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Abstract The concept of infinitely fragmented fractal

tiling is proposed for the description of the structure and

symmetry of quasicrystals. Fractal tilings may serve as

unique ‘‘parent’’ structures for the corresponding local

isomorphism class. The generating symmetry elements and

some special features of the resulting symmetry groups of

the fractal tilings are analyzed. Simple inflation/deflation

rules for icosahedral quasicrystals are proposed, and natu-

ral local matching rules are derived.
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Introduction

Understanding of the structure and symmetry of quasi-

crystals is one of the major unsolved problems in modern

solid-state physics and chemistry. Discovery of quasicrys-

tals by Shechtman et al. [1] led to the revision of the basic

principles which underlay the packing of atoms and mol-

ecules in solids. The mere fact of the existence of quasi-

crystals was extremely controversial to the fundamentals of

crystallography and dominating scientific opinions. Since

the discovery of the X-ray diffraction in crystals, the terms

order and periodicity have been meant to be synonymous.

The discovery of quasicrystals has seriously challenged this

understanding. It has become obvious that all special fea-

tures which were previously meant to be associated with

the notion of a crystal (i.e., the strict long-range order, the

discreteness of diffraction patterns, the perfect external

faceting, and the anisotropy of properties) do not require

obligatory periodicity.

The two-dimensional aperiodic tiling invented by Pen-

rose [2] has for a long time inspired mathematicians,

physicists, and chemists to look for a new state of matter.

Even before the quasicrystals were actually experimentally

discovered, Mackay had showed [3] that the aperiodic

distribution of atoms may have an essentially discrete

diffraction pattern, despite the lack of lattice periodicity.

The importance of his work cannot be overestimated. The

discreteness of the diffraction pattern is now adopted as a

basis for the new definition of the notion of a crystal. After

Steinhardt et al. [4–6] introduced the term quasicrystal and

offered a theoretical explanation of icosahedral quasicrys-

tals, based on the grid projection technique from six-

dimensional hypercubic lattice, a new scientific discipline

has been developed—namely, quasicrystallography. We do

not pretend to make a balanced review here but rather refer

the reader to the more detailed descriptions of the modern

viewpoints on the structure and properties of quasicrystals,

which may be found in literature [7–23].

Despite the significant advances in the structural char-

acterization of quasicrystals, the problem is still far from

being completely solved. The first question is: What is, in

fact, a quasicrystal? According to Senechal [24], no one is

sure. The definition of a quasicrystal as a solid with for-

bidden symmetry appeals to the crystallographic restriction

theorem in a mutually exclusive manner. If they are really

forbidden, then why do they exist? If they do exist, then

who forbade them and why? Thus, the old definition
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appealing to the forbidden symmetry is incorrect. On the

other hand, when one recedes from the crystallographic

restriction theorem, another question arises. Do quasi-

crystals comply with some restrictions in place of the

rejected ones? Of course, we are familiar with the claim by

Steinhardt et al. [5] that ‘‘in fact, they [quasicrystals] can

have arbitrary orientational symmetries disallowed for

crystals corresponding to any star of symmetry vectors.’’

The Commission on Aperiodic Crystals decided on a

temporary working definition whereby a crystal is ‘‘any

solid having an essentially discrete diffraction diagram,’’

because the Commission was not ready to give precise

microscopic descriptions of all the ways in which order can

be achieved. The arguments pro and contra have been

adduced by Lifshitz [25, 26]. So, the new definition

adopted by the International Union of Crystallography

states that an aperiodic crystal is meant to be a structure

with sharp diffraction peaks, but without lattice periodicity.

Dyson [27] proposed the following mathematical defi-

nition: ‘‘A quasicrystal is a distribution of discrete point

masses whose Fourier transform is a distribution of discrete

point frequencies. Or to say it more briefly, a quasicrystal is

a pure point distribution that has a pure point spectrum.

This definition includes as a special case the ordinary

crystals, which are periodic distributions with periodic

spectra.’’ Next, he described an example of the very special

kind of non-periodic structure, which perhaps meets all the

other mentioned conditions. Particularly, Dyson wrote

[27]: ‘‘Here comes the connection of the one-dimensional

quasicrystals with the Riemann hypothesis. If the Riemann

hypothesis is true, then the zeros of the zeta-function form

a one-dimensional quasicrystal according to the definition.

They constitute a distribution of point masses on a straight

line, and their Fourier transform is likewise a distribution

of point masses, one at each of the logarithms of ordinary

prime numbers and prime-power numbers.’’ On the one

hand, such an artificial solid is hardly to imagine because

the interatomic distances are determined by the nature of

the chemical bonds. On the other hand, we can easily

imagine or even construct a corresponding photonic crystal

using modern technologies [28]. Perhaps this may result in

the creation of a new exotic kind of photonic aperiodic

crystals with unique properties. Recall that the Fourier

transform is a reversible linear transformation. Thus, we

can imagine another artificial solid or construct a certain

photonic crystal following the rules of the prime number

distribution. Perhaps this will result in another kind of

aperiodic crystals, which may also reveal some unique

properties. However, all of these are not quasicrystals or,

strictly speaking, they are not those, which were previously

meant to be as quasicrystals. When the mere term quasi-

crystals was introduced, Levine and Steinhard [4]

especially emphasized the self-similar arrangement of

atoms in real space, the self-similar arrangement of Bragg

peaks in reciprocal space, and the self-similar sequence of

gaps in both electronic density of states and phonon

spectrum. So, we would like to keep the term quasicrystal

reserved for those of aperiodic crystals which exhibit the

multiple self-similarity.

