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Abstract In this paper, a back-propagation neural network
has been utilized to study on the correlation between im-
pact sensitivity and molecular properties of 33 nitramine
molecules. By using density functional theory method
B3P86/6-31G∗∗, all the molecular properties have been cal-
culated. Eight different sets of molecular properties, includ-
ing (HOMO − LUMO)∗BDE, E, BDE/E, HOMO − LUMO,
BDE∗µ, R2, �E, and BDE, have been used to train and test
the network. Based on the test results, the correlation order
between the molecular properties and impact sensitivity has
been achieved. The correlation order shows that the input
set with the descriptor �E (atomization energy) can obtain
better results than any other descriptor for nitriamines, which
surely accounts for a comparatively stronger correlation be-
tween �E (atomization energy) and impact sensitivity for
nitramines we have studied in this work.

Keywords Neural networks . Impact sensitivity .

Back-propagation algorithm . Nitramines . Molecular
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Introduction

The study on the correlation between impact sensitivity of en-
ergetic materials and molecular structures has recently been
an ongoing area of research in explosive theory [1]. The so-
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called impact sensitivity h50% is measured experimentally by
drop weight impact test, where a height of 50% probability
in causing an explosion is measured when hit by a hammer
with a standard weight [2, 3]. Since storage, synthesis, and
application of energetic materials are significantly affected
by impact or shock sensitivity, the researches about the im-
pact sensitivity is of primary importance. Once we get the
ability to predict potential explosives using computational
methods, it will provide significant cost savings, increase
the safety of storage and testing of these compounds, and
provide for greater control of the performance of these ex-
plosives [4]. Presently, the usage of quantum mechanical
methods as a predictive tool for assessing relationships be-
tween molecular properties of various explosive molecules
and their impact sensitivities has been suggested in several
previous works. Correlations between impact sensitivity and
chemical composition reported earlier by Kamlet and Adolph
were probably the most widely applied in the area of ener-
getic materials research [5]. These demonstrated that for fam-
ilies of high-energy molecules with similar decomposition
mechanisms, there were approximately linear relationships
between log h50% and OB100, the latter was a measure of
“oxygen balance”; MNDO/3 molecular orbital method was
used by Owens [6] to calculate the energy for bond rupture
for a number of energetic molecules and the results showed
that the weakest bond was generally that between the NO2

and the remainder of the molecule. In addition, his calcula-
tion results indicated a correlation between the magnitude
of the energy barrier and the susceptibility to detonation;
Politzer [7] investigated shock-sensitivity relationships for
nitramines and nitroaliphatics, and showed that shock sen-
sitivity was related to the strengths of all the N–NO2 and
C–NO2 bonds, taken in conjunction with overall molecular
size; Rice and co-workers [8, 9] pointed out that for ni-
troaromatic molecules there was a correlation between the
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bond dissociation energy of the weakest bond and sensitiv-
ity. Moreover, they investigated the relation between impact
sensitivity and charge distribution in energetic molecules;
Xiao and co-workers [10–12] once proposed a principle of
the smallest bond order to identify the relative magnitudes of
impact sensitivity of most energetic compounds. For polyni-
troaromatic series, Jinshan and Gang [1] showed that the
Mulliken bond order of C–NO2 linkage correlated well with
the observed values of h50%; Zeman found a logarithmic re-
lationship between the drop energy Edr and heats of fusion
for 33 polynitro compounds [13]. The correlation between
impact sensitivity and approximated heats of detonation of
several nitramines was examined by Edwards et al. [4]. Be-
sides, many other properties have been found to correlate
with impact sensitivities. These properties include molecu-
lar electronegativities [14, 15], vibrational states [16, 17],
molecular weights and detonation gas concentrations [18],
parameters related to oxidation numbers [19], partial atomic
charges [15, 20–24], heats of reaction [25, 26], heats of ex-
plosion [27], bond orders [28, 29], and activation energies
[27–31]. Although works listed above succeeded in finding
a certain kind of correlations between some of the specific
molecular properties and the impact sensitivity, many of the
correlations almost existed in a certain type of explosive and
the number of explosives in each type was usually small. In
addition, most of the works simply examined the correlation
between one or two molecular properties and impact sensitiv-
ity of explosive compounds. Consequently, in order to make
a further study on the correlation between impact sensitivity
and molecular properties, investigations should be carried
out on how molecular properties affect impact sensitivity for
the same type of energetic materials with similar molecular
structure. In the present work, DFT method B3P86/6-31G∗∗

