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ANALYSIS OF THE DYNAMIC CHARACTERISTICS 
OF CONICAL SHELLS OF VARIABLE THICKNESS 
ON AN ELASTIC BED UNDER UNSTEADY LOADING 

P. Z. Lugovyi,a,1 Yu. A. Meish,a S. P. Orlenko,a  UDC 539.3 
and N. V. Arnautab 

The model of Timoshenko’s shell theory of shells was used to analyze the dynamic characteristics of 
conical shells of variable thickness on a Pasternak elastic bed under nonstationary loading. Based on 
the Hamilton–Ostrogradsky variational principle, the equations of motion of a conical shell of 
variable thickness on a Pasternak elastic bed were derived. This system of hyperbolic differential 
equations is solved by the finite difference method. The numerical algorithm for solving the obtained 
equations is based on applying the integral-interpolation method for constructing difference schemes 
in the spatial coordinate and an explicit finite difference scheme for integration in the time coordinate. 
The influence of geometric dimensions, taper angle, and elastic media on the natural frequencies and 
other dynamic characteristics of a conical shell of variable thickness under the action of a pulsed load 
is analyzed using specific examples. New mechanical effects are revealed. 

Keywords: dynamic characteristics, conical shell of variable thickness, shell parameters, Pasternak elastic bed, natural 
frequency, pulse loading, finite difference method, mechanical effects. 

Introduction. The problem of oscillations of elastic thin-walled shells of variable thickness is one of the most 
pressing problems in the mechanics of deformable solids. Solutions to such problems are necessary for developing 
aircraft, rocketry, shipbuilding, and many other branches of engineering and construction. To date, significant progress 
has been made in studying dynamic processes in elements of conical structures. However, the problems of the dynamic 
interaction of homogeneous and inhomogeneous conical shell structures with elastic media still need to be sufficiently 
investigated [1–3]. Many publications have been devoted to studying the dynamics of conical elements with variable 
thickness by analytical methods. Thus, the work [4] investigated the stress-strain state of nonthin conical shells with 
variable thickness in two coordinate directions. The displacement and stress fields in such shells were determined and 
analyzed. Paper [5] presented the results of a study of the natural frequencies of a truncated cone whose thickness 
varies according to different laws. The minimum vibration frequencies’ dependences on the shells’ thickness are 
subject to a power law change (linear and quadratic, with symmetrical and asymmetrical shapes). The paper [6] 
investigated the bending of an elastic truncated conical shell with a meridional thickness expressed by an arbitrary 
function. The vibration of composite conical shells consisting of three and five layers, each consisting of different 
materials, is analyzed. 

Study [7] analyzed the longitudinal strength of a truncated cone under hinged support. A truncated conical 
shell of functionally graded materials (FGM) is subjected to axial compressive loading and supported on Winkler–
Pasternak elastic bases. The properties of such a shell continuously change along its thickness. Parametric studies of 
the power law and exponential distribution of FGM, the Winkler–Pasternak bed modulus, and the aspect ratio of the 
shells were performed. Paper [8] investigated the characteristics of free oscillations of a truncated conical shell of 
variable thickness using the Haar wavelet method, where the shell thickness varied linearly or parabolically. The 
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influence of geometric parameters and boundary conditions on the vibration characteristics of conical shells of variable 
thickness was analyzed. Paper [9] studied the vibration of complete conical shells with variable thickness. In [10], an 
analytical approach is proposed to analyze the influence of inhomogeneity, material orthotropy, cone half-vertex angle, 
and other geometric parameters on the value of the critical combined load when supported on a Pasternak elastic bed. 
Numerical results indicate the influence of the shell characteristics, porosity distribution, porosity coefficient, and the 
elastic bed on the critical bending load. Paper [11] investigated the bending of an orthotropic composite truncated 
conical shell with a continuously varying thickness subjected to a homogeneous external pressure, a power function of 
time. The effects of power variations in thickness, half-top angle, power in time of external pressure, and the Young 
modulus ratio on critical parameters were determined. In [12], the problem of the stability of a truncated conical shell 
made of FGM subjected to axial compressive loading and supported by elastic beds of the Winkler-Pasternak type was 
analytically solved. In [13], the free vibrations of a truncated conical shell of variable thickness were investigated by 
two methods, and in [14], the influence of boundary conditions and variable thickness of the conical shell on the 
vibration behavior of composite conical shells reinforced with a mesh was determined. Paper [15] investigated the free 
vibrations of symmetrical and asymmetrical cross-layer composite shells of a truncated conical layer using the spline 
function method. The effect of transverse shear strain on frequency and taper angle parameters under different boundary 
conditions was analyzed. 