The most successful approach to describe the structure

of quasicrystals is now associated with the high-dimen-

sional crystallographic methodology. Within the frame-

works of the higher-dimensional approach [9], diffraction

pattern in the form of aperiodic set of d-peaks can be

indexed by the usual way. If the number of basic vectors

n is taken to be greater than the real space dimensionality,

it causes the necessity of a nD reciprocal space. Conse-

quently, this becomes a direct space of the same dimen-

sionality—the embedding space. The respective cut-and-

project procedure provides the correspondence between

physical and embedding spaces based on the fact that the

actual quasiperiodic structure in 3D physical space can be

obtained by slicing higher-dimensional lattice by irrational

hyperplanes and projecting the resulting strip from the

embedding space. Thus, the aperiodic 3D crystal structure

consisting of real 3D atoms results from a cut of a periodic

nD lattice decorated with nD hyperatoms. Electron density

distribution functions of fictitious nD hyperatoms as well as

their scattering factors and exact positions in the embed-

ding space can be calculated directly from the observed

diffraction pattern [19, 23].

We are strongly convinced that a three-dimensional

description is always preferable for a three-dimensional

object. This may be exemplified by the quotation from the

monograph by Hyde et al. [29]: ‘‘The problem is to relate

observed diffraction patterns with non-standard, suppos-

edly disallowed, crystallographic symmetries, to the atomic

distributions that cause them. That problem remains.

Because while a physicist living in world made up of

equations and group theory has no difficulty in constructing

the universe, its scaling laws, and singularities like black

holes, as a realization of a sixteen dimensional group say,

the chemist is more narrowly constrained. A three-dimen-

sional atom has a certain pedestrian reality that does not so

easily lend itself to a mapping onto six dimensions.’’

If the suitable substitution rules were available for the

three-dimensional quasicrystalline packings, the inflation/

deflation procedure, applied iteratively, could represent an

alternative to the higher-dimensional approach in order to

fill the entire space by a quasicrystalline manner. To our

knowledge, no attempts have been made to formulate the

substitution rules for icosahedral packings. The goal of the

present paper is to describe the icosahedral quasicrystals

without appealing to higher dimensions.
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Fractal approach

Before proceeding with the three-dimensional packings, we

would like to explain the key features of our approach

using the two-dimensional Penrose tiling as an example.

Earlier, we have assumed that ‘‘unusual’’ structures may

have idealized prototypes in non-Euclidean spaces [30].

After being mapped into the real space, ‘‘unusual’’ struc-

tures inherit partially the non-Euclidean symmetry, which

becomes not quite evident or ‘‘hidden.’’ The main task is to

estimate the hidden symmetry of quasicrystals and to

define their structure through their symmetry groups. This

is not a slip of the tongue. We would like to abandon the

widely accepted point of view that quasicrystals have only

the point symmetry and that their whole structure is

described by groupoids instead of groups. If both inflation

and deflation procedures are performed infinitely many

times, the resulting structure becomes a fractal. All locally

isomorphic tilings converge to the common infinitely

fragmented fractal parent, which may be described in terms

of the group theory by the usual manner. It is reasonable to

refer the symmetry group of such fractal tiling to any

aperiodic crystal belonging to the corresponding Penrose

local isomorphism class.

The concept of the fractal Penrose tiling has been

introduced by Bandt and Gummelt [31], who were, per-

haps, ready to encounter some skepticism, especially

emphasizing that ‘‘…some readers will find [it] inconve-

nient to work with such tiles.’’ They investigated the kites-

and-darts Penrose tiling and proposed to replace the basic

tiles by corresponding tiles with fractal boundaries that

were obtained iteratively by multiple application of the

deflation procedure. The proper matching rules were

derived from the shape of initial tiles, which were referred

to as ‘‘natural’’ matching rules. Fractal boundaries reflected

the self-similarity in a very natural way.

Recently, we applied the concept of infinite fragmenta-

tion to the rhombus Penrose tiling [32, 33]. We have shown

that the tiling may be considered as an equivalent covering

by overlapping resized copies of some unique fractal

island, which are in turn covered by smaller islets, and so

forth. On the other hand, we can take the conventional

tiling into thick and thin rhombuses, perform the deflation

infinitely many times, and superimpose the initial con-

ventional tiling over the fractal. After that, we can consider

the fractal tiling in the usual way but bearing in mind that

every usual tile contains a fractal dust of quasilattice sites

inside. The true symmetry of the fractal tiling is much

higher than the apparent symmetry of that represented by

finite-sized tiles. Fractal tilings have the special features of

being self-similar and self-inverse. There has been

exhaustive discussion as to why the multiple self-similarity

does not conflict with crystallinity [32].

It is universally accepted that eight inequivalent sites

exist in the rhombus Penrose tiling [7, 8, 20, 23]. Consider

the thick and thin rhombuses and perform the deflation

several times. We have to emphasize that the conventional

operations should be applied twice in a row (Fig. 1). In-

equivalent rhombus sides are, as usual, marked with single

and double arrows. Choose an arbitrary vertex and apply

both inflation and deflation procedures to its local envi-

ronment. Apply both operations repeatedly making a pause

after each even iteration and comparing results. The local

environment of any vertex ceases or will cease to change in

the end coinciding with one of two possible self-similar

arrangements.

If in the same manner we would operate with an infi-

nitely fragmented tiling represented by finite-sized tiles

that are filled with a fractal dust, we could reveal that the

tiling itself remains unchanged in this case. This only leads

to an increase of the scale of consideration, as if the details

of the picture are examined through a very large magni-

fying glass. The regions initially surrounding the chosen

site, in the limiting case, become removed infinitely far

away. Therefore, in the corresponding fractal tiling, there

exist only two types of vertices that are invariant with

respect to the self-similarity. All vertices, toward which the

double-arrows point and which were marked with dots by

de Bruijn [7, 8], belong to the first type. All the rest vertices

belong to the second type. Two inequivalent types of

vertices are referred by us to as the A and B types, and

designated by open and solid circles, respectively.