is adopted to calculate molecular properties of 33 nitramine
explosives, and artificial neural networks method is utilized
to research the correlation order between different molecular
properties and impact sensitivity.

The neural network is a nonlinear function of many pa-
rameters that maps particular inputs (in our case, molecular
properties) to an output (in our case, impact sensitivity). The
network is made up of simple, yet highly connected, process-
ing elements called nodes [32]. They are computer-based
emulations of the brain’s information-processing capability
[3]. Neural networks have been applied to various engineer-
ing problems, such as robotics, pattern recognition, speech,
etc. [33]. In addition, the use of neural network methods has
grown constantly in a variety of applications in chemistry
and physics since their first utilization for the prediction of
protein secondary structure. For example, neural networks
have been used to calculate the ground-state eigenenergy of
two-dimensional harmonic oscillators [34], to solve nonho-
mogenous ordinary and partial differential equations [35],
and to obtain the electronic correlation energy for atoms and

diatomic molecules [36]. But for the explosive engineering,
there exist few reports about the impact sensitivity based
on neural networks method, although Nefati [3] and Cho
et al. [37] predicted the impact sensitivity of various types
of explosive molecules via neural networks. However, they
both provided better impact sensitivity values by employing
dozens of compositional and topological descriptors, which
is not very realistic for explosive synthesis engineering, and
which property can correlate with the sensitivity best is still
not clear. In the current work, we will choose five fundamen-
tal molecular descriptors in each input set so as to examine
the sensitivities more conveniently. Since the fundamental
molecular properties were easier to calculate, correlation
study should be used to identify fundamental molecular prop-
erties that indicate sensitivity best. In addition, their works
did not include the correlation order between impact sensi-
tivity and molecular properties, which will be studied in the
following part of this paper.

Energetic secondary nitramines are currently a subject
of increasing interest in high-energy materials research. Of
particular importance are efforts aimed at gaining insight into
how molecular features of nitramines influence their impact
sensitivities.

In this paper, we will utilize the back-propagation neural
network (BP) to analyze the correlation between impact sen-
sitivity of nitramines and molecular properties. In particular,
the correlation order between various molecular properties
and impact sensitivity will also be examined.

Theoretical methods

Calculation method

Thirty-three nitramine molecules as shown in Table 1 were
investigated in this paper. All the experimental impact
sensitivity values were taken from [38]. In this work,
by using Gaussian 98 hybrid DFT B3P86 method, the
Becke-style three-parameter density functional theory [39]
with the Perdew’s 86 (P86) [40] in combination with the
basis set 6-31G∗∗ [41], the geometry was optimized and then
the molecular structures were calculated. The calculated
molecular properties included the sum of electronic and
zero-point energy (E), zero-point vibration energy (ZPE),
dipole moment (µ), electronic spatial extent (R2), highest
occupied molecular orbital (HOMO), and lowest unoccupied
molecular orbital (LUMO). Furthermore, the atomization
energy of various explosive molecules (�E) and the bond
dissociation energy of the weakest X–NO2 bond (BDE)
were also calculated in this paper.