In [16], the stability of conical shells made of FGM was investigated under a homogeneous external pressure, 
which is a power function of time. Assuming that the properties of FGM shells continuously changed depending on 
their thickness based on the power law of the distribution of the volume fractions of the components, general formulas 
for critical parameters were obtained. The results showed that the critical parameters were affected by the constituent 
materials’ configurations, loading parameter variations, taper angle variations, and external pressure changes over time. 

In [17], the finite element method (FEM) was used to analyze free vibrations of axisymmetric shells of variable 
thickness, including shear deformation and the effect of rotational inertia. In [18], a three-dimensional (3D) analysis 
method was presented to determine the free vibration frequencies of complete (untruncated) conical shells with linearly 
variable thickness. Full conical shells, free or clamped at the lower edge with a free top, were studied. Study [19] 
analyzed the transient dynamic and free vibration of axisymmetric truncated conical shells with FGM with uneven 
thickness. Two numerically efficient and accurate methods for studying the transient dynamic responses of FGM shells 
subjected to internal or external mechanical shock loading were introduced. The material properties were continuously 
evaluated in the thickness direction according to the power law distribution of the volume fraction. The influence of 
various geometric and material parameters on the unsteady dynamic behavior of FGM shells was investigated using 
ANSYS. 

In works [2, 20], the axisymmetric dynamic behavior of reinforced conical shells on a Winkler elastic bed 
under nonstationary loads was solved by the finite-difference method, and in [21], the problem of nonaxisymmetric 
vibrations of a heterogeneous conical shell of variable thickness under the action of a nonstationary load was solved. 
A finite difference algorithm for solving this problem was presented. For a specific example, the dynamic behavior of 
a conical panel of variable thickness under the action of a nonstationary load was analyzed. 

There are few studies of free vibrations of conical shells of variable thickness resting on a Winkler–Pasternak 
elastic bed [22]. After an extensive literature review, we found only one article, which analyzed the dynamic behavior 
of a conical shell of variable thickness under unsteady loading on a Winkler elastic bed [23], which presented the 
problem statement and developed a finite-difference algorithm for its solution. The differential equations of the motion 
system were based on applying the Timoshenko-type shell theory. The dynamic characteristics of axisymmetric conical 
shells of variable thickness on a Winkler elastic bed under the action of an internal pulse load in the form of a semi-
sinusoid were studied. 

The Winkler model [24] is the simplest model of an elastic bed, for the description of which a single elastic 
bed coefficient 	ܥଵ (kN/m3), which determines the relationship between the response of the elastic bed and the radial 
displacements of points on the median surface of the conical shell. A closer approximation of the elastic bed is the two-
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parameter Pasternak model of the elastic bed [25], in which the elastic bed’s second coefficient 	ܥଶ (kN/m)  
characterizes the work of the elastic bed under shear. 

This situation stimulates the study of the dynamic characteristics of conical shells of variable thickness on a 
Pasternak elastic bed under nonstationary loads. 

Problem Formulation and Basic Equations. Consider a sheared conical shell of variable thickness on a 
Pasternak elastic bed. The conical shell, which is inhomogeneous in thickness, is subjected to an internal distributed 
load ଷܲሺݏଵ,  .are the spatial and temporal coordinates ݐ ଵ andݏ ሻ, whereݐ

When considering axisymmetric vibrations of conical shells, the coordinate system is used ݐ ,ݏ, where the 
coordinate ݏ coordinate is taken from the cone vertex. In some cases, in particular, for cut conical shells, it is rational 
to use the coordinate 	ݏଵ		coordinate, calculated from the shell’s cut edge. We will assume that the general coordinate 
system refers to the shell’s median surface with a thickness ݄ ൌ ݄ሺݏଵሻ. The coordinate ݖ will be counted to increase 
the length of the outer normal to the original surface. 

The coefficients of the first quadratic form and curvature of the coordinate surface are written as follows: 
ଵܣ ൌ ଶܣ ,1 ൌ ܴ௦, ݇ଵ ൌ 0, ݇ଶ ൌ cos ߠ ܴ௦⁄ , where ߠ	 is the taper angle, ܴ௦ ൌ ܴ଴ ൅ ଵݏ sin  ଵ is the currentݏ and ,ߠ
coordinate. 