Based on the fact that only even iterations of the con-

ventional deflation procedure do not permute the inequiva-

lent vertices [32], we restated the natural matching rules for

the rhombus Penrose tiling (Fig. 2). When considering

deflation rules, we cover the thick and thin rhombuses with

their own copies reduced in s2 times, where s is the golden
mean. We highlight that, contrary to the widely accepted

view, we use the inflation factor of s2 but not of s. For any
rhombus, one out of the four vertices corresponds to the first

type of locally inequivalent sites, while the other three ver-

tices correspond to the second type. The edge marked with

the single arrow connects two vertices, which are both of the

second type. The edge marked with the double arrow con-

nects two alternate vertices. After deflation, the additionalA-

type vertex divides the [BB]-type edge into two unequal parts

in the s:1 ratio, whereby the single-arrow edge decomposes

into the reduced copy of the double-arrow edge and the

reduced copy of the thick rhombus. The additional B-type

vertex divides the [AB]-type edge into two unequal parts in

the s:1 ratio, whereby the double-arrow edge decomposes

into the reduced copy of the thick rhombus and the reduced

copy of the single-arrow edge. The diagonal of the thick

rhombus decomposes into: the small copy of the double-

arrow edge, two thick rhombuses reduced in s4 and s2 times,
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respectively, and the small copy of the single-arrow edge.

The diagonal of the thin rhombus turns into the diagonal of

the s2 times reduced thick rhombus.

Let us generate fractal islands. For this purpose, we

deflate thick and thin rhombuses infinitely many times.

After the first iteration (i.e., the 2nd conventional), some

of the reduced copies of the thick rhombus belong to the

initial regions only by half since the edges of the initial

rhombuses pass along the diagonals of the reduced copies.

We expand the initial rhombuses, so that the regions, thus

obtained, will contain all the reduced copies entirely. By

applying the second iteration (i.e., the 4th conventional),

we again find that some of the copies of even smaller

sizes partially project beyond the considered regions.

(a) (b)
Fig. 1 Deflation of the thick

(a) and thin (b) rhombuses of

the Penrose tiling. Only two

vertex types exist in the

infinitely fragmented fractal

‘‘parent’’ (designated by open

and solid circles, respectively).

Only even iterations of the

standard deflation procedure do

not permute the vertices of

alternative types

926 Struct Chem (2015) 26:923–942
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Next, we expand the regions, so that they will include

smaller rhombuses located at the boundaries and continue

this procedure to infinity. As a result, we obtain the

‘‘islands’’ with fractal boundaries instead of rhombuses.

When the overlapping fractal islands are finally combined

according to the restated inflation/deflation rules, one can

easily reveal that the shared regions represent nothing but

the smaller and smaller copies of the initial thick fractal

island, so that the multiple self-similarity becomes

obvious.

Self-similarity, in general, is described as the rotational

homothety conjugated with translation. Improper rotations

or rotoreflections combined with rescalings and shifts

should also be taken into account. It is important to

(a)

(b)

(c)

Fig. 2 Restated inflation/deflation

rules for the rhombus Penrose

tiling by using the inflation factor

of s2. a Deflation of the thick and

thin rhombuses. b Decomposition

of inequivalent edges and

diagonals of thick and thin

rhombuses. c Natural local

matching rules as a consequence

of the multiple self-similarity of

the fractal islands
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emphasize that self-similarity should be considered as the

true group automorphism and not as the repeating struc-

tural motifs in solids or substitution rules for tilings

(Fig. 3). Logarithmic spirals represent the geodesic lines of

the rotational homothety. Point-to-point correspondence

for the equivalent vertices is depicted in the figure. Note

again that the self-similarity group operations, thus defined,

do not permute the vertices of alternative types.

Compare the two above plane tilings with the complete

fivefold point symmetry. Both their ‘‘parent’’ fractals

reveal the true self-similarity, because they coincide with

themselves as a whole when mapping the entire space onto

itself by corresponding affine transformation composed

with rotation. The question then arises as how to combine

self-similarities with different fixed points. The affine

transformation has the only singular fixed point. It cannot

move. The solution is indeed so simple that it seems almost

absurd: It is necessary to consider another topological

space instead of the Euclidean plane.

We should simply replace the Euclidean plane with the

extended complex plane. What is the secret of the trick?

Imagine the Penrose tiling covering the entire plane and

draw two axes indicating the real and imaginary parts of

the complex variable (Fig. 4). It seems as nothing has

changed. The Penrose tiling itself looks like before. But for

now the problem of combining self-similarities with dif-

ferent fixed points is no longer the case. The first self-

similarity operation that is acting on the fixed point of the

second self-similarity operation produces the infinite set of

‘‘fixed’’ points when it is performed repeatedly and vice

versa. The resulting infinitely fragmented fractal tiling may

be described as usual in terms of the group theory, in

contradistinction to the quasicristalline plane tiling from

which it has been obtained.

Consider the following group automorphisms gk defined

in terms of the complex plane mappings z 7!w:

g1 : w ¼ s�2ei�2p=10z;

g2 : w ¼ s�2ei�2p=10 z� sð Þ þ s;

g3 : w ¼ s�2 z� 1ð Þ þ 1;

g4 : w ¼ s�2e�i�2p=10z;

g5 : w ¼ s�2e�i�2p=10 z� sð Þ þ s;

g6 : w ¼ s�2ei�2p=10 z� 1� sð Þ þ 1þ s;

(a)

(b)

Fig. 3 Two self-similar plane tilings with complete fivefold point

symmetry (a, b). Logarithmic spirals represent the geodesic lines of

the rotational homothety

Fig. 4 Combining self-similarities with different fixed points in the

complex plane
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g7 : w ¼ s�2e�i�2p=10 z� 1� sð Þ þ 1þ s;

g8 : w ¼ s2

z
þ s;

and, optionally, the complex conjugation:

g9 : w ¼ z�:

All these symmetry elements represent some conformal

transformations of the complex plane and, therefore, they

are mutually compatible with each other. The elements

g1g
�1
4 and g2g

�1
5 exemplify two different coexisting five-

fold rotations around different points. The elements g1g4
and g2g5 represent two single affine transformations with

different fixed points—dilatations with the scale factor of

s4. Let us specify right away that not all of the above

elements are necessarily independent.