One can expect that the properties listed above examined
for correlations contain many “obvious” choices and may be
already well described in previous works. That is true when
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Table 1 Thirty-three nitriamine molecular formulas and our final calculated values (h50%, cm) using set 6 and set 1 along with
experimental values

Experimental Our Our
Serial no Formula Compound names h50% [46] resultsa resultsb

1 CH4N4O2 Nitroguanidine 59 54 35
2 CH4N4O4 N,N′-Dintro-methanediamine 13 11 6
3 C2H4N2O3 N-Nitro-N-methyl-formamide 320 314 278
4 C2H6N4O4 N,N′-Dinitro-1,2-ethanediamine 34 43 29
5 C3H5N7O8 Trinitroethyl-nitroguanidine 15 15 32
6 C3H6N6O6 Cyclotrimethylene-trinitramine 26 23 41
7 C3H8N4O4 N-Methyl-N-N/-dinitro-1-2-ethanediamine 114 110 138
8 C4H4N6O8 Trinitroethyl-cyanomethylnitramine 11 12 24
9 C4H5N5O10 N-Methyl-N-nitro-(trinitroethyl)-carbamate 17 18 26

10 C4H6N6O9 N-Nitro-N-(trinitro-ethyl)-glycinamide 17 13 29
11 C4H6N4O6 N-N′-Dimethyl-N,N′-dinitrooxamide 79 85 73
12 C4H8N8O8 Cyclotetramethylene-tetranitramine 29 24 49
13 C4H10N6O6 N-N′-Dinitro-N-[2-(nitroamino)ethyl]-1,2-ethanediamine 39 35 57
14 C5H6N6O10 1,3,3,5,5-Pentanitro-piperidine 14 17 26
15 C5H7N5O10 Trinitroethyl-N-ethyl-N-nitro-carbamate 19 23 26
16 C5H9N5O9 Trinitroethyl-2-methoxy-ethylnitramine 42 48 46
17 C5H10N6O8 N-N′-3,3-Tetranitro-1,5-pentanediamine 35 37 62
18 C6H9N5O10 2,2,2-Trinitroethyl-4-nitrazavalerate 35 35 49
19 C6H9N5O10 Trinitropropyl-(2,2dinitropropyl)-nitramine 17 16 9
20 C6H9N7O12 2′,2′,2′-Trinitroethyl-2-5-dinitrazahexanoate 15 14 30
21 C6H9N7O12 2,2,2-Trinitroethyl-3,3-dinitrobutyl-nitramine 20 23 52
22 C6H10N6O10 N-(2,2-Dinitropropyl)-N,2,2-trinitro-1-propanamine 29 31 38
23 C6H14N6O8 1,7-Dimethoxy-2,4,6-trinitrazaheptane 166 165 147
24 C6H14N8O8 N-N′-Dinitro-N-N′-bis[2-(nitroamino)ethyl]-1,2-ethanediamine 53 57 73
25 C7H9N7O14 2,2-Dinitropropyl-5,5,5-nitrazapentanoate 16 25 32
26 C7H9N7O14 Trinitroethyl-5,5-dinitro-3-nitrazahexanoate 25 21 38
27 C7H9N7O14 2,2,2-Trinitroethyl-2,5,5-trinitro-2-azahexanoate 22 32 35
28 C7H9N7O14 N-Nitro-N,N′-bis(trinitropropyl)-urea 21 24 37
29 C7H9N9O16 2,2,2-Trinitroethyl-2,4,6,6-tetranitro-2,4-diazaheptaneoate 18 22 40
30 C8H12N6O12 2,2,6,9,9-Pentanitro-4-oxa-5-oxo-6-azadecane 47 40 76
31 C8H14N6O10 N-(2-2-Dinitrobutyl)-N-2,2-trinitro-1-butanamine 80 82 63
32 C8H14N8O10 N,N′-Dinitro-N,N′-bis-(3-nitrazabutyl)-oxamide 90 84 48
33 C8H14N8O12 2,2,4,7,9,9,Hexanitro-4,7-diazadecane 72 69 85

aImpact sensitivity values obtained by employing set 6 containing �E.
bImpact sensitivity values obtained by employing set 1 containing (HOMO − LUMO)∗BDE.

only one or two molecular properties are examined. But until
recently, the correlation order of different molecular proper-
ties with impact sensitivity has not been studied for the same
type of energetic materials with similar molecular structure,
and which property correlates with sensitivity best is still not
known when different properties are considered. Here, we
would like to present a detailed study on the correlation be-
tween different molecular properties and impact sensitivity
for nitramines.