Based on the theory of shear deformation in shells [26], the displacements 	ݑଵሺݏଵሻ	 and  ݑଷሺݏଵሻ	 in a conical 
shell of variable thickness in the direction ݏଵ (longitudinal), ݖ-coordinate and ݐ		(time) at small linear displacements 
are expressed by the following relationships: 
 

,ଵݏଵሺݑ ,ݖ ሻݐ ൌ ሻݐଵݏଵሺݑ ൅ ,ଵݏଵሺ߮ݖ  ,ሻݐ

,ଵݏଷሺݑ ,ݖ ሻݐ ൌ ,ଵݏଷሺݑ  ,ሻݐ
(1)

 
where ߮ଵሺݏଵ,  .ሻ is the normal rotation angle to the conical shell’s median surfaceݐ

The following formulas describe the deformations: 
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1
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, 
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, ଶଶܭ ൌ
1
ଶܣ

ଶܣ߲
ଵݏ߲

߮ଵ. 
(2)

 
The Hamilton–Ostrogradsky variational principle was used to derive the following equation of vibration of 

the shell structure: 

න ሾߜሺП െ ܶሻ െ ሿܣߜ ൌ 0
௧మ

௧భ

, (3)

 
where П is the potential energy of the system, taking into account Pasternak’s external environment, ܶ  is kinetic energy, 
 .ଶ are fixed moments of timeݐ ଵ andݐ is the work of external forces, and ܣ

The expressions for the variations of the total potential and kinetic energy of these components are written in 
the form: 
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(4)
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After the standard transformations in the variational equation (3), taking into account the relations (4), we 
obtain the hyperbolic equations of motion of a conical shell of variable thickness located in the Pasternak elastic bed 
under the action of an axisymmetric pulse load, boundary, and initial conditions: 
 

1
ଶܣ
	
߲
ଵݏ߲

ሺܣଶ ଵܶଵሻ െ
1
ଶܣ

߲
ଵݏ߲

ሺܣଶ ଶܶଶሻ ൌ ଵሻݏሺ݄ߩ
߲ଶݑଵ
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1
ଶܣ
	
߲
ଵݏ߲
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߲ଶݑଷ
ଵݏ߲
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(5)

 
The ratios for forces and moments are determined according to the formulas: 

 
ଵܶଵ ൌ ଵଵߝଵሻሺݏଵଵሺܤ ൅ ,ଶଶሻߝߥ 			 ଶܶଶ ൌ ଶଶߝଵሻሺݏଶଶሺܤ ൅ ,ଵଵሻߝߥ ଵܶଷ ൌ  ,ଵଵߝଵሻݏଵଷሺܤ

ଵଵܯ ൌ ଵଵߢଵሻሺݏଵଵሺܦ ൅ ଶଶܯ ;ଶଶሻߢߥ ൌ ଶଶߢଵሻሺݏଶଶሺܦ ൅  ,ଵଵሻߢߥ
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1 െ ଶߥ
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ଵሻݏଵଵሺܦ ൌ
ଵሻݏଷሺ݄ܧ

12ሺ1 െ ଶሻߥ
ൌ  .ଵሻݏଶଶሺܦ

(6)

 
In formulas (1)–(6), 	ݑଵሺݏଵ, ,ሻݐ ,௤ݏଷ൫ݑ ,൯ݐ ߮ଵሺݏଵ,   are the components of the generalized displacement	ሻݐ

vector of the middle surface of the shell,  ݄ሺݏଵሻ is the variable thickness of the shell, ߩ is the density of the shell 
material, ܧ and ߥ are the physical and mechanical parameters of the shell material, Pasternak elastic bed parameters 
are ܥଵ ൌ	0.25×108 N/m3 and ܥଶ ൌ	0.25×106 N/m. 