We desire to draw special attention to the fact that is

usually missed in most textbooks. Besides self-similarity,

the logarithmic spiral has an additional ‘‘hidden’’ symme-

try! The ‘‘golden’’ spiral coincides with itself after an

inversion in a circle.

Imagine a fivefold rotation axis normal to the plane. It

generates a unique center of global fivefold symmetry in

the Euclidean plane as well as in the affine plane. On the

contrary, at least two different centers of global fivefold

symmetry emerge in the extended complex plane: one at

the origin and another at the infinitely distant point. Recall

that the complex plane may be brought into correspon-

dence with a sphere by stereographic projection, so that the

origin corresponds to the south pole, whereas the infinitely

distant point corresponds to the north pole. The logarithmic

spirals, which represent the geodesic lines for the rotational

homothety in the plane, may be brought into correspon-

dence with loxodromes on the sphere (Fig. 5). When the

original representing points move along the logarithmic

spirals in consequence of the complex plane self-similarity

transformations, their images move along the loxodromes

twisting around the opposite poles of the sphere.

The opposite poles look very much alike. They represent

two alternative vertex types [33]. Indeed, let us place the

initial fractal plane tiling tangent to the south pole, then

perform the inverse stereographic projection, next place the

second tangent plane and perform the stereographic pro-

jection once again but now from the south pole onto the

plane that is tangent to the north pole, and finely compare

the resulting fractals. Both have the common ‘‘parent,’’ both

have the centers of fivefold symmetry, and both are char-

acterized by twisting logarithmic spirals. Now, one can

easily trace the point-to-point correspondence between

corresponding geodesics. The poles become interchanged

when the sphere is reflected in the equatorial plane. In the

tangent plane, such transformation corresponds to the

inversion in a circle. Single inversion, in the ordinary sense

of this term, exchanges the interior of the circle with its own

exterior, replacing the origin by the infinitely distant point.

For example, the Apollonian gaskets reveal such kind of

symmetry. The self-inversion of fractal aperiodic tilings

should be considered in a broadened sense as a composition

of the inversion with rotations, rescalings, and translations,

whereas the pure reflection by itself in a circle can be absent

as an independent symmetry element. The generalized

inversion swaps the interior and the exterior of circles that

are drawn around vertices of two alternative types [33]. This

property can be clarified when taking into account the local

isomorphism of the Penrose tiling and the analytic contin-

uation for functions of the complex variable. Indeed, if a

certain analytic function maps the exterior of some Jordan

curve, drawn around the origin, exactly onto the interior of

its image drawn around the vertex of the alternative type,

then it maps the entire complex plane onto itself and rep-

resents the automorphism of the resulting fractal. So, the

‘‘hidden’’ inversive symmetry of the fractal Penrose tiling

may permute the vertices of alternative types.

The inversion in the unit circle may be represented as the

Möbius involution combined with the complex conjugation

and vice versa: The Möbius involution may be represented

as the inversion in the unit circle combined with the com-

plex conjugation. The ordinary inversion swaps the interior

with the exterior, whereby the clockwise twisted logarith-

mic spirals turn into the counterclockwise twisted spirals.

The Möbius involution swaps the interior with the exterior

without reflecting spirals. It is the orientation-preserving

operation. Now, we can offer a conjecture:

Conjecture: All orientation-preserving symmetries of the

fractal Penrose tilingmay be expressed in terms of theMöbius

transformations, whereby the symmetry group of the resulting

fractal exemplifies the symmetry of a certain discrete sub-

group of the continuous group of the linear fractional trans-

formations. The full symmetry group may be obtained by

adding the complex conjugation to the group generators.

Within the frameworks of the classical crystallography,

the following well-known statements for periodic crystals

are known: The composition of two reflections in parallel

mirrors is equivalent to the translation, and the composition

of two reflections in mutually intersecting mirrors is

equivalent to the rotation. The corresponding statement for

aperiodic crystals can be formulated as follows: The

product of inversions with a common center but with dif-

ferent radii is equivalent to the similarity. Thus, any

operation of the similarity can be expressed as a compo-

sition of inversions.

Let us draw two nonintersecting circles around vertices of

different types, each of which passes through ten alternating

sites. Then, we can establish the Möbius transformation that

maps the interior of the first circle onto the exterior of the

second circle, and vice versa. This mapping will serve as the
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first generating element. Next, instead of one of the circles,

we take another circle, which radius is s2 fold less. Such

inversion will serve as the second generating element.

Similarly, we can choose the second pair of sites and obtain

the next generating elements. Finally, we can continue this

procedure until the group is completely defined.Note that the

described procedure is nothing but the generation of the

Schottky group [34].

The Schottky groups represent the special kind of the

finitely generated free Kleinian groups. All of their non-

trivial generating elements are loxodromic. These groups

are very diverse, extremely intricate, and rather complex.

Their systematic investigation has been hampered for a

long time. Growing computational capabilities of computer

graphics have broken the deadlock. The essence of the

problem can be clarified by the quote from the monograph

by Mumford et al. [34], who noted that this kind of sym-

metry is characteristic for ‘‘…a family of unusually sym-

metrical shapes, which arise when two spiral motions of a

very special kind are allowed to interact’’ and that ‘‘these

shapes display intricate ‘fractal’ complexity on every scale

from very large to very small.’’ The visualization of the

Schottky groups forms part of a century-old dream con-

ceived by the great German geometer Felix Klein.