Back-propagation neural network

In the field of structure–activity or structure–property rela-
tionships, the back-propagation neural networks, particularly

the three-layer networks, have gained wide acceptance [3].
So a fully connected three-layer architecture, which had an
input layer, a hidden layer, and an output layer, was adopted
in our neural network.

A back-propagation neural network, which was first de-
veloped by Rumelhart and McClelland [42], “learns” by re-
peatedly passing data through neurons and adjusting their
weights and biases to minimize the mean-squared error
(MSE),

∑
(ti − oi )2/n (i is a training observation and n

is the total number of input vectors), until the output (oi) pre-
dicted by network matches the target (ti) or given property
point values.

The neural network can be trained to perform a particular
task using a variety of learning algorithms. In this paper,
we chose BP algorithm implementing Levenberg–Marquardt
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variation for the network, whose training speed was much
faster than that of a gradient descent algorithm [43].

By using BP neural network, emphasis was primarily
laid on finding out the molecular descriptor, which had the
strongest correlation with impact sensitivity of nitramines.
Thus, impact sensitivity h50% was an obvious choice of the
only output neuron. Similarly, selecting the proper molec-
ular descriptors of nitramine molecules, which were to be
used as the input neurons of the neural network, was also
our focus. After a preliminary evolutionary multiple linear
regression treatment, BDE/E, BDE∗µ, HOMO − LUMO, µ,
R2, BDE, �E, (HOMO − LUMO)∗BDE and the number of
C, H, N, O atoms in each CHNO nitramine molecule, which
indicated the value of bond dissociation energy divided by
total energy, bond dissociation energy multiplied by dipole
moment, energy gap, electronic spatial extent, bond dissoci-
ation energy, atomization energy, and energy gap multiplied
by bond dissociation energy, respectively, were chosen as
input descriptors. In order to find out the correlation or-
der between molecular descriptors and impact sensitivity of
nitramine molecules, the descriptors mentioned above were
divided into eight different sets, each were combined with
the number of C, H, N, O atoms comprising each CHNO
nitramine molecule. In this case, eight different input sets,
with the number of C, H, N, O atoms being the common
descriptors in each set, were constructed, as summarized in
Table 2.

Usually, the difficulty in finding optimum neural-network
architecture resided in deciding on the number of hidden
layers and the number of neurons in them. By trial and error,
we found that only one hidden layer containing two neurons
yielded better overall results than those with more neurons
in hidden layers despite the fact that these latter networks
could give slightly better fitting of the data set. Therefore,
the 5-2-1 structure, which was 5 neurons in input layer, 2
neurons in hidden layer, and 1 neuron in output layer, was
adopted for our neural network as depicted in Fig. 1.

During training and test process, we divided 33 nitramine
molecules into two groups, a training group and a test group,
respectively. The training group was used to help the net