To calculate the stiffness characteristics of the shell, the thickness ݄ is defined as a linear function of the 
coordinate ݏଵ: 

݄ሺݏଵሻ ൌ ݄ሺݏଵ଴ሻ ൅ ሾ݄ሺݏଵேሻ െ ݄ሺݏଵ଴ሻሿ
ଵݏ
ܮ
, 

ଵேݏ െ ଵ଴ݏ ൌ ,ܮ ଵ଴ݏ ൑ ଵݏ ൑  .ଵேݏ
(7)

 
The corresponding boundary and initial conditions supplement equation (5). 
In the case of a rigidly fixed edge at 	ݏଵ ൌ ଵݏ	  and	ଵ଴ݏ ൌ  : , the boundary conditions are as follows	ଵேݏ

 
ଵݑ ൌ ଷݑ ൌ ߮ଵ ൌ 0. (8)

 
The initial conditions are written as follows: 

 
ଵݑ ൌ ଷݑ ൌ ߮ଵ ൌ 0, 

ଵݑ߲
ݐ߲

ൌ
ଷݑ߲
ݐ߲

ൌ
߲߮ଵ
ݐ߲

ൌ 0. 
(9)

 
Numerical Algorithm for Solving the Equations of Axisymmetric Vibrations of Conical Shells of 

Variable Thickness on an Elastic Bed. Initial boundary-value problems of the theory of conical shells of variable 
thickness will be solved using numerical methods, and their subsequent numerical implementation will be done on 
computers. In particular, the method of finite differences is used for the tasks at hand. To create a numerical algorithm, 
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we use the integral-interpolation method of constructing difference schemes in spatial coordinates and an explicit finite 
difference scheme for integrating in the time coordinate [1]. 

Thus, equations (5)–(9) represent the formulation of the problem of vibrations of conical shells of variable 
thickness, which are located on a Pasternak elastic bed under nonstationary axisymmetric loading. 

The construction of a numerical algorithm begins with constructing a difference grid. Let’s divide the interval 
,ଵ଴ݏ] ଵ଴ݏ) [ଵேݏ ൌ 0, ଵேݏ ൌ ଵݏ∆		into N equal parts with a step (ܮ ൌ ଵ௟ݏ∆ ,and get a grid with discrete nodes ܰ/ܮ ൌ
ଵ଴ݏ∆ ൅ ݈ ,ଵ݈ݏ∆ ൌ 1, ܰതതതതത. Along with the main difference grid, an auxiliary difference grid is introduced 
 a similar grid is introduced on the ,ݐ ଵ in the half-nodes. At the time coordinateݏ corresponding to the values of	ଵ௟േଵ/ଶ,ݏ

interval ሾ0; 	ܶሿ with a breakdown into ଵܰ equal subintervals with a step 	߬ ൌ ܶ/ ଵܰ, 	߬௡ ൌ ݊߬. An auxiliary time grid is 
also introduced	߬௡∓ଵ/ଶ	 corresponding to the values ݐ in the half-nodes. Using an explicit “cross” scheme in the time 

coordinate allows one to preserve the divergent form of the difference representation of differential equations and fulfill 
the law of conservation of total mechanical energy at the difference level [1]. 

In the following, we denote the displacements of the generalized vector of the conical shell as follows: 
 

,ଵݑ ,ଷݑ ߮ଵ → ሺݑଵሻଵ
௡, ሺݑଷሻଵ

௡, ሺ߮ଵሻଵ
௡. (10)

 
We will use the integral-interpolation method of creating finite-difference schemes for hyperbolic equations 

to construct difference schemes of the vibration equations of conical shells of variable thickness under unsteady loads 
[2]. According to this approach, we write equations (5) as follows in the domain: 
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After standard transformations in relations (11), we obtain the following difference approximations of 

equations (5): 
1
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In equations (12), discrete functions and derivatives are notated according to [2]. As follows from equations 
(12), the magnitudes of forces and moments are correlated with the difference points in semi-integer nodes in the spatial 
coordinate and in integer nodes in the time coordinate: 

ሺ ଵܶଵ, ଵܶଷ, ଶܶଶ,ܯଵଵ,ܯଶଶሻ → ൫ ଵܶଵ௦భേଵ ଶ⁄
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௡ ൯. 