(a)

(b)

Fig. 5 Hidden symmetry of the

Penrose tiling. a The complex

plane brought into

correspondence with a Riemann

sphere by stereographic

projection. The logarithmic

spirals correspond to the

loxodromes on the sphere.

b The opposite poles represent

two alternative vertex types
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Sometimes, the interaction of the two spiral motions is

quite regular and harmonious, sometimes it is total disor-

der, and sometimes—and this is the most intriguing case—

it has layer upon layer of structure teetering on the very

brink of chaos. Simply put, these groups describe the

interaction of spiral motions on the plane or, in other

words, the multiple self-similarity.

Fractal self-similar tilings necessarily exhibit the circu-

lar property. Any of their symmetry operations maps the

given circle again into a circle. Thus, the problem of

quasicrystalline order is closely related to the problem

raised by Coxeter [35]: ‘‘…how Euclidean geometry, in

which lines and planes play a fundamental role, can be

extended to inversive geometry, in which this role is taken

over by circles and spheres.’’ Another remarkable property

is that the Clifford cross-ratio, also called a double ratio or

anharmonic ratio of four points, is an invariant of the

transformation. One can completely define a specific

symmetry transformation by setting three points and their

images. This holds true for any symmetry transformation of

self-similar and self-inverse aperiodic crystals. Thus, the

equivalent representation of the Penrose tiling by Robinson

triangles [36] may be rewritten in terms of the Möbius

transformations by simply using the Clifford cross-ratio for

corresponding triangles. The infinitely fragmented fractal

‘‘parent’’ of Conway’s pinwheel tiling [37, 38] may be also

introduced in exactly the same elementary way taking into

account the Clifford cross-ratio preservation for corre-

sponding triangles.

So, the fractal approach makes it possible to find out the

hidden, sometimes unexpected symmetry, as well as to

derive the natural local matching rules that are stated not as

formal designations by colors and other marks but as the

order of sequence of the smaller units along the boundaries

of the larger ones, which naturally reflects the self-simi-

larity. Recent advances in the theoretical explanation of

substitution tilings and their matching rules are surveyed in

the literature [37–45]. Particularly, Goodman-Strauss [39]

proved that, subject to relatively mild conditions, one can

construct local rules for any substitution tiling in nD

Euclidean space, which force the desired global structure to

emerge. Fernique and Ollinger [40] showed that tilings

with a strong hierarchical structure can be enforced by

finitely many local constraints, concerning especially to the

Rauzy fractal [41]. Note that the most general universal

solution does not always represent the best way to handle

the specific problem. Moreover, it is not yet known whe-

ther the similar ideas are applicable for the structural

characterization of actual quasicrystals. We are just going

to show that icosahedral quasicrystals represent examples

of the 3D substitution tilings with corresponding local

matching rules.

Inflation/deflation rules for icosahedral quasicrystals

Of course, the skeptical reader may claim that this problem

has been already solved by Steinhardt et al. [5, 6]. Indeed,

this assertion is not too far from the truth. Socolar and

Steinhardt [6] described the special features of icosahedral

tilings, decoration of unit cells by intersecting Ammann

planes, and deflation decoration procedure of unit cells with

detailed subtiling specification. Unfortunately, because each

cell is divided into such small pieces and the specification of

the Ammann plane decoration of the unit cells is very

complicated, these small pieces may be tracked in the

integral structure only with serious difficulties hindering the

accurate analysis and practical use of the algorithm.

First of all, we would like to give a relatively long word-

for-word quotation from the fundamental paper by Socolar

and Steinhardt [6]:

1. ‘‘Four types of unit cells appear; the triacontahedron,

the icosahedron, the dodecahedron, and the prolate

rhombohedron, with volumes in the ratios 10s:5s:2s:1.
2. There are three complete packings with a (single)

center of icosahedral point symmetry. One of these has

a triacontahedron at its center, the next shell being

composed of thirty dodecahedra. The other two have a

star at their centers, one having twelve icosahedra as

the next shell, the other having twelve triacontahedra.

3. There is a homogeneity about the packings reminiscent

of the Penrose tilings. Given any finite region, there are

others identical to it relatively close by.’’

Now, we would like to show how these basic principles

may be reformulated in a very elegant way taking into

account the fractal approach.

The inflation/deflation procedure must obey the compo-

sition–decomposition rule [46]. Tiles that match together

must have decompositions that also match together. This rule

makes it possible to construct the tiling of larger and larger

size, eventually covering the whole space by repeatedly

applying the inflation step with subsequent deflation step, so

that the size of the original tiles remains unchanged. Thus, it

is preferable not to divide the unit cells into small pieces but

inflate four original unit cells and deflate the enlarged cells

back to their own copies. We have found that in order not to

divide the tiles into smithereens, the original unit cells should

be increased by a factor of s3. In that case, all vertices of the
inflated unit cells coincide with some of vertices of the ori-

ginal quasilattice built by conventional rules [6]. Even

though it was difficult to operate with such giant inflated cells

containing hundreds of polyhedra, our efforts were rewarded

by the unification and simplification of matching rules.

The inflation/deflation rules for the icosahedral tiling are

presented in Fig. 6. Four types of unit cells are: the
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‘‘golden’’ zonohedra–rhombohedron c3 (3 zones, 6 faces),

rhombic dodecahedron c4 (4 zones, 12 faces), rhombic

icosahedron c5 (5 zones, 20 faces), and rhombic triacon-

tahedron c6 (6 zones, 30 faces). Any zonohedron may be

described as the three-dimensional projection of the

corresponding hypercube, thus the Coxeter designations for

polytopes [47] are used. Particularly, c4 designates the

tesseract. Golden zonohedra are inflated by a factor of s3

and uniquely decorated by the tiles of the original size

(compare with [6, 22, 48]).

