and sodium ions and (2) the appearance of intracellular

water nearby the binding crevice. The latter event may

anticipate the intracellular release of neurotransmitters

such as GABA [80] or dopamine [85], i.e., the endpoint of

traverse pathways for these transporters. This way, MD

simulation shows mechanistic clues substantiating ‘‘alter-

nate access’’ traverse pathways for secondary membrane

transporter family members characterized by the leucine

transporter (LeuT) symmetry [70]. Based on new knowl-

edge obtained with short- and/or longer-scale simulations

[27, 68, 80, 85], we may place LeuT homologue membrane

transporters, which show consecutive sequence of interac-

tions between small-molecule organic solutes and protein-

bound physiological ions and water, in the context of tra-

verse pathways driven by chemical forces. In our view,

short- and longer-scale simulations [27] can be validated

by data obtained from experiments employing techniques

of fast chemical kinetics with widely different sampling

rate (Fig. 3). Rate parameters estimated by the appearance

of Na?–substrate complex in MD simulations fit the line of

transport data (Fig. 3: filled squares), suggesting that the

formation of the complex is causally related to the end-

point, i.e., the inward release of the substrate. Moreover,

such an association of transport data indicate that scaling

(self-similar) dynamics rules a wide variety of membrane

proteins regulating external information processing (Fig. 3:

open circles). These re-emerging themes of stochastic

versus deterministic (self-similar) protein dynamics [86–

88] may recall universality of membrane protein responses

as hypothesized [80, 89].

Conclusion

Understanding spatiotemporal appearance of traverse

pathways shaping membrane protein functions in polarized

cells remains a principal goal of chemical science and drug

design practice. In the last couple of years, significant ad-

vances have been made in various solute and ion transport

processes in addition to better understanding of channel

gating and receptor–effector coupling. In addition, it has

become evident that the binding interaction between the

traversing molecule and the membrane protein produces

intrinsic conformational changes due to non-covalent in-

teractions including H-bond, charge transfer, steric repul-

sion, and hydration. Based on these data and facts, we took

the alternate access traverse pathway of secondary trans-

porters as an example to show how validated all-atom MD

calculations may reveal traverse conformations of the

substrate and thus will enable the design of more effective

drugs as modulators of transport proteins (e.g., inhibitors).
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67. Palló A, Simon Á, Bencsura Á, Héja L, Kardos J (2009) Substrate–

Na? complex formation: coupling mechanism for gamma-aminobu-

tyrate symporters. Biochem Biophys Res Commun 385:210–214

68. Skovstrup S, Taboureau O, Bräuner-Osborne H, Jörgensen FS
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