Given this, the difference relations for forces and moments (6) are as follows: 
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and for equations (2): 
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௡ , 

௜ିଵ/ଶ		ଶଶߝ
௡ ൌ ߰௜ିଵ/ଶ	 ∙ ଵ௜ିଵݑ ଶ⁄ ,௝

௡ ൅ ݇ଶ௜ିଵ ଶ⁄
௡ ∙ ଷ௜ିଵݑ ଶ⁄ ,௝

௡ , 

௜ାଵ/ଶ,௝		ଵଷߝ
௡ ൌ

ଷ௜ାଵ,௝ݑ
௡ െ ଷ௜,௝ݑ

௡

ଵݏ∆
൅ ߮ଵ௜ାଵ/ଶ,௝

௡ , 

௜ିଵ/ଶ,௝		ଵଷߝ
௡ ൌ

ଷ௜,௝ݑ
௡ െ ଷ௜ିଵ,௝ݑ

௡

ଵݏ∆
൅ ߮ଵ௜ିଵ/ଶ,௝

௡ , 

݇ଵଵ௜ାଵ/ଶ,௝
௡ ൌ

ఝభ೔శభ,ೕ
೙ ିఝభ೔,ೕ

೙

∆௦భ
,    ݇ଵଵ௜ିଵ/ଶ,௝

௡ ൌ
ఝభ೔,ೕ
೙ ିఝభ೔షభ,ೕ

೙

∆௦భ
, 

݇ଶଶ௜ାଵ/ଶ,௝
௡ ൌ ߰௜ାଵ/ଶ	 ∙ ߮ଵ௜ିଵଶ,௝

௡ , 

݇ଶଶ௜ିଵ/ଶ,௝
௡ ൌ ߰௜ିଵ/ଶ ∙ ߮ଵ௜ିଵ/ଶ,௝

௡ . 

(14)

 
From the above formulas, it follows that the numerical algorithm for solving the problem consisted of a 

sequence of the following steps: 
At the nth time interval, the values of the corresponding deformations, forces, and moments were calculated 

along the spatial coordinate; 
The values of the generalized displacement vector component were calculated from the corresponding values 

of deformations, forces, and moments. 
According to formulas (11)–(14), the difference scheme is explicit in the time coordinate. Thus, it is conditionally 

stable in spatial and temporal coordinates, i.e., there is a dependence between the quantities	߬	 and 	∆ݏଵ. The calculations 
also depend on the geometric, physical, and mechanical parameters of conical shells of variable thickness, under which the 
computational process is stable. In the future, when considering the numerical solution to the problems of axisymmetric 
vibrations of conical shells of variable thickness, we will proceed from the following formulas for the values of the difference 
steps 	∆ݏଵ	 and	߬. Given that an explicit finite-difference scheme was used, the difference steps were chosen based on 
the following condition: 

߬ ൑  ,ଵ/ܿଵݏΔܭ
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where ܿଵ
ଶ ൌ

ா

ሾఘሺଵିఔమሻሿ
 is the Courant number, setting the time step requirements of a transient simulation. In the ܭ ,

calculations, we assumed 	ܭ ൌ	0.3–0.5, given the practical convergence of the results. 
In matrix-vector form, the difference equations (11)–(14) can be written as follows: 

 

ሾܥሿ ഥܷ ൅ ሾܯሿ
߲ଶ ഥܷ

ଶݐ߲
ൌ ,ሻݐതሺܨ ሾܥሿ ഥܷ ൅ ሾܯሿ

߲ଶ ഥܷ

ଶݐ߲
ൌ ሺݐሻ, (15)

 
where ሾܯሿ and ሾܥሿ are the mass and stiffness matrices of the discrete difference system,  ሾ ഥܷሿ and ሾܨതሿ are the vectors 
of discrete displacements and external load. 

Assuming that the matrix ሾܯሿ		is non-degenerate, the last equation (15) is given in the form 
 

ሾܦሿ ഥܷ ൅
߲ଶ ഥܷ

ଶݐ߲
ൌ ሾܯሿିଵܨതሺݐሻ, ሾܦሿ ഥܷ ൅

߲ଶ ഥܷ

ଶݐ߲
ൌ ሾܯሿିଵሺݐሻ,  (16)

 
where the matrix ሾܦሿ ൌ ሾܯሿିଵሾܥሿ. 

Earlier [2], it was established that when using an explicit finite difference scheme for integrating equations, a 
necessary condition for the stability of difference equations is the condition of the form 
 

߬ ൑
2

Ω୫ୟ୶
ൌ 2, (17)

 
where 	Ω୫ୟ୶		is the maximum frequency of natural oscillations of the difference system, and ߚሾܦሿ is the upper limit of 
the matrix spectrum ሾܦሿ. 

Using the Gershgorin theory to estimate the value of 	ߚሾܦሿ from above, using Gershgorin’s theorem, we obtain 
 

ߚ ൌ ௠௔௫ߗ
ଶ ൑ max∑ ห݀௜௬ห௜ ,  β ൌ Ω୫ୟ୶

ଶ ൑ max|݀௜௝|, (18)

 
where dij are the elements of the matrix ሾܦሿ. 