Fig. 6 Inflation/deflation rules for icosahedral tilings. Four types of

‘‘golden’’ zonohedra serving as ‘‘unit cells’’ for icosahedral quasi-

crystals are inflated by a factor of s3 and uniquely decorated by the

tiles of the original size. a–d Inflation/deflation rules for the prolate

rhombohedron, rhombic dodecahedron, rhombic icosahedron, and

rhombic triacontahedron, respectively
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Some of the small units partially exceed the bounds of

the inflated cells. They fit together like key to lock pro-

viding the integrity of the whole tiling. Inflated cells, in

turn, have to be assembled face-to-face into the larger cells

sharing their own reduced copies on the boundaries.

Figure 7 represents the deflation rule for the rhombic tri-

acontahedron. This procedure generates one out of three

possible Euclidean packings with exact icosahedral point

symmetry. There is a triacontahedron at the center. The next

shell is composedof thirty rhombic dodecahedra placed on the

twofold axes.Next, twenty prolate rhombohedra are placed on

the threefold axes, and additional twelve clusters of ten

rhombohedra, in the form of incomplete stars, are placed on

the fivefold axes. Thirty triacontahedra are placed on the

twofold axes with twelve rhombic icosahedra on the fivefold

axes. Next, twenty clusters of ten rhombohedra in the form of

an incomplete star are placed on the threefold axes, and

additionally, the rhombic icosahedra on the fivefold axes are

capped by twelve clusters of five rhombohedra in the form of

an unfinished star. Finally, sixty rhombic icosahedra are

placed in the middle of each edge of the inflated cell. The

decomposition rule may be formally written as follows:

c6 � s9 ! c6 þ 30c4 þ 20c3 þ 12 � 10c3 þ 30c6 þ 12c5

þ 20 � 4þ 6 � 1
2

� �
c3 þ 12 � 5c3 þ 60 � 2

5
c5

Fractions reflect the fact that the corresponding poly-

hedra belong to the inflated cell only partially. Note that if

the cell is enlarged with a linear scale factor of s3, its
volume increases by a factor of s9.

The deflation rules for rhombic icosahedron, rhombic

dodecahedron, and golden rhombohedron may be derived

from the corresponding deflation rule for triacontahedron in a

uniqueway, due to the hypothesis on the circular property. For

the fractal icosahedral tiling, there needs to be an equivalent

representation by overlapping spheres, whereby the shared

regions must have identical decompositions. Hence, when an

image of one of the inflated zonohedra is properly superim-

posed onto an existing inflated and deflated rhombic icosa-

hedron, the desired deflation rule may be derived by the

duplication of intersecting area.

The deflation rule for the rhombic icosahedron is shown

in Fig. 8. It is essential to emphasize that the opposite

vertices on the fivefold axis of this polyhedron correspond

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7 Deflation of the rhombic triacontahedron. a–i Consecutive steps of the deflation procedure
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to the alternative types, and the opposite sides are not

equivalent. One side inherits the outer surface of the

inflated triacontahedron and is characterized by rhombic

icosahedra placed in the middle of each edge. The opposite

side is characterized by the ring of ten triacontahedra

arranged face-to-face around the fivefold axis.

Fig. 8 Deflation of the rhombic icosahedron. a Initiate rhombic icosahedron, b–k consecutive steps of the deflation procedure
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Figure 9 represents the deflation rule for the rhombic

dodecahedron. Such polyhedra usually appear in the final

tiling along the local twofold axes next to the triacontahedra.

Note that the rhombic dodecahedron has no symmetry plane

perpendicular to that axis. Only two mutually perpendicular

planes exist in the deflated rhombic dodecahedron.

The deflation rule for single rhombohedron is last but

not least (Fig. 10). The opposite vertices on the threefold

axis of the rhombohedron correspond to the alternative

types. One of the vertices is surrounded by rhombic ico-

sahedra in the second shell, whereas the other vertex is

surrounded by triacontahedra. The arrangement of cells in

the middle of the inflated rhombohedron is also asym-

metric. The deflated rhombohedron does not possess the

central symmetry.

The derived rules may be applied repeatedly. Both

inflation and deflation procedures may be performed infi-

nitely many times by turning the initial tiling into a fractal

tiling, eventually covering the whole space. Consider the

resulting fractal. It may be mentally divided into the tiles of

the original size. Such tiling looks like the usual icosahe-

dral tiling by golden zonohedra. The only difference is that

now there are infinitely many quasilattice sites within any

tile. Choose an arbitrary vertex and examine its local

environment. After sufficient magnification, the local

environment of any site exactly coincides with one of two

possible tilings with the complete icosahedral point sym-

metry. Both of these tilings are characterized by a star of

twenty rhombohedra at the center and differ by the

arrangement of cells starting with the second shell. Thus, in

Fig. 10 Deflation of the prolate rhombohedron. a–g Consecutive steps of the deflation procedure

Fig. 9 Deflation of the rhombic dodecahedron. a Initiate rhombic dodecahedron, b–j consecutive steps of the deflation procedure
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the corresponding fractal tiling, only two types of vertices

exist, which are invariant with respect to the self-similarity.

Two types of inequivalent sites are denoted in Fig. 6 by the

open and solid circles, respectively. For example, in the

rhombic triacontahedron, the vertices, lying on the fivefold

axes, belong to the first type, whereas the vertices, lying on

the threefold axes, belong to the second type. It does not

quite mean that the first vertices have the fivefold sym-

metry, whereas the second ones have the threefold sym-

metry. We have to highlight once again that all vertices

have complete icosahedral symmetry!

Natural local matching rules

Bandt and Gummelt [31] clearly illustrate the essence of

the problem: ‘‘In general, however, the connection between

matching rules and self-similarity is far from being

understood. It is not known whether aperiodic sets of tiles

can be constructed without inflation arguments. Moreover,

it is not clear how to define matching rules for a given set

of self-similar prototiles which force tilings to admit a

unique inflation.’’ We present our case with the firmly held

conviction that there is a direct connection between

matching rules and self-similarity.