Fig. 1 5-2-1 BP network structure

learn the relationship between the given input vectors and
the target output vector. Meanwhile, the test set consisting of
a few compounds, some of which may be dissimilar to the
training group, were chosen to validate the network’s genera-
tion ability. In order to accelerate the convergent speed, input
groups must be normalized. The normalized formula is

x ′
i = (xi − u)/sd (1)

where x ′
i is the data after normalization, xi is the original

data, u and sd are respectively the average value and standard
error of the original data [44]. Now, various types of thresh-
old functions are used in neural networks [45], the most
common being the sigmoid function, which is incorporated
as a transfer function in the MATLAB Neural Network
Toolbox 3.0, installed in a PC computer. In this paper, the
log sigmoid transfer function, log(1/1 + e − z) was used to
calculate the outputs of the neurons in hidden layer and out-
put layer. The training parameters were generated randomly.
The learning rate was optimized by trial and error and the
best value obtained was 0.05. The reasonable output error
was 0.001. The neural network was trained for 2000 epochs
(using incremental updating or randomization of the training
data order to avoid local minima), which were required to
reach a maximum error of 0.001. In Fig. 2, the maximum
error of the network could be observed as a function of the

Table 2 Twelve molecular
descriptors and eight different
input sets calculated for this
study

Number Descriptors Number Descriptors

1 Number of C atoms 7 BDE
2 Number of H atoms 8 BDE∗µ
3 Number of N atoms 9 R2

4 Number of O atoms 10 �E
5 (HOMO − LUMO)∗BDE 11 HOMO − LUMO
6 µ 12 BDE/E
Set 1 Descriptors 1–5 Set 5 Descriptors 1–4, 9
Set 2 Descriptors 1–4, 6 Set 6 Descriptors 12, 3, 4, 10
Set 3 Descriptors 1–4, 7 Set 7 Descriptors 1–4, 11
Set 4 Descriptors 1–4, 8 Set 8 Descriptors 1–4, 12
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Fig. 2 The curve of generation ability of the network

number of propagation cycles during the training process.
As can be seen, the estimate of the network accuracy was
asymptotically decreasing functions. After about 60 cycles,
the network converged to a maximum error of 0.00099.
Further training could not improve the performance of the
network, and at this point training was stopped.

After training process, a few more nitramine molecules,
which belonged or did not belong to the input groups, were
chosen as test group to validate the generation ability of the
network. The reasoning for this specific construction was to
allow the test group to contain molecules which were dis-
similar to the training group, so that the test and prediction
results would exhibit distinct outliers. The test procedure was
repeated five times starting from different initial random sets
of weights, a technique known to weaken the detrimental
effects of local minima on the error surface [46], and the
mean-square errors were calculated, as shown in Fig. 3. The
mean values, which were obtained by employing set 6, were
used as the final values presented in Table 1. Meanwhile, the
predicted impact sensitivity values of nitramines calculated
by employing set 1 were also listed in Table 1 for compari-

Fig. 3 Comparison of mean-squared error for eight input sets

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

Input set 6 containing ∆E

P
re

di
ct

ed
 h

50
%

Experimental h
50%

Fig. 4 Predicted vs. experimental h50% values obtained by employing
set 6 containing �E

son. Two plots of predicted versus experimental h50% values
obtained by employing input set 6 and set 1 are depicted in
Figs. 4 and 5 to illustrate our conclusion more intuitively.

Results and discussion

As shown in Fig. 3, MSE values were in the range from
0.782 to 1.200. The smallest MSE value was from the
set 6 with �E, and the biggest MSE value was from the
set 1 including (HOMO − LUMO)∗BDE. It indicated that
with the same network architecture and training parameters,
molecular descriptor �E had the strongest correlation while
(HOMO − LUMO)∗BDE had the slightest correlation with
impact sensitivity of the nitramines studied in this work. It
is noteworthy that the correlation order studied here was in
fact between input sets and impact sensitivity. Since corss-
correlation of descriptors in each input set was very slight
and each set had four common descriptors, the difference
of MSE values in training and test process can be thought

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

Input set 1 containing (HO-LU)*BDE

P
re

di
ct

ed
 h

50
%

Experiment h
50%

Fig. 5 Predicted vs. experimental h50% values obtained by employing
set 1 containing (HOMO − LUMO)∗BDE
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mainly coming from very different descriptor in each input
set. Thus, we considered the correlation order was mainly
decided by the very different descriptor in each set.