The stability condition for the difference equations is as follows: 
 

߬ ൑ 2/Ω௠௔௫. (19)
 
Here 	Ω௠௔௫ is determined from the following inequalities: 
 

௠௔௫ߗ
ଶ ൑ maxሺߗ௠௔௫଴

ଶ ሻ, 

௠௔௫ߗ
ଶ ൑ maxሺሾߗଵሿଶ, ሾߗଶሿଶ, ሾߗଷሿଶሻ, 

(20)

 
where ሾߗଵሿଶ, 	ሾߗଶሿଶ, 	ሾߗଷሿଶ are determined by the following relations: 
 

ሾΩଵሿଶ ൌ
ܧ

ሺ1ߩ െ ଶሻߥ
൤

4
Δሺݏଵሻଶ

൅ ߥ ൬
1

ܴΔݏଵ
൰൨, 

ሾΩଶሿଶ ൌ
ܧ

ሺ1ߩ െ ଶሻߥ
ቊ
ଵଷሺ1ܩ12 െ ଶሻߥ

ܧ
൤
1

Δݏଵ݄
൅

4
Δሺݏଵሻଶ

൨ ൅ ൤
1
ܴଶ

൅ ߥ ൬
1

ܴΔݏଵ
൰൨ቋ, 

ሾΩଷሿଶ ൌ
ܧ

ሺ1ߩ െ ଶሻߥ
ቊ

4
ሺΔݏଵሻଶ

൅
ଵଷሺ1ܩ12 െ ଶሻߥ

ܧ
൤
1

Δݏଵ݄
൅
4
݄ଶ
൨ቋ. 

(21)
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Numerical Results. As a numerical example for axisymmetric vibrations, consider the problem of the dynamic 
behavior of a sheared conical shell of variable thickness on the Pasternak elastic bed (5) with rigidly clamped edges 
under the action of a normally distributed load 	 ଷܲሺݏଵ,  .ሻݐ

The boundary and initial conditions are as follows: 
 

ଵݑ ൌ ଷݑ ൌ ߮ଵ ൌ 0 
at 	ݐ ൌ 0: 

ଵݑ ൌ ଷݑ ൌ ߮ଵ ൌ
ଵݑ߲
ݐ߲

ൌ
ଷݑ߲
ݐ߲

ൌ
߲߮ଵ
ݐ߲

ൌ 0. (22)

 
The geometric parameters of the shell thickness were set as follows: ݄ሺݏଵ଴ሻ = 0.510–2 m, ݄ሺݏଵேሻ = 10–2 m, 

ܴ଴ = 0.3 м, ܮ ൌ	0.4 m, and physico-mechanical parameters are ܧ ൌ	71010  Pa, 	,0.3 = ߥ 	2.7 = ߩ103  kg/m3. Pasternak 
elastic bed parameters were 	ܥଵ = 0.25108  N/m3 and 	ܥଶ = 0.25106  N/m. 

The nonstationary pulse load was set according to the formulas: 
 

ଷܲሺݏଵ, ሻݐ  ൌ ൝
ܣ ൬1 െ

ݐ
ܶ
൰ ሺ0 ൑ ݐ ൑ ܶሻ,

0 ሺݐ ൐ ܶሻ,
 (23)

 
where ܣ ൌ 10଺ Pa, ܶ ൌ ܮ ܿ⁄ ൌ 5 ൈ 10ିହ s, ܿ is the longitudinal wave velocity in the metal of the conical shell. 

An isotropic conical shell of variable thickness was considered with the following parameters. 
Option 1: 	ߠ ൌ at ܴ଴ 6/ߨ ൌ 0.3 m, ܮ ൌ 0.4 m. The conical shell’s first natural frequencies were 781.57 Hz 

  .with no elastic bed, 851.91 Hz with the Winkler elastic bed, and 883.18 Hz with the Pasternak elastic bed (14.7ܶ =	ݐ)
Option 2: ߠ ൌ at ܴ଴ 4/ߨ ൌ 0.3 m, ܮ ൌ 0.4 m. The conical shell’s first natural frequencies were 687.22 Hz (ݐ 

= 18.3ܶ) without an elastic bed, 769.69 Hz with the Winkler elastic bed, and 7833.43 Hz with the Pasternak elastic 
bed.  