Imagine a tiling with the complete icosahedral point

symmetry that covers the whole space. Enlarge it with a

linear scale factor of s3, superimpose the enlarged copy of the

tiling over the initial one, and return to the initial scale of

consideration. One can see that the basic unit cells share their

own reduced copies on the common faces and along common

edges. The alternating order of the reduced copies of the

initial unit cells on the common faces and along common

edges uniquely predefines the natural local matching rules.

On the other hand, such rescaling is equivalent to the infla-

tion/deflation procedure and may be performed infinitely

many times. It is also equivalent to the true operation of self-

similarity considered as the group automorphism when

bearing in mind that every cell contains infinitely many sites.

The local matching rules for icosahedral tiling are

depicted in Fig. 11. There are only two types of inequivalent

sites. Take an arbitrary vertex and perform the inflation/

deflation procedure to the local environment of the chosen

vertex. If, after several iterations, the chosen vertex becomes

the center of the star surrounded by rhombic icosahedra,

then it belongs to the A type. If the vertex becomes the

center of the star surrounded by rhombic triacontahedra,

then the chosen vertex belongs to the B type.

In the whole tiling, there are no edges connecting equiva-

lent vertices, but only the vertices of two alternative typesmay

be connected by edges. There are exactly two types of edges.

The first type edge [BA]1 decomposes after deflation into the

reduced copy of the second type edge [BA]2, the rhombic

icosahedron with opposite vertices A and B, and into the

reduced copy of the first type edge itself [BA]1. The second

type edge [BA]2 decomposes after deflation into its own

reduced copy [BA]2, and into the rhombic triacontahedron

with equal opposite vertices A and A. We have marked the

second type edge by an arrow directed to the A-type vertex,

indicating the position of the triacontahedron after deflation.

These rules form an indivisible recursive algorithm:

½BA�1 � s3 ! ½BA�2 þ c5 þ ½BA�1
½BA�2 � s3 ! ½BA�2 þ c6

There are exactly three types of inequivalent faces. The

Steinhardt designations for faces [6] are specifically

depicted in Fig. 11 for further understanding.

Fig. 11 Local matching rules for icosahedral tilings. a Two types of

inequivalent sites. Type A corresponds to the vertex in the center of

star of twenty rhombohedra surrounded by twelve rhombic icosahe-

dra. Type B corresponds to the vertex in the center of star of twenty

rhombohedra surrounded by twelve rhombic triacontahedra. b Two

types of edges. The first type edge decomposes into the reduced copy

of the second type edge, the rhombic icosahedron, and the reduced

copy of the first type edge itself. The second type edge decomposes

into the its own reduced copy and the rhombic triacontahedron.

c Three types of faces
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Let us return to the investigation of inequivalent sites or,

in other words, to the question of how to construct the two

remaining packings with the complete point icosahedral

symmetry. In order to obtain the packing, one should

arrange twenty rhombohedra in a star and perform the

inflation/deflation procedure according to the deflation

rules described above. This results in a decorated star—s3

as large as the original star. Then, the inflation/deflation

procedure may be performed repeatedly until the star,

many times enlarged, eventually covers the whole space.

However, the opposite vertices of the single rhombohedron

belong to two different types. Thus, the two different

packings with the complete point icosahedral symmetry

may be constructed according to the common algorithm.

The first packing may be derived by assembling twenty

rhombohedra around the A-type vertex and performing the

inflation/deflation procedure. The second packing, simi-

larly, may be derived by assembling the same twenty

rhombohedra around the opposite vertex of the B type. The

desired packings are presented in Figs. 12 and 13,

respectively.

Generating the aperiodic structure from an arbitrary

tile

Any tile may be used to generate a locally isomorphic

tiling inflated to infinity, as well as any finite cluster of tiles

cut from the properly decorated cell can serve for the same

purpose. Recall that two quasicrystals are in the same local

isomorphism class if and only if, every finite configuration

of unit cells occurs each inside the other [5]. Consider two

locally isomorphic tilings, deflate both tilings infinitely

many times, and compare the results. The question arises

whether or not the final infinite fractal tiling depends on the

shape of the initial tile from which it has been derived. If

not, then the infinite fractal tiling is the unique object that

characterizes the corresponding local isomorphism class as

a whole. In essence, we have already pointed out that this

question can be reduced to another one, namely whether or

not it is allowed to combine self-similarities with different

singular points. Physicists might reject this possibility

based on the apparent inconsistence with atomicity. As for

us, we do not see any contradictions.

The problem of the single prototile is known in the lit-

erature [49–52]. If our hypothesis on the Schottky groups

holds true, then it makes no difference as to which tile is

originally chosen to fill the whole space in a self-similar

manner. Even a ball can serve as a suitable fundamental

domain, no matter how seemingly inconvenient it appears

for crystals. A spherical shell, within two spheres with the

outer sphere of radius s3 times of the inner sphere, exem-

plifies another possibility.

We will now illustrate how an infinite self-similar rod

may be constructed starting from a single line segment

(Fig. 14). Consider an arbitrary edge [AB], namely, the one

which is not marked by an arrow. Let us assume, for

specificity’s sake, that the edge has the unit length. Inflate it

to s3 times of its original size and deflate. The inflation

moves the image of the point B to the new position at the

distance of s3 = 1 ? 2s from the origin as the first itera-

tion, whereas the deflation generates two additional points

within the inflated edge. The second iteration creates

another image of the initial point B at the distance of

s6 = 5 ? 8s, the third iteration (Fig. 15) creates the image

at the distance of s9 = 21 ? 34s, and so forth. As a result,

the quasi-unit cells become strongly ordered along the

fivefold symmetry axis of an icosahedral quasicrystal and

form a highly symmetrical self-similar rod.