Two plots of predicted versus experimental h50% val-
ues obtained by employing set 6 and set 1 are displayed
in Figs. 4 and 5, respectively. Solid lines indicate perfect
agreement between experiment and prediction. As shown
in Fig. 5, we could see that the predicted values in set 1,
in which the molecular descriptor (HOMO − LUMO)∗BDE
was included, were mostly larger than the experimental
data. Nevertheless, in Fig. 4, the predicted values in set 6,
in which �E was contained, were in excellent agreement
with the experimental values. It clearly indicated that �E
had the strongest correlation with impact sensitivity while
(HOMO − LUMO)∗BDE had the slightest correlation with
impact sensitivity. Predicted values in other six sets were all
worse than set 6, but better than set 1.

In quantum chemistry, atomization energy (�E) was de-
fined as the difference between molecular energy and the sum
of energies of atoms comprising the molecule. For instance
such as CH4N4O2,

�E(CH4N4O2) = E(C) + 4E(H) + 4E(N)

+ 2E(O) − E(CH4N4O2) (2)

For nitramine explosives, whose structures were mainly
made up of carbon chains, the molecular descriptor �E had
the strongest correlation with impact sensitivities. This con-
clusion was in agreement with Edward et al.’s work [4].

BDE here was defined as the difference between the zero-
point-corrected energy of parent nitramine molecule and that
of the products of the unimolecular dissociation in which an
NO2 group was removed. For example, for CH4N4O2, the
BDE was

BDE(CH4N4O2) = [E(CH4N3) + E(NO2)]

−E(CH4N4O2) (3)

It was noteworthy that for nitramines studied in this work,
the breaking of the R–NO2 may be the rate-controlling step
in the initiation of detonation, which again supported the
Owens’ conclusion [6]. Based on chemical reaction kinetics,
Arrhenius equation showed that the reaction rate constant
depended on the ratio of activation barrier to temperature, so
the activation energy may be a key factor in impact initiation
and sensitivity of a material. As BDE/E had a certain relation-
ship with activation energy, a strong correlation might exist
between impact sensitivity and BDE/E, which indicated that
bond dissociation energy in unit molecular energy. In this
paper, descriptor BDE/E had the second strongest correla-
tion with impact sensitivity of nitramines, with MSE value
0.833.

As depicted in Fig. 3, the correlation order after
�E and BDE/E was as follows: R2, BDE, µ, BDE∗µ,
HOMO − LUMO, and (HOMO − LUMO)∗BDE. For the
last one, the difference between LUMO and HOMO was
defined as electronic transition level, which had influence
on molecular properties. The lower the HOMO was, the
larger was the molecular ionization energy. LUMO was re-
lated to molecular affinity, the smaller it was, the more the
energy of system decreased when electrons came into the
orbital. (HOMO − LUMO)∗BDE and HOMO − LUMO had
the weakest correlation with impact sensitivity, which indi-
cated that the initial process of detonation correlated slightly
with electronic excitation for nitramines we studied.

Conclusion

In this paper, by using DFT B3P86/6-31G∗∗method, the
electronic structures of 33 nitramine molecules were cal-
culated. Based on the calculated molecular properties, we
performed BP neural network to study on the correlation be-
tween impact sensitivity of nitramine explosives and molec-
ular structures. Eight different input sets were constructed
to train the network, and a few more molecules were cho-
sen to test the generation ability of the network. Best re-
sults were obtained by employing set 6, which contained the
molecular descriptor �E. The correlation order between im-
pact sensitivity and the descriptors was obtained as follows:
�E, BDE/E, R2, BDE, µ, BDE∗µ, HOMO − LUMO, and
(HOMO − LUMO)∗BDE. It demonstrates that the atomiza-
tion energy �E is the best index of impact sensitivity for
nitramine explosives, and BDE/E the second. Whether this
conclusion is general for other chemical families needs to be
further studied.
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