We assessed the dynamic behavior of a conical shell of variable thickness on the Pasternak elastic bed with 
the above parameters. Numerical calculations were performed for the time interval 0 ൑ ݐ ൑ 40ܶ. 

Figure 1 shows the change in the maximum normal displacements ݑଷ depending on the spatial coordinate ݏଵ 

at the instant ݐ ൌ 14.7ܶ (it is assumed that this instant corresponds to the achievement of the maximum value of ݑଷ at 
the studied time interval) at ߠ ൌ   .are given in m		ଷݑ	 Hereafter, the displacements .6/ߨ
 

 

Fig. 1. Dependence of maximum deflections ݑଷ on the spatial coordinate ݏଵ at ݐ ൌ 14.7ܶ for 6/ߨ = ߠ. Here and in 
Figs. 2–8: (1) corresponds to the conical shell of variable thickness with no elastic bed, (2) with the Winkler elastic 
bed, and (3) with the Pasternak elastic bed. 
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Thus,  the maximum deflections 	ݑଷ	 with no elastic bed exceeded those with the Winkler and Pasternak elastic 
beds by 29 and 40%, respectively. In turn, the first natural frequency with no elastic bed was lower than those with the 
Winkler and Pasternak elastic beds by 12 and 14%, respectively. 

Figure 2 shows the dependence of the maximum values of stresses ߪଶଶ on the spatial coordinate ݏଵ at the 
instant ݐ ൌ 14.7ܶ at ߠ ൌ  . are given in Pa	ଶଶߪ	 Hereinafter, the stresses .6/ߨ
 

 

Fig. 2. Dependence of maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at ݐ ൌ 14.7ܶ for ߠ ൌ  .6/ߨ
 

The maximum stresses ߪଶଶ	with no elastic bed exceeded those with the Winkler and Pasternak elastic beds by 
23 and 35%, respectively.  

Figure 3 shows the dependence of the maximum deflections ݑଷ on the spatial coordinate ݏଵ at the instant ݐ ൌ
18.3ܶ at ߠ ൌ  .4/ߨ

The maximum deflections 	ݑଷ	 with no elastic bed exceeded those with the Winkler and Pasternak elastic beds 
by 39% and 51%, respectively. 

In turn, the first natural frequency with no elastic bed was lower than those with the Winkler and Pasternak 
elastic beds by 12 and 14%, respectively. 
 

 

Fig. 3. Dependence of maximum deflections ݑଷ on the spatial coordinate ݏଵ at ݐ ൌ 18.3ܶ for 4/ߨ = ߠ. 
 
Figure 4 shows the dependence of the maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at the instant 

ݐ ൌ 18.3ܶ at ߠ ൌ  .4/ߨ
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Fig. 4. Dependence of maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at ݐ ൌ 18.3ܶ for ߠ ൌ  .4/ߨ
 

The maximum stresses ߪଶଶ	with no elastic bed exceeded those with the Winkler and Pasternak elastic beds by 
28% and 55%, respectively. 

The following geometric parameters of the shell thickness were set: ݄ሺݏଵ଴ሻ = 0.510–2 m, ݄ሺݏଵேሻ = 10–2 m, 
ܴ଴ = 0.1 m, 0.4 = ܮ m, ܧ ൌ	71010  Pa, 2.7 = ߩ ,0.3 = ߥ103 kg/m3. Pasternak elastic bed parameters were ܥଵ = 
0.25×108  N/m3 and 	ܥଶ = 0.25×106  N/m. 

An isotropic conical shell of variable thickness was considered with the following parameters. 
Option 1: ߠ ൌ  m. The conical shell’s first natural frequencies were 1169.70 Hz 0.4 = ܮ ,at ܴ଴ = 0.1 m 6/ߨ

ݐ) ൌ 8.6ܶ) with no elastic bed, 1268.4 Hz with the Winkler elastic bed, and 1381.9 Hz with the Pasternak elastic bed. 
Option 2: ߠ ൌ  = ݐ) m. The conical shell’s first natural frequencies were 976.34 Hz 0.4 = ܮ ,= 0.1 m	at ܴ଴ 4/ߨ

12.1ܶ) with no elastic bed, 1093.5 Hz with the Winkler elastic bed, and 1113.2 Hz with the Pasternak elastic bed. 
 Figure 5 shows the dependence of the maximum deflections 	ݑଷ on the spatial coordinate ݏଵ at the instant ݐ ൌ 

8.6ܶ. 