Plane sheets, spreading out to infinity in all directions,

may be derived from a single quasi-unit cell within the

same manner. Another fine example of iteratively per-

formed self-similarity is a lot of possible hollow cage

superclusters of triacontahedra arranged face-to-face in a

manner that is reminiscent of the Matryoshka, Russian doll.

Just as single bricks within a wall of bricks occupy

positions, which are predetermined by the translational

invariance, so the quasi-unit cells occupy positions, which

are predetermined by the self-similarity. Quasicrystals

surely are not twins [53, 54]. They represent another kind

of ordering and nothing more.

Discussion

First of all, we would like to draw the reader’s attention to

the fact that one of the fundamental unsolved problems in

the solid-state chemistry, namely the description of the

structure and symmetry of quasicrystals, should be con-

sidered as a part of the Hilbert’s 18th problem.

The Hilbert’s 18th problem [55], namely Building up of

space from congruent polyhedra, is assumed to be com-

pletely resolved. It is widely believed that the 18th problem,

in essence, may be reduced to the counting discrete sub-

groups of the continuous group of rigid motions. In other

words, in order to fill a certain space with congruent poly-

hedra, we should consider its isometries, but aren’t we at

risk of falling into a logic trap by restricting ourselves only

to isometries of the same space? The second part of the 18th

problem, as it is usually restated in terms of anisohedral

tilings, is also declared to be solved just after some examples

of such tilings have been found. Let us go back and reread

the Hilbert’s original statement: ‘‘A fundamental region of

each group of motions, together with the congruent regions

arising from the group, evidently fills up space completely.

The question arises: whether polyhedra also exist which do
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Fig. 12 Inflation/deflation rules for the star of rhombohedra around the A–type vertex. a–j Consecutive steps of the deflation procedure
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Fig. 13 Inflation/deflation rules for the star of rhombohedra around the B–type vertex. a–j Consecutive steps of the deflation procedure
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not appear as fundamental regions of groups of motions, by

means of which nevertheless by a suitable juxtaposition of

congruent copies a complete filling up of all space is pos-

sible.’’ Thus, the initial question begins with the phrase that

there exists at least one evident way to resolve the problem.

In the second phrase, Hilbert asked whether there may be

more than one way to resolve it. Obviously, he challenged us

to develop an alternative.

So, we have offered an algorithm that describes the way

how to fill the entire space with congruent copies of golden

zonohedra, based on the ordering principles that are con-

venient for quasicrystals. We do not see any principal

differences, on the one hand, between filling the space by

congruent copies of the unit cell, according to the rules of

classical crystallography, and on the other hand, filling the

same space by congruent copies of quasi-unit cells,

according to the well-defined iterative and recursive algo-

rithm somewhere from beyond the comprehensively

developed scientific discipline. The question is whether our

arguments comply fully with the conditions of the Hilbert’s

18th problem. In our opinion, the offered algorithm rep-

resents a particular solution of the problem under consid-

eration. Except for the one described, one might ask: ‘‘How

many other solutions exist for this problem, which has

allegedly been reduced to the crystallographic groups and

declared to be completely solved?’’ This is not an idle

question. In fact, this problem is nothing more than the

classification of quasicrystals according to their symmetry.

We see our work as a contribution to the better scientific

understanding of the structure and formation of quasicrystals.

Fig. 14 Generating self-similar rod from single line segment. First

two iterations of the inflation/deflation procedure are applied to the

single line segment represented by the edge of first type. Arrows

indicate new positions of the initiate points after performing the self-

similarity operations

Fig. 15 Self-similar rod with fivefold symmetry corresponding to a

s9 times enlarged image of the initiate single edge
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Despite the challenging work by Steinhardt et al. [5, 6], no

consensus has been reached on how the structure of ico-

sahedral quasicrystal is formed. For example, Abe et al.

[56] postulated that ‘‘quasicrystals cannot be defined as

packing of identical unit cells,’’ so that their structures can

be effectively viewed only in terms of packing by over-

lapping clusters that are the most stable, energetically

favored atomic configurations.

On the contrary, we believe that quasicrystals may be

described as packing of unit cells side by side without

overlapping with the only exception—there are four types of

cells. In both crystalline and quasicrystalline idealized

structures, every unit cell is obliged to occupy exactly the

predefined position. In essence, we can imagine a substitu-

tional packing irrelative of the cluster energetics at all,

exactly in the same manner as crystallographers describe the

Bravais lattices irrelative of the fact, whether some positions

are occupied by atoms or not. After that, we can fill the unit

cells by atoms in an almost arbitrary manner and multiply

them respecting the matching rules. The artificial structure

thus obtained would surely exhibit quasicrystallinity. Next

question appears right away. How to fill four basic unit cells

with specific atoms and clusters in order to get the consistent

structure with given local atomic arrangement characteristic

of an actual quasicrystal? Is it possible to incorporate these

ideas into the practical refinement procedure? In general,

this problem remains open, but just a simple comparison of

the described packings with the known typical structures of

crystalline approximants [16, 17, 48, 57–62] allows us to

hope that the substitutional algorithm may bring a new

perspective to the multiple cells formalism.

As a conclusion, we offer the clear substitution rules for

icosahedral packings that make it possible to fill the entire

space with golden zonohedra in a strictly regular manner

without addressing to higher dimensions. It is important to

highlight that our description remains principally three-

dimensional, whereby the natural local matching rules may

be formulated without addressing to Ammann planes. The

proposed algorithm does not contradict the standard cut-

and-project scheme, but further investigations are neces-

sary to establish the exact interrelations.
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42. Berthé V, Siegel A, Thuswaldner J (2010) Substitutions, Rauzy

fractals and tilings. In: Berthé V, Rigo M (eds) Combinatorics,
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