 

Fig. 5. Dependence of maximum deflections ݑଷ on the spatial coordinate ݏଵ at ݐ ൌ 8.6ܶ for 6/ߨ = ߠ. 
 

The maximum deflections 	ݑଷ	 with no elastic bed exceeded those with the Winkler and Pasternak elastic beds 
by 31 and 43%, respectively. In turn, the first natural frequency with no elastic bed was lower than those with the 
Winkler and Pasternak elastic beds by 12 and 14%, respectively. 
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Fig. 6. Dependence of maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at ݐ ൌ 8.6ܶ for ߠ ൌ  .6/ߨ
 
Figure 6 shows the dependence of the maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at the instant 

ݐ ൌ 8.6ܶ at ߠ ൌ  .6/ߨ
The maximum stresses 	ߪଶଶ		with no elastic bed exceeded those with the Winkler and Pasternak elastic beds 

by 35 and 43%, respectively. 
Figure 7 shows the dependency of maximum deflections ݑଷ on the spatial coordinate ݏଵ at the instant ݐ ൌ

12.1ܶ at ߠ ൌ  .4/ߨ
The maximum deflections 	ݑଷ with no elastic bed exceeded those with the Winkler and Pasternak elastic beds 

by 28% and 41%, respectively. In turn, the first natural frequency with no elastic bed was lower than those with the 
Winkler and Pasternak elastic beds by 8.4 and 18%, respectively. 
 

 

Fig. 7. Dependence of maximum deflections ݑଷ on the spatial coordinate ݏଵ at ݐ ൌ 12.1ܶ for 4/ߨ = ߠ. 
 

Figure 8 shows the dependence of the maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at the instant 
ݐ ൌ 12,1ܶ at ߠ ൌ  .4/ߨ

The maximum stresses 	ߪଶଶ		with no elastic bed exceeded those with the Winkler and Pasternak elastic beds 
by 42 and 55%, respectively. 

Thus, the above plots made it possible to analyze in detail the stress-strain state of a conical shell of variable 
thickness on an elastic bed at specified parameters under the action of a nonstationary load. 



 
 31

 
 

 

Fig. 8. Dependence of maximum stress values ߪଶଶ on the spatial coordinate ݏଵ at ݐ ൌ 12.1ܶ for ߠ ൌ  .4/ߨ
 
Conclusions. The finite-difference method analyzed transient processes in axisymmetric sheared conical 

shells of variable thickness under nonstationary loading. The integral-interpolation method of constructing difference 
schemes in spatial coordinates and an explicit finite-difference integration scheme in the time coordinate were used to 
create the numerical algorithm. Using the explicit cross scheme in the time coordinate allows for preserving the 
divergent form of the difference representation of the differential equations and fulfilling the law of conservation of 
total mechanical energy at the difference level. The stability conditions of the difference equations are investigated. 
Calculations show that maximum deflections ݑଷ with no elastic bed exceeded those with the Pasternak elastic bed by 
40% at 	ܴ଴ ൌ 0.3 and 	ߠ ൌ 30° and by 51% at 	ܴ଴ ൌ 0.3		and ߠ ൌ 45°. In the case of ܴ଴ ൌ 0.1, the maximum 
deflections ݑଷ drop by 43% at ߠ ൌ 30° and by 41% at ߠ ൌ 45°. The maximum compressive circumferential 
stresses	ߪଶଶ are achieved in the region of the cut edge of the shell and tend to decrease by 43% at ߠ ൌ 30° and by 55% 
at 	ߠ ൌ 45° due to the influence of the Pasternak elastic bed. The change in ܴ଴ and the taper angle ߠ significantly 
affects the natural frequency of a conical shell of variable thickness: it amounts to 781.57 Hz at ߠ ൌ 30° and ܴ଴ ൌ 0.3 
m, reaching 687.22 Hz at ߠ ൌ 45°, while at ܴ଴ ൌ 0.1 m, it increases by 50 and 42%. The presence of a Pasternak 
elastic bed contributes to the increase in the natural frequency of a conical shell of variable thickness. Consequently, it 
is possible to create a structure of a conical shell of variable thickness on a Pasternak elastic bed with predictable 
dynamic behavior under unsteady loading.